首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MST4, a novel member of the germinal center kinase subfamily of human Ste20-like kinases, was cloned and characterized. Composed of a C-terminal regulatory domain and an N-terminal kinase domain, MST4 is most closely related to mammalian Ste20 kinase family member MST3. Both the kinase and C-terminal regulatory domains of MST4 are required for full activation of the kinase. Northern blot analysis indicates that MST4 is ubiquitously distributed, and the MST4 gene is localized to chromosome Xq26, a disease-rich region, by fluorescence in situ hybridization. Although some members of the MST4 family function as upstream regulators of mitogen-activated protein kinase cascades, expression of MST4 in 293 cells was not sufficient to activate or potentiate extracellular signal-regulated kinase, c-Jun N-terminal kinase, or p38 kinase. An alternatively spliced isoform of MST4 (MST4a) was isolated by yeast two-hybrid interaction with the catalytic domain of Raf from a human fetal brain cDNA library and also found in a variety of human fetal and adult tissues. MST4a lacks an exon encoding kinase subdomains IX-XI that stabilizes substrate binding. The existence of both MST4 isoforms suggests that the MST4 kinase activity is highly regulated, and MST4a may function as a dominant-negative regulator of the MST4 kinase.  相似文献   

2.
Mammalian STE20-like kinase 2 (MST2), a member of the STE20-like kinase family, has been shown in previous studies to undergo proteolytic activation by caspase-3 during cell apoptosis. A few studies have also implicated protein phosphorylation reactions in MST2 regulation. In this study, we examined the mechanism of MST2 regulation with an emphasis on the relationship between caspase-3 cleavage and protein phosphorylation. Both the full-length MST2 and the caspase-3-truncated form of MST2 overexpressed in 293T cells exist in a phosphorylated state. On the other hand, the endogenous full-length MST2 from rat thymus or from proliferating cells is mainly unphosphorylated whereas the caspase-3-truncated endogenous MST2 from apoptotic cells is highly phosphorylated. Cell transfection studies using mutant MST2 constructs indicate that MST2 depends on the autophosphorylation of a unique threonine residue, Thr(180), for kinase activity. The autophosphorylation reaction shows strong dependence on MST2 concentration suggesting that it is an intermolecular reaction. While both the full-length MST2 and the caspase-3-truncated form of MST2 undergo autophosphorylation, the two forms of the phosphorylated MST2 display marked difference in susceptibility to protein phosphatases. The full-length phospho-MST2 is rapidly dephosphorylated by protein phosphatase 1 or protein phosphatase 2A whereas the truncated MST2 is remarkably resistant to the dephosphorylation. Based on the present results, a novel molecular mechanism for MST2 regulation in apoptotic cells is postulated. In normal cells, because of the low concentration and the ready reversal of the autophosphorylation by protein phosphatases, MST2 is present mainly in the unphosphorylated and inactive state. During cell apoptosis, MST2 is cleaved by caspase-3 and undergoes irreversible autophosphorylation, thus resulting in the accumulation of active MST2.  相似文献   

3.
The activity of the serine/threonine kinase c-Raf (Raf) is inhibited by increased intracellular cAMP. This is believed to require phosphorylation with the cAMP-dependent protein kinase (PKA), although the mechanism by which PKA inhibits Raf is controversial. We investigated the requirement for PKA phosphorylation using Raf mutants expressed in HEK293 or NIH 3T3 cells. Phosphopeptide mapping of (32)P-labeled Raf (WT) or a mutant lacking a putative PKA phosphorylation site (serine to alanine, S43A) confirmed that serine 43 (Ser(43)) was the major cAMP (forskolin)-stimulated phosphorylation site in vivo. Interestingly, the EGF-stimulated Raf kinase activity of the S43A mutant was inhibited by forskolin equivalently to that of the WT Raf. Forskolin also inhibited the activation of an N-terminal deletion mutant Delta5-50 Raf completely lacking this phosphorylation site. Although WT Raf was phosphorylated by PKA, phosphorylation did not inhibit Raf catalytic activity in vitro, nor did forskolin treatment inhibit the activity of an N-terminally truncated Raf protein (Raf 22W) or a full-length Raf protein (Raf-CAAX) expressed in NIH 3T3 cells. In contrast, forskolin inhibited the EGF-dependent activation of a Raf isoform (B-Raf), lacking an analogous phosphorylation site to Ser(43). Thus, these results demonstrate that PKA exerts its inhibitory effects independently of direct Raf phosphorylation and suggests instead that PKA prevents an event required for the EGF-dependent activation of Raf.  相似文献   

4.
NDR protein kinases are involved in the regulation of cell cycle progression and morphology. NDR1/NDR2 protein kinase is activated by phosphorylation on the activation loop phosphorylation site Ser281/Ser282 and the hydrophobic motif phosphorylation site Thr444/Thr442. Autophosphorylation of NDR is responsible for phosphorylation on Ser281/Ser282, whereas Thr444/Thr442 is targeted by an upstream kinase. Here we show that MST3, a mammalian Ste20-like protein kinase, is able to phosphorylate NDR protein kinase at Thr444/Thr442. In vitro, MST3 selectively phosphorylated Thr442 of NDR2, resulting in a 10-fold stimulation of NDR activity. MOB1A (Mps one binder 1A) protein further increased the activity, leading to a fully active kinase. In vivo, Thr442 phosphorylation after okadaic acid stimulation was potently inhibited by MST3KR, a kinase-dead mutant of MST3. Knockdown of MST3 using short hairpin constructs abolished Thr442 hydrophobic motif phosphorylation of NDR in HEK293F cells. We conclude that activation of NDR is a multistep process involving phosphorylation of the hydrophobic motif site Thr444/2 by MST3, autophosphorylation of Ser281/2, and binding of MOB1A.  相似文献   

5.
6.
Rac activation is a key step in chemotaxis of hematopoietic cells, which is both positively and negatively regulated by receptors coupled to heterotrimeric G proteins. P-Rex1, a Rac-specific guanine nucleotide exchange factor, is dually activated by phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)) and the Gbetagamma subunits of heterotrimeric G proteins. This study explored the regulation of P-Rex1 by phosphorylation with the cAMP-dependent protein kinase (protein kinase A) in vitro and by G(i)- and G(s)-coupled receptors in HEK293T cells. P-Rex1 isolated from Sf9 and HEK293T cells migrates as two distinct bands that are partially phosphorylated. Phosphorylation of P-Rex1 with protein kinase A (PKA) inhibits the PIP(3)- and Gbetagamma-stimulated P-Rex1 guanine nucleotide exchange activity on Rac. The guanine nucleotide exchange factor activity of three different forms of P-Rex1 (native Sf9, de-phosphorylated, and phosphorylated) was examined in the presence of PIP(3) and varying concentrations of Gbeta(1)gamma(2). Gbeta(1)gamma(2) was 47-fold less potent in activating the phosphorylated form of P-Rex1 compared with the de-phosphorylated form. HEK293T cells expressing P-Rex1 were labeled with (32)P and stimulated with lysophosphatidic acid (LPA) to release Gbetagamma or isoproterenol to activate PKA. Treatment with isoproterenol or S(p)-cAMPS, a potent activator of PKA, increased the incorporation of (32)P into P-Rex1. LPA increased the amount of GTP-bound Rac in the cells and isoproterenol reduced basal levels of GTP-bound Rac and blunted the effect of LPA. Treatment of the cells with S(p)-cAMPS also reduced the levels of GTP-bound Rac. These results outline a novel mechanism for G(s)-linked receptors to regulate the function of P-Rex1 and inhibit its function in cells.  相似文献   

7.
Minibrain kinase/dual-specificity tyrosine phosphorylation-regulated kinase (Mnb/Dyrk1A) is a proline-directed serine/threonine kinase encoded in the Down syndrome critical region of human chromosome 21. This kinase has been shown to phosphorylate dynamin 1 and synaptojanin 1. Here we report that amphiphysin I (Amph I) is also a Mnb/Dyrk1A substrate. This kinase phosphorylated native Amph I in rodent brains and recombinant human Amph I expressed in Escherichia coli. Serine 293 (Ser-293) was identified as the major site, whereas serine 295 and threonine 310 were found as minor kinase sites. In cultured cells, recombinant Amph I was phosphorylated at Ser-293 by endogenous kinase(s). Because mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) has been suggested to phosphorylate Amph I at Ser-293, our efforts addressed whether Ser-293 is phosphorylated in vivo by MAPK/ERK or by Mnb/Dyrk1A. Overnight serum-withdrawal inactivated MAPK/ERK; nonetheless, Ser-293 was phosphorylated in Chinese hamster ovary and SY5Y cells. Epigallocatechin-3-gallate, a potent Mnb/Dyrk1A inhibitor in vitro, apparently reduced the phosphorylation at Ser-293, whereas PD98059, a potent MAPK/ERK inhibitor, did not. High frequency stimulation of mouse hippocampal slices reduced the phosphorylation at Ser-293, albeit in the midst of MAPK/ERK activation. The endophilin binding in vitro was inhibited by phosphorylating Amph I with Mnb/Dyrk1A. However, phosphorylation at Ser-293 did not appear to alter cellular distribution patterns of the protein. Our results suggest that Mnb/Dyrk1A, not MAPK/ERK, is responsible for in vivo phosphorylation of Amph I at Ser-293 and that phosphorylation changes the recruitment of endophilin at the endocytic sites.  相似文献   

8.
Phosducin-like protein (PhLP) is a member of the phosducin family of G-protein betagamma-regulators and exists in two splice variants. The long isoform PhLP(L) and the short isoform PhLP(S) differ by the presence or absence of an 83-amino acid N terminus. In isolated biochemical assay systems, PhLP(L) is the more potent Gbetagamma-inhibitor, whereas the functional role of PhLP(S) is still unclear. We now report that in intact HEK 293 cells, PhLP(S) inhibited Gbetagamma-induced inositol phosphate generation with approximately 20-fold greater potency than PhLP(L). Radiolabeling of transfected HEK 293 cells with [(32)P] revealed that PhLP(L) is constitutively phosphorylated, whereas PhLP(S) is not. Because PhLP(L) has several consensus sites for the constitutively active kinase casein kinase 2 (CK2) in its N terminus, we tested the phosphorylation of the recombinant proteins by either HEK cell cytosol in the presence or absence of kinase inhibitors or by purified CK2. PhLP(L) was a good CK2 substrate, whereas PhLP(S) and phosducin were not. Progressive truncation and serine/threonine to alanine mutations of the PhLP(L) N terminus identified a serine/threonine cluster (Ser-18/Thr-19/Ser-20) within a small N-terminal region of PhLP(L) (amino acids 5-28) as the site in which PhLP(L) function was modified in HEK 293 cells. In native tissue, PhLP(L) also seems to be regulated by phosphorylation because phosphorylated and non-phosphorylated forms of PhLP(L) were detected in mouse brain and adrenal gland. Moreover, the alternatively spliced isoform PhLP(S) was also found in adrenal tissue. Therefore, the physiological control of G-protein regulation by PhLP seems to involve phosphorylation by CK2 and alternative splicing of the regulator.  相似文献   

9.
Preventing or reducing tau hyperphosphorylation is considered to be a therapeutic strategy in the treatment of Alzheimer’s disease (AD). Rapamycin may be a potential therapeutic agent for AD, because the rapamycin-induced autophagy may enhance the clearance of the hyperphosphorylated tau. However, recent rodent studies show that the protective effect of rapamycin may not be limited in the autophagic clearance of the hyperphosphorylated tau. Because some tau-related kinases are targets of the mammalian target of rapamycin (mTOR), we assume that rapamycin may regulate tau phosphorylation by regulating these kinases. Our results showed that in human neuroblastoma SH-SY5Y cells, treatment with rapamycin induced phosphorylation of the type IIα regulatory (RIIα) subunit of cAMP-dependent kinase (PKA). Rapamycin also induced nuclear translocation of the catalytic subunits (Cat) of PKA and decreases in tau phosphorylation at Ser214 (pS214). The above effects of rapamycin were prevented by pretreatment with the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor U0126. In addition, these effects of rapamycin might not depend on the level of tau expression, because similar results were obtained in both the non-tau-expressing wild type human embryonic kidney 293 (HEK293) cells and HEK293 cells stably transfected with the longest isoform of recombinant human tau (tau441; HEK293/tau441). These findings suggest that rapamycin decreases pS214 via regulation of PKA. Because tau phosphorylation at Ser214 may prime tau for further phosphorylation by other kinases, our findings provide a novel possible mechanism by which rapamycin reduces or prevents tau hyperphosphorylation.  相似文献   

10.
The prevalence and regulation of p38 mitogen activated protein kinase (MAPK) expression in human lymphomas have not been extensively studied. In order to elucidate the role of p38 MAPK in lymphomagenesis, we examined the expression of native and phosphorylated p38 (p-p38) MAPK in cell lines derived from human hematopoietic neoplasms including B cell lymphoma-derived cell lines using Western blot analysis. The p-p38 MAPK protein was also analyzed in 30 B cell non-Hodgkin lymphoma (NHL) tissue biopsies by immunohistochemistry. Our results show that the expression of p38 MAPK was up-regulated in most of the cell lines as compared with peripheral blood lymphocytes, while the expression of p-p38 MAPK was more variable. A subset of B cell NHL biopsies showed increased expression of p-p38 MAPK relative to reactive germinal center cells. Interleukin-4 (IL-4) induced a dose-dependent increase in the expression of p-p38 MAPK (1.6- to 2.8-fold) in cell lines derived from activated B cell-like diffuse large B cell lymphoma (DLBCL) but not those from germinal center-like DLBCL. No change was seen in native p38 MAPK. The in vitro kinase activity of p38 MAPK, however, was induced (1.6- to 3.2-fold) in all five cell lines by IL-4. Quantitative fluorescent RT-PCR demonstrated that all four isoforms of p38 MAPK gene were expressed in the lymphoma cell lines, with p38γ and p38β isoforms being predominant. IL-4 stimulation increased the expression of β, γ, and δ isoforms but not α isoform in two cell lines. In conclusion, there is constitutive expression and activation of p38 MAPK in a large number of B-lymphoma-derived cell lines and primary lymphoma tissues, supportive of its role in lymphomagenesis. The differential IL-4 regulation of p38 MAPK expression in cell lines derived from DLBCL may relate to the cellular origin of these neoplasms.

Electronic supplementary material

The online version of this article (doi:10.1007/s12308-009-0049-5) contains supplementary material, which is available to authorized users.  相似文献   

11.
The cardiac Na(+)/Ca(2+) exchanger 1 (NCX1) is an important regulator of intracellular Ca(2+) homeostasis and cardiac function. Several studies have indicated that NCX1 is phosphorylated by the cAMP-dependent protein kinase A (PKA) in vitro, which increases its activity. However, this finding is controversial and no phosphorylation site has so far been identified. Using bioinformatic analysis and peptide arrays, we screened NCX1 for putative PKA phosphorylation sites. Although several NCX1 synthetic peptides were phosphorylated by PKA in vitro, only one PKA site (threonine 731) was identified after mutational analysis. To further examine whether NCX1 protein could be PKA phosphorylated, wild-type and alanine-substituted NCX1-green fluorescent protein (GFP)-fusion proteins expressed in human embryonic kidney (HEK)293 cells were generated. No phosphorylation of full-length or calpain- or caspase-3 digested NCX1-GFP was observed with purified PKA-C and [γ-(32)P]ATP. Immunoblotting experiments with anti-PKA substrate and phosphothreonine-specific antibodies were further performed to investigate phosphorylation of endogenous NCX1. Phospho-NCX1 levels were also not increased after forskolin or isoproterenol treatment in vivo, in isolated neonatal cardiomyocytes, or in total heart homogenate. These data indicate that the novel in vitro PKA phosphorylation site is inaccessible in full-length as well as in calpain- or caspase-3 digested NCX1 protein, suggesting that NCX1 is not a direct target for PKA phosphorylation.  相似文献   

12.
Large conductance, calcium- and voltage-activated potassium (BK) channels control excitability in many tissues and are regulated by several protein kinases and phosphatases that remain associated with the channels in cell-free patches of membrane. Here, we report the identification of a highly conserved, non-canonical, leucine zipper (LZ1) in the C terminus of mammalian BK channels that is required for cAMP-dependent protein kinase (PKA) to associate with the channel and regulate its activity. A synthetic polypeptide encompassing the central d position leucine residues in LZ1 blocks the regulation of recombinant mouse BK channels by endogenous PKA in HEK293 cells. In contrast, neither an alanine-substituted LZ1 peptide nor a peptide corresponding to another, more C-terminal putative leucine zipper, LZ2, had any effect on regulation of the channels by endogenous PKA. Mutagenesis of the central two LZ1 d position leucines to alanine in the BK channel also eliminated regulation by endogenous PKA in HEK293 cells without altering the channel sensitivity to activation by voltage or by exogenous purified PKA. Inclusion of the STREX splice insert in the BK channel protein, which switches channel regulation by PKA from stimulation to inhibition, did not alter the requirement for an intact LZ1. Although PKA does not bind directly to the channel protein in vitro, mutation of LZ1 abolished co-immunoprecipitation of PKA and the respective BK channel splice variant from HEK293 cells. Furthermore, a 127-amino acid fusion protein encompassing the functional LZ1 domain co-immunoprecipitates a PKA-signaling complex from rat brain. Thus LZ1 is required for the association and regulation of mammalian BK channels by PKA, and other putative leucine zippers in the BK channel protein may provide anchoring for other regulatory enzyme complexes.  相似文献   

13.
MST1 (mammalian STE20-like kinase 1) is a serine/threonine kinase that is cleaved and activated by caspases during apoptosis. Overexpression of MST1 induces apoptotic morphological changes such as chromatin condensation, but the mechanism is not clear. Here we show that MST1 induces apoptotic chromatin condensation through its phosphorylation of histone H2AX at Ser-139. During etoposide-induced apoptosis in Jurkat cells, the cleavage of MST1 directly corresponded with strong H2AX phosphorylation. In vitro kinase assay results showed that MST1 strongly phosphorylates histone H2AX. Western blot and kinase assay results with a mutant S139A H2AX confirmed that MST1 phosphorylates H2AX at Ser-139. Direct binding of MST1 and H2AX can be detected when co-expressed in HEK293 cells and was also confirmed by an endogenous immunoprecipitation study. When overexpressed in HeLa cells, both the MST1 full-length protein and the MST1 kinase domain (MST1-NT), but not the kinase-negative mutant (MST1-NT-KN), could induce obvious endogenous histone H2AX phosphorylation. The caspase-3 inhibitor benzyloxycarbonyl-DEVD-fluoromethyl ketone (Z-DEVD-fmk) attenuates phosphorylation of H2AX by MST1 but cannot inhibit MST1-NT-induced histone H2AX phosphorylation, indicating that cleaved MST1 is responsible for H2AX phosphorylation during apoptosis. Histone H2AX phosphorylation and DNA fragmentation were suppressed in MST1 knockdown Jurkat cells after etoposide treatment. Taken together, our data indicated that H2AX is a substrate of MST1, which functions to induce apoptotic chromatin condensation and DNA fragmentation.  相似文献   

14.
Protein kinase D (PKD), also called protein kinase C (PKC)mu, is a serine-threonine kinase that is involved in diverse areas of cellular function such as lymphocyte signaling, oxidative stress, and protein secretion. After identifying a putative PKD phosphorylation site in the Toll/IL-1R domain of TLR5, we explored the role of this kinase in the interaction between human TLR5 and enteroaggregative Escherichia coli flagellin in human epithelial cell lines. We report several lines of evidence that implicate PKD in TLR5 signaling. First, PKD phosphorylated the TLR5-derived target peptide in vitro, and phosphorylation of the putative target serine 805 in HEK 293T cell-derived TLR5 was identified by mass spectrometry. Furthermore, mutation of serine 805 to alanine abrogated responses of transfected HEK 293T cells to flagellin. Second, TLR5 interacted with PKD in coimmunoprecipitation experiments, and this association was rapidly enhanced by flagellin treatment. Third, pharmacologic inhibition of PKC or PKD with G?6976 resulted in reduced expression and secretion of IL-8 and prevented the flagellin-induced activation of p38 MAPK, but treatment with the PKC inhibitor G?6983 had no significant effects on these phenotypes. Finally, involvement of PKD in the p38-mediated IL-8 response to flagellin was confirmed by small hairpin RNA-mediated gene silencing. Together, these results suggest that phosphorylation of TLR5 by PKD may be one of the proximal elements in the cellular response to flagellin, and that this event contributes to p38 MAPK activation and production of inflammatory cytokines in epithelial cells.  相似文献   

15.
We have cloned a human counterpart to a guinea pig STE20-like kinase cDNA, designated human SLK (hSLK), from a human lung carcinomatous cell line A549 cDNA library. hSLK cDNA encodes a novel 1204 amino acid serine/threonine kinase for which the kinase domain located at the N-terminus shares considerable homology to that of the STE20-like kinase family. The C-terminal domain of hSLK includes both the coiled-coil structure and four Pro/Glu/Ser/Thr-rich (PEST) sequences, but not the GTPase-binding domain (GBD) that is characteristic of the p21-activated kinase (PAK) family, polyproline consensus binding sites, or the Leu-rich domain seen in the group I germinal center kinases (GCKs). Northern blot analysis indicated that hSLK was ubiquitously expressed. hSLK overexpressed in COS-7 cells phosphorylates itself as well as myelin basic protein used as a substrate. On the other hand, hSLK cannot activate any of the three well-characterized mitogen-activated protein kinase MAPK (ERK, JNK/SAPK and p38) pathways. Moreover, hSLK kinase activity is not upregulated by constitutive active forms of GTPases (RasV12, RacV12 and Cdc42V12). These structural and functional properties indicate that hSLK should be considered to be a new member of group II GCKs.  相似文献   

16.
17.
Protein kinase A-anchoring proteins (AKAPs) influence fundamental cellular processes by directing the cAMP-dependent protein kinase (PKA) toward its intended substrates. In this report we describe the identification and characterization of a ternary complex of AKAP220, the PKA holoenzyme, and the IQ domain GTPase-activating protein 2 isoform (IQGAP2) that is enriched at cortical regions of the cell. Formation of an IQGAP2-AKAP220 core complex initiates a subsequent phase of protein recruitment that includes the small GTPase Rac. Biochemical and molecular biology approaches reveal that PKA phosphorylation of Thr-716 on IQGAP2 enhances association with the active form of the Rac GTPase. Cell-based experiments indicate that overexpression of an IQGAP2 phosphomimetic mutant (IQGAP2 T716D) enhances the formation of actin-rich membrane ruffles at the periphery of HEK 293 cells. In contrast, expression of a nonphosphorylatable IQGAP2 T716A mutant or gene silencing of AKAP220 suppresses formation of membrane ruffles. These findings imply that IQGAP2 and AKAP220 act synergistically to sustain PKA-mediated recruitment of effectors such as Rac GTPases that impact the actin cytoskeleton.  相似文献   

18.
MAP kinase phosphatase 4 (DUSP9/MKP-4) plays an essential role during placental development and is one of a subfamily of three closely related cytoplasmic dual-specificity MAPK phosphatases, which includes the ERK-specific enzymes DUSP6/MKP-3 and DUSP7/MKP-X. However, unlike DUSP6/MKP-3, DUSP9/MKP-4 also inactivates the p38α MAP kinase both in vitro and in vivo. Here we demonstrate that inactivation of both ERK1/2 and p38α by DUSP9/MKP-4 is mediated by a conserved arginine-rich kinase interaction motif located within the amino-terminal non-catalytic domain of the protein. Furthermore, DUSP9/MKP-4 is unique among these cytoplasmic MKPs in containing a conserved PKA consensus phosphorylation site (55)RRXSer-58 immediately adjacent to the kinase interaction motif. DUSP9/MKP-4 is phosphorylated on Ser-58 by PKA in vitro, and phosphorylation abrogates the binding of DUSP9/MKP-4 to both ERK2 and p38α MAP kinases. In addition, although mutation of Ser-58 to either alanine or glutamic acid does not affect the intrinsic catalytic activity of DUSP9/MKP-4, phospho-mimetic (Ser-58 to Glu) substitution inhibits both the interaction of DUSP9/MKP-4 with ERK2 and p38α in vivo and its ability to dephosphorylate and inactivate these MAP kinases. Finally, the use of a phospho-specific antibody demonstrates that endogenous DUSP9/MKP-4 is phosphorylated on Ser-58 in response to the PKA agonist forskolin and is also modified in placental tissue. We conclude that DUSP9/MKP-4 is a bona fide target of PKA signaling and that attenuation of DUSP9/MKP-4 function can mediate cross-talk between the PKA pathway and MAPK signaling through both ERK1/2 and p38α in vivo.  相似文献   

19.
20.
In macrophages, L-arginine can be used by NO synthase and arginase to form NO and urea, respectively. Therefore, activation of arginase may be an effective mechanism for regulating NO production in macrophages through substrate competition. Here, we examined whether IL-13 up-regulates arginase and thus reduces NO production from LPS-activated macrophages. The signaling molecules involved in IL-13-induced arginase activation were also determined. Results showed that IL-13 increased arginase activity through de novo synthesis of the arginase I mRNA and protein. The activation of arginase was preceded by a transient increase in intracellular cAMP, tyrosine kinase phosphorylation, and p38 mitogen-activated protein kinase (MAPK) activation. Exogenous cAMP also increased arginase activity and enhanced the effect of IL-13 on arginase induction. The induction of arginase was abolished by a protein kinase A (PKA) inhibitor, KT5720, and was down-regulated by tyrosine kinase inhibitors and a p38 MAPK inhibitor, SB203580. However, inhibition of p38 MAPK had no effect on either the IL-13-increased intracellular cAMP or the exogenous cAMP-induced arginase activation, suggesting that p38 MAPK signaling is parallel to the cAMP/PKA pathway. Furthermore, the induction of arginase was insensitive to the protein kinase C and p44/p42 MAPK kinase inhibitors. Finally, IL-13 significantly inhibited NO production from LPS-activated macrophages, and this effect was reversed by an arginase inhibitor, L-norvaline. Together, these data demonstrate for the first time that IL-13 down-regulates NO production through arginase induction via cAMP/PKA, tyrosine kinase, and p38 MAPK signalings and underline the importance of arginase in the immunosuppressive activity of IL-13 in activated macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号