首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considering the high costs and technical difficulties associated with conventional remediation strategies, in situ biodegradation has become a promising approach for cleaning up contaminated aquifers. To verify if in situ biodegradation of organic contaminants is taking place at a contaminated site and to determine if these processes are efficient enough to replace conventional cleanup technologies, a comprehensive characterization of site-specific biodegradation processes is essential. In recent years, several strategies including geochemical analyses, microbial and molecular methods, tracer tests, metabolite analysis, compound-specific isotope analysis, and in situ microcosms have been developed to investigate the relevance of biodegradation processes for cleaning up contaminated aquifers. In this review, we outline current approaches for the assessment of in situ biodegradation and discuss their potential and limitations. We also discuss the benefits of research strategies combining complementary methods to gain a more comprehensive understanding of the complex hydrogeological and microbial interactions governing contaminant biodegradation in the field.  相似文献   

2.
多环芳烃污染土壤微生物修复研究进展   总被引:8,自引:1,他引:7  
曾军  吴宇澄  林先贵 《微生物学报》2020,60(12):2804-2815
多环芳烃是我国土壤环境质量标准中要求严格管控的一类持久性有机污染物,利用微生物技术修复有机污染土壤具有绿色、经济等突出特点,应用前景广泛。目前多学科的协同发展和新技术的研究应用,为多环芳烃土壤微生物转化机制与污染生态过程等方面带来了新的认识,同时对修复技术的实际应用与调控提供了新的思考方向。本文以多环芳烃污染土壤微生物修复为主体,从污染土壤微生物修复应用技术、多环芳烃微生物降解特征、土壤体系污染物归趋规律与微生物作用及土壤污染微生物群落响应与研究技术等方面进行综合评述,并针对现存应用技术瓶颈和理论空白作进一步思考和展望。  相似文献   

3.
Biodegradation of contaminants is a common remediation strategy for subsurface environments. To monitor the success of such remediation means a quantitative assessment of biodegradation at the field scale is required. Nevertheless, the reliable quantification of the in situ biodegradation process it is still a major challenge. Compound-specific stable isotope analysis has become an established method for the qualitative analysis of biodegradation in the field and this method is also proposed for a quantitative analysis. However, to use stable isotope data to obtain quantitative information on in situ biodegradation requires among others knowledge on the influence of mass transfer processes on the observed stable isotope fractionation. This paper reviews recent findings on the influence of mass transfer processes on stable isotope fractionation and on the quantitative interpretation of isotope data. Focus will be given on small-scale mass transfer processes controlling the bioavailability of contaminants. Such bioavailability limitations are known to affect the biodegradation rate and have recently been shown to affect stable isotope fractionation, too. Theoretical as well as experimental studies addressing the link between bioavailability and stable isotope fractionation are reviewed and the implications for assessing biodegradation in the field are discussed.  相似文献   

4.
Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.  相似文献   

5.
《Trends in biotechnology》2022,40(12):1519-1534
Various materials have been used to remove environmental contaminants for decades and have been an effective strategy for environmental cleanups. The current nonrenewable materials used for this purpose could impose secondary hazards and challenges in further downstream treatments. Biomass-based materials present viable, renewable, and sustainable solutions for environmental remediation. Recent biotechnology advances have developed biomaterials with new capacities, such as highly efficient biodegradation and treatment train integration. This review systemically discusses how biotechnology has empowered biomass-derived and bioinspired materials for environmental remediation sustainably and cost-effectively.  相似文献   

6.
Plastics have become ubiquitous in both their adoption as materials and as environmental contaminants. Widespread pollution of these versatile, man-made and largely petroleum-derived polymers has resulted from their long-term mass production, inappropriate disposal and inadequate end of life management. Polyethylene (PE) is at the forefront of this problem, accounting for one-third of plastic demand in Europe in part due to its extensive use in packaging. Current recycling and incineration processes do not represent sustainable solutions to tackle plastic waste, especially once it becomes littered, and the development of new waste-management and remediation technologies are needed. Mycoremediation (fungal-based biodegradation) of PE has been the topic of several studies over the last two decades. The utility of these studies is limited by an inconclusive definition of biodegradation and a lack of knowledge regarding the biological systems responsible. This review highlights relevant features of fungi as potential bioremediation agents, before discussing the evidence for fungal biodegradation of both high- and low-density PE. An up-to-date perspective on mycoremediation as a future solution to PE waste is provided.  相似文献   

7.
Monitored natural attenuation may be applied as a risk-based remediation strategy if it can be established that contaminants are or will be reduced to some acceptable level at or before a compliance point. Contaminant attenuation is often attributed to intrinsic biodegradation, which in some circumstances may occur only at the plume fringes where electron acceptors from the surrounding uncontaminated zones mix by dispersion and diffusion with the plume. However, due to the common spatial and temporal variability exhibited by many plumes, the centreline monitoring approaches advocated in many natural attenuation protocols may be unable to detect natural attenuation occurring primarily by fringe processes. Snapshot data from a multilevel sampling well transect across an MTBE plume at Vandenberg Air Force Base, CA, USA, illustrate the difficulty of centreline monitoring and the challenge of providing sufficient detail to detect attenuation processes that may be occurring primarily at plume fringes. In a study of a phenols plume in Wolverhampton, UK, high-resolution multilevel wells demonstrated that the key biodegradation processes were restricted spatially to the upper fringe of the plume and were rate-limited by transverse dispersion and diffusion of electron acceptors into the plume. Thus the overall extent of biodegradation was considerably less than suggested by a plume-scale analysis of total electron acceptor and contaminant budgets. These examples indicate that more robust and cost-effective MNA assessments can be obtained using monitoring strategies that focus on the location of key biodegradation processes.  相似文献   

8.
Bioremediation is gaining a lot of importance in recent times as an alternate technology for removal of elemental pollutants in soil and water, which require effective methods of decontamination. Phytoremediation--the use of green plants to remove, contain or render harmless environmental pollutants--may offer an effective, environmentally nondestructive and cheap remediation method. The use of genetic engineering to modify plants for metal uptake, transport and sequestration may open up new avenues for enhancing efficiency of phytoremediation. Metal chelator, metal transporter, metallothionein (MT), and phytochelatin (PC) genes have been transferred to plants for improved metal uptake and sequestration. Transgenic plants, which detoxify/accumulate cadmium, lead, mercury, arsenic and selenium have been developed. A better understanding of the mechanisms of rhizosphere interaction, uptake, transport and sequestration of metals in hyperaccumulator plants will lead to designing novel transgenic plants with improved remediation traits. As more genes related to metal metabolism are discovered, facilitated by the genome sequencing projects, new vistas will be opened up for development of efficient transgenic plants for phytoremediation.  相似文献   

9.

Background  

Bacteria possess a reservoir of metabolic functionalities ready to be exploited for multiple purposes. The use of microorganisms to clean up xenobiotics from polluted ecosystems (e.g. soil and water) represents an eco-sustainable and powerful alternative to traditional remediation processes. Recent developments in molecular-biology-based techniques have led to rapid and accurate strategies for monitoring and identification of bacteria and catabolic genes involved in the degradation of xenobiotics, key processes to follow up the activities in situ.  相似文献   

10.
Soil microbial populations play crucial role in soil properties and influence below-ground ecosystem processes. Microbial composition and functioning changes the soil quality through decomposition of organic matter, recycling of nutrients, and biological control of parasites of plants. Moreover, the discovery that soil microbes may translate into benefits for biotechnology, management of agricultural, forest, and natural ecosystems, biodegradation of pollutants, and waste treatment systems maximized the need of scientists for the isolation and their characterization. Operations such as the production of antibiotics and enzymic activities from microorganisms of soil constitute objectives of industry in her effort to cope with the increase of population of earth and disturbance of environment and may ameliorate the effects of global climate change. In the past decades, new biochemical and molecular techniques have been developed in our effort to identify and classify soil bacteria. The goal of measuring the soil microbial diversity is difficult because of the limited knowledge about bacteria species and classification through families and orders. Molecular techniques extend our knowledge about microbial diversity and help the taxonomy of species. Measuring and monitoring soil microbial communities can lead us to better understanding of their composition and function in many ecosystem processes.  相似文献   

11.
Contamination of aquifers by organic pollutants threatens groundwater supplies and the environment. In situ biodegradation of organic pollutants by microbial communities is important for the remediation of contaminated sites, but our understanding of the relationship between microbial development and pollutant biodegradation is poor. A particular challenge is understanding the in situ status of microorganisms attached to solid surfaces, but not accessible via conventional sampling of groundwater. We have developed novel flow-through microcosms and examined dynamic changes in microbial community structure and function in a phenol-degrading system. Inoculation of these microcosms with a complex microbial community from a plume in a phenol-contaminated aquifer led to the initial establishment of a population dominated by a few species, most attached to the solid substratum. Initially, phenol biodegradation was incomplete, but as the microbial community structure became more complex, phenol biodegradation was more extensive and complete. These results were replicated between independent microcosms, indicating a deterministic succession of species. This work demonstrates the importance of examining community dynamics when assessing the potential for microbial biodegradation of organic pollutants. It provides a novel system in which such measurements can be made readily and reproducibly to study the temporal development and spatial succession of microbial communities during biodegradation of organic pollutants at interfaces within such environments.  相似文献   

12.
Two decades after the manufacture and use of polychlorinated biphenyls (PCBs) were banned, PCB contamination remains widespread in the environment. Technologies available for PCB remediation are limited and often impractical for soils with dispersed PCB contamination. In this study, two remediation processes have been integrated for use on PCB-contaminated soils. This remediation strategy links in situ surfactant washing of PCBs from soil with aerobic biodegradation of the resulting surfactant-PCB solution by two field application vectors (F A Vs), Pseudomonas putida IFL5::TnPCB and Ralstonia eutropha B30F4::TnPCB, which utilize surfac-tants as growth substrates and cometabolize PCBs. A bench-scale demonstration of this process was performed using PCB-contaminated soils from an electric power substation site. In a 2-day recycling wash using a 1% (wt/vol) surfactant solution, greater than 70% of the PCBs were removed from the soil. In the biodegradation phase, greater than 90% of the surfactant and 35% of the PCBs were biodegraded in 12 days. The residual PCBs were partitioned onto a solid carrier resulting in greater than 90% removal of PCBs from the bioreactor effluent and a 50-fold reduction in the amount of PCB-contaminated material.  相似文献   

13.
Mass transfer limitation of microbial growth and pollutant degradation   总被引:1,自引:0,他引:1  
Organic pollutants in soil can be removed by biotechnological treatment. A limitation of this technology is the efficiency of biodegradation. In many cases, the bulk of the pollution can be removed but residual pollutants remain and biodegradation rates are slower than expected from laboratory trials. Low biodegradation rates are often a result of limited accessibility of the pollutants. Major reasons for the reduced bioavailability are the unequal spatial distribution of microorganisms and pollutants and the retardation of substrate diffusion by the soil matrix. Mechanical mixing and the addition of surfactants are possible approaches to improve the bioavailability of pollutants during bioremediation. The application of flow-stop-flow techniques may be of help to overcome the limitations resulting from advective-diffusive transport mechanisms during pump-and-treat remediation of contaminant plumes. Received 31 October 1995/ Accepted in revised form 31 March 1996  相似文献   

14.
Phytoremediation has been implemented at an industrial site in Wisconsin to promote in situ remediation of No. 2 fuel oil-contaminated soil. The goal of the project is to utilize microbial-enhancing processes within the rhizosphere of trees to stimulate biodegradation of diesel range organics (DROs) within four contaminated hot spots at the site. Between 40 and 90% reductions in the concentrations of the DROs were observed over the course of a 24-week bench-scale bioventing study performed in 1994. In addition to a reduction in the concentration of DROs, the chromatograms for those analyses exhibited a relative decrease in the proportion of the more water soluble and available shorter chained or lower molecular weight DROs compared to their higher molecular weight counterparts in the fuel. In addition to a decrease in concentration, this observed change in the pattern of the chromatograms over time is consistent with biodegradation of DROs. An agronomic assessment performed in 1995 indicated that conditions were favorable for tree growth. Phytoremediation was implemented as a low-cost in situ alternative for remediation of the site. Willow trees were planted in the four hot spots in May 1996 and trees have exhibited fair to excellent growth in the first season.  相似文献   

15.
In situ bioremediation of monoaromatic pollutants in groundwater: a review   总被引:3,自引:0,他引:3  
Monoaromatic pollutants such as benzene, toluene, ethylbenzene and mixture of xylenes are now considered as widespread contaminants of groundwater. In situ bioremediation under natural attenuation or enhanced remediation has been successfully used for removal of organic pollutants, including monoaromatic compounds, from groundwater. Results published indicate that in some sites, intrinsic bioremediation can reduce the monoaromatic compounds content of contaminated water to reach standard levels of potable water. However, engineering bioremediation is faster and more efficient. Also, studies have shown that enhanced anaerobic bioremediation can be applied for many BTEX contaminated groundwaters, as it is simple, applicable and economical.

This paper reviews microbiology and metabolism of monoaromatic biodegradation and in situ bioremediation for BTEX removal from groundwater under aerobic and anaerobic conditions. It also discusses the factors affecting and limiting bioremediation processes and interactions between monoaromatic pollutants and other compounds during the remediation processes.  相似文献   


16.
The addition of methyl tert-butyl ether (MTBE) to gasoline has resulted in public uncertainty regarding the continued reliance on biological processes for gasoline remediation. Despite this concern, researchers have shown that MTBE can be effectively degraded in the laboratory under aerobic conditions using pure and mixed cultures with half-lives ranging from 0.04 to 29 days. Ex-situ aerobic fixed-film and aerobic suspended growth bioreactor studies have demonstrated decreases in MTBE concentrations of 83% and 96% with hydraulic residence times of 0.3 hrs and 3 days, respectively. In microcosm and field studies, aerobic biodegradation half-lives range from 2 to 693 days. These half-lives have been shown to decrease with increasing dissolved oxygen concentrations and, in some cases, with the addition of exogenous MTBE-degraders. MTBE concentrations have also been observed to decrease under anaerobic conditions; however, these rates are not as well defined. Several detailed field case studies describing the use of ex-situ reactors, natural attenuation, and bioaugmentation are presented in this paper and demonstrate the potential for successful remediation of MTBE-contaminated aquifers. In conclusion, a substantial amount of literature is available which demonstratesthat the in-situ biodegradation of MTBE is contingent on achieving aerobic conditions in the contaminated aquifer.  相似文献   

17.
1,2-dibromoethane (DBE) is a common environmental contaminant; it is potentially carcinogenic and has been detected in soil and groundwater supplies. Most of the biodegradation studies to date have been performed under anaerobic conditions or in the context of soil remediation, where the pollutant concentration was in the parts per billion range. In this work a mixed bacterial culture capable of complete aerobic mineralization of concentrations of DBE up to 1 g liter(-1) under well-controlled laboratory conditions was enriched. In order to verify biodegradation, formation of biodegradation products as well as the disappearance of DBE from the biological medium were measured. Complete mineralization was verified by measuring stoichiometric release of the biodegradation products. This mixed culture was found to be capable of degrading other halogenated compounds, including bromoethanol, the degradation of which has not been reported previously.  相似文献   

18.
Aliphatic hydrocarbons make up a substantial portion of organic contamination in the terrestrial environment. However, most studies have focussed on the fate and behaviour of aromatic contaminants in soil. Despite structural differences between aromatic and aliphatic hydrocarbons, both classes of contaminants are subject to physicochemical processes, which can affect the degree of loss, sequestration and interaction with soil microflora. Given the nature of hydrocarbon contamination of soils and the importance of bioremediation strategies, understanding the fate and behaviour of aliphatic hydrocarbons is imperative, particularly microbe-contaminant interactions. Biodegradation by microbes is the key removal process of hydrocarbons in soils, which is controlled by hydrocarbon physicochemistry, environmental conditions, bioavailability and the presence of catabolically active microbes. Therefore, the aims of this review are (i) to consider the physicochemical properties of aliphatic hydrocarbons and highlight mechanisms controlling their fate and behaviour in soil; (ii) to discuss the bioavailability and bioaccessibility of aliphatic hydrocarbons in soil, with particular attention being paid to biodegradation, and (iii) to briefly consider bioremediation techniques that may be applied to remove aliphatic hydrocarbons from soil.  相似文献   

19.
The degradation of three polycyclic aromatic hydrocarbons (PAH), pyrene (PYR), benz[a]anthracene (BAA), and benzo[a]pyrene (BaP), by Mycobacterium sp. strain RJGII-135 was studied. The bacterium was isolated from an abandoned coal gasification site soil by analog enrichment techniques and found to mineralize [14C]PYR. Further degradation studies with PYR showed three metabolites formed by Mycobacterium sp. strain RJGII-135, including 4,5-phenanthrene-dicarboxylic acid not previously isolated, 4-phenanthrene-carboxylic acid, and 4,5-pyrene-dihydrodiol. At least two dihydrodiols, 5,6-BAA-dihydrodiol and 10,11-BAA-dihydrodiol, were confirmed by high-resolution mass spectral and fluorescence analyses as products of the biodegradation of BAA by Mycobacterium sp. strain RJGII-135. Additionally, a cleavage product of BAA was also isolated. Mass spectra and fluorescence data support two different routes for the degradation of BaP by Mycobacterium sp. strain RJGII-135. The 7,8-BaP-dihydrodiol and three cleavage products of BaP, including 4,5-chrysene-dicarboxylic acid and a dihydro-pyrene-carboxylic acid metabolite, have been isolated and identified as degradation products formed by Mycobacterium sp. strain RJGII-135. These latter results represent the first example of the isolation of BaP ring fission products formed by a bacterial isolate. We propose that while this bacterium appears to attack only one site of the PYR molecule, it is capable of degrading different sites of the BAA and BaP molecules, and although the sites of attack may be different, the ability of this bacterium to degrade these PAH is well supported. The proposed pathways for biodegradation of these compounds by this Mycobacterium sp. strain RJGII-135 support the dioxygenase enzymatic processes reported previously for other bacteria. Microorganisms like Mycobacterium sp. strain RJGII-135 will be invaluable in attaining the goal of remediation of sites containing mixtures of these PAH.  相似文献   

20.
Biological degradation of plastics: a comprehensive review   总被引:2,自引:0,他引:2  
Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. With the excessive use of plastics and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. The interest in environmental issues is growing and there are increasing demands to develop material which do not burden the environment significantly. Biodegradation is necessary for water-soluble or water-immiscible polymers because they eventually enter streams which can neither be recycled nor incinerated. It is important to consider the microbial degradation of natural and synthetic polymers in order to understand what is necessary for biodegradation and the mechanisms involved. This requires understanding of the interactions between materials and microorganisms and the biochemical changes involved. Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. This paper reviews the current research on the biodegradation of biodegradable and also the conventional synthetic plastics and also use of various techniques for the analysis of degradation in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号