首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The formation of folylpolyglutamate derivatives by germinatingpea seeds (Pisum sativum L. cv Homesteader) was examined invivo and in vitro. Differential microbiological assay of cotyledonextracts showed that total folate concentrations increased from163 ng folate equivalents per g fresh weight at day 1 to 680ng per g fresh weight at day 3 of germination. Over a 7 daygermination period, folylpolyglutamate derivatives accountedfor 46–73% of the total cotyledonary folate pool. Theconcentration of these polyglutamate forms of folate increased6.5 fold during the first four days of germination and thenremained relatively constant. Dialyzed extracts of 1–4 day old cotyledons had abilityto incorporate [3H]glutamate and [14C]tetrahydrofolate intofolylpolyglutamates. This activity was mainly associated withprotein precipitating at 35–45% of saturation with ammoniumsulphate. The folylpolyglutamate synthetase of pea cotyledonshad requirements for ATP and the monoglutamate of tetrahydrofolate.The latter folate was a more effective substrate than 5,10-methylenetetrahydrofolatebut the diglutamate of unsubstituted tetrahydrofolate was notutilized. Ion exchange chromatography of the reaction productssuggested that [3H]glutamate and [14C]tetrahydrofolate wereincorporated into di-, and tetraglutamates of tetrahydrofolate.Folates of longer glutamyl chain lengths were only detectedwhen the synthetase reaction proceeded for 12 h or longer. (Received August 23, 1985; Accepted January 22, 1986)  相似文献   

2.
Serine hydroxymethyltransferase (SHMT), commonly implicatedin the glycine synthesis of eucaryotes, was examined in Neurosporacrassa, wild type (FGSC 853) and a formate-requiring mutant(FGSC 9). The mutant was SHMT-deficient, containing only 15%of the total activity found in the wild type. Differential anddensity gradient centrifugations showed the mutant to be deficientin soluble SHMT activity. Both strains contained particulateSHMT which sedimented with mitochondrial marker enzymes. The origins of glycine were examined by a combination of enzyme,growth and 14C feeding experiments. Growth of the mutant wasstrongly inhibited by the isocitrate lyase-directed inhibitoritaconate. This inhibition was reduced when exogenous glycinewas supplied. Itaconate (up to 30 mM) did not inhibit growthof the wild type but in both strains isocitrate lyase activitieswere reduced. The mutant contained more lyase and glyoxylateaminotransferase than the wild type. In feeding experiments,[2-14C]acetate and [l-14C]glyoxylate were more readily incorporatedinto glycine in the mutant than the wild type. Itaconate (30mM) reduced the flow of acetate carbon into glycine by up to70% in the mutant. It is concluded that deficiency in solubleSHMT necessitates glycine synthesis via an isocitrateglyoxylateglycinesequence. (Received December 24, 1979; )  相似文献   

3.
The effect of media supplements on total and polyglutamylfolate concentrations has been examined in Neurospora crassa wild type (FGSC 853), an ethionine-resistant mutant (FGSC 1212), and a methionine auxotroph (FGSC 1330) which lacks folylpolyglutamate synthetase. When the culture medium contained 1 mm glycine, folate concentrations in the wild type were increased by over 90% and more p-[3H]aminobenzoate was incorporated into folates. Growth in l-methionine-supplemented media (1–5 mm) decreased folate levels and labeling in all three strains. In the wild type, this effect of l-methionine was reversed on transfer to unsupplemented media but p-[3H]aminobenzoate pulse-chase experiments suggested that exogenous methionine did not increase the turnover of labeled folates. At 1 mm, d-methionine did not affect polyglutamylfolate labeling but l-methionine reduced 3H incorporation by 65% in the wild type. Ion-exchange chromatography showed that p-[3H]aminobenzoate was incorporated in formyl- and methyltetrahydrofolates which in the wild type, were principally hexaglutamyl derivatives. Glycine-supplemented growth yielded labeled folates that were 24% heptaglutamates but these and pentaglutamates were lacking when l-methionine was supplied. The specific activity of GTP cyclohydrolase was not significantly affected by culture in l-methionine-containing media. Dialysis and gel filtration both lowered enzyme activities and product formation was not changed when up to 10 μmol of l-methionine was added to the reaction system. The data suggest that methionine or its metabolic products exerts some control over folate production which is distinct from the established inhibition of methylenetetrahydrofolate reductase by AdoMet.  相似文献   

4.
The folylpolyglutamate synthetase (FPGS) activities of Neurospora crassa, wild type (FGSC 853) and two polyglutamate-deficient mutants, met-6,35809 (FGSC 1330) and mac, 65108 (FGSC 3609), were examined after growth in defined media. Extracts of the wild type produced H4PteGlu6 (60 %), H4PteGlu3 (35 %) and H4PteGlu2 (15 %). Met-6 extracts formed H4PteGlu2 but lacked the ability to utilize H4PteGlu4 or H4PteGlu5. The mac mutant failed to catalyse glutamate addition to H4PteGlu but H4PteGlu2 was an effective substrate for tri- and hexaglutamate synthesis. These polyglutamates were also formed by reaction systems containing mixtures of met-6 and mac protein or heterokaryon protein derived from mycelial fusions of met-6 and mac. Extract fractionations and heat treatments provided evidence for more than one FPGS activity in the wild type. A mitochondrial FPGS catalysed the H4PteGlu2 → H4PteGlu3 reaction but a cytosolic fraction synthesized di-, tri- and hexaglutamates when incubated with H4PteGlu and glutamate. The latter system contained a temperature-sensitive diglutamate-forming activity and a relatively stable H4PteGlu2 → H4PteGlu6 activity. Polyglutamate synthesis in N. crassa appears to involve more than one step, H4PteGlu → H4PteGlu2 followed by H4PteGlu2 → H4PteGlu6, in addition to the mitochondrial activity. These partial activities are lacking in mac and met-6 respectively. Consequently, these mutants are unable to form the folylhexaglutamates that predominate the folate pool of the wild type.  相似文献   

5.
One-carbon metabolism is essential to provide activated one-carbon units in the biosynthesis of methionine, purines, and thymidylate. The major forms of folates in vivo are polyglutamylated derivatives. In organisms that synthesize folate coenzymes de novo, the addition of the glutamyl side chains is achieved by the action of two enzymes, dihydrofolate synthetase and folylpolyglutamate synthetase. We report here the characterization and molecular analysis of the two glutamate-adding enzymes of Saccharomyces cerevisiae. We show that dihydrofolate synthetase catalyzing the binding of the first glutamyl side chain to dihydropteroate yielding dihydrofolate is encoded by the YMR113w gene that we propose to rename FOL3. Mutant cells bearing a fol3 mutation require folinic acid for growth and have no dihydrofolate synthetase activity. We show also that folylpolyglutamate synthetase, which catalyzes the extension of the glutamate chains of the folate coenzymes, is encoded by the MET7 gene. Folylpolyglutamate synthetase activity is required for methionine synthesis and for maintenance of mitochondrial DNA. We have tested whether two folylpolyglutamate synthetases could be encoded by the MET7 gene, by the use of alternative initiation codons. Our results show that the loss of mitochondrial functions in met7 mutant cells is not because of the absence of a mitochondrial folylpolyglutamate synthetase.  相似文献   

6.
Similar to other eukaryotes, yeasts have parallel pathways of one-carbon metabolism in the cytoplasm and mitochondria and have folylpolyglutamate synthetase activity in both compartments. The gene encoding folylpolyglutamate synthetase is MET7 (also referred to as MET23) on chromosome XV and appears to encode both the cytoplasmic and mitochondrial forms of the enzyme. In order to determine the metabolic roles of both forms of folylpolyglutamate synthetase, we disrupted the met7 gene and determined that the strain is a methionine auxotroph and an adenine and thymidine auxotroph when grown in the presence of sulfanilamide. The met7 mutant becomes petite under normal growth conditions but can be maintained with a grande phenotype if the strain is tup and all media are supplemented with dTMP. A met7 gly1 strain is auxotrophic for glycine when grown on glucose but prototrophic when grown on glycerol. A met7 ser1 strain cannot use glycine to suppress the serine auxotrophy of the ser1 phenotype. A met7 shm2 strain is nonviable. In order to disrupt just the mitochondrial folylpolyglutamate synthetase activity, we constructed mutants with an inactivated chromosomal MET7 gene complemented by genes that express only cytoplasmic folylpolyglutamate synthetase, including the Lactobacillus casei folC gene and the yeast MET7 gene with its mitochondrial leader sequence deleted (MET7Deltam). All the genes providing cytoplasmic folylpolyglutamate synthetase complemented the methionine auxotrophy as well as the synthetic lethality of the shm2 strain and the synthetic glycine auxotrophy of the gly1 strain. The strains lacking the mitochondrial folylpolyglutamate synthetase had longer doubling times than the isogenic wild-type strains but retained the function of the mitochondrial folate-dependent enzymes to produce formate, serine, and glycine. Mutants complemented by the bacterial folC gene or by the MET7Deltam gene on a 2mu plasmid remained grande without the tup mutation and supplementation and dTMP. Mutants complemented by the MET7Deltam gene integrated in single copy became petites under those conditions, indicating a deficiency in dTMP production but this is likely due to lower expression of cytoplasmic folylpolyglutamate synthetase by the MET7Deltam gene.  相似文献   

7.
15N labelling was used to investigate the pathway of nitrogenassimilation in photorespiratory mutants of barley (Hordeumvulgare cv. Maris Mink), in which the leaves have low levelsof glutamine synthetase (GS) or glutamate synthase, key enzymesof ammonia assimilation. These plants grew normally when maintainedin high CO2, but the deletions were lethal when photorespirationwas initiated by transfer to air. Enzyme levels in roots weremuch less affected, compared to leaves, and assimilation oflabelled nitrate into amino acids of the root showed very littledifference between wild type and mutants. Organic nitrogen wasexported from roots in the xylem sap mainly as glutamine, levelsof which were somewhat reduced in the GS-deficient mutant andenhanced in the glutamate synthase deficient mutant. In theleaf, the major effect was seen in the glutamatesynthase mutant,which had an extremely limited capacity to utilize the importedglutamine and amino acid synthesis was greatlyrestricted. Thiswas confirmed by the supply of [15N]-glutamine directly to leaves.Leaves of the GS-deficient mutant assimilatedammonia at about75% the rate found for the wild type, and this was almost completelyeliminated by addition of the inhibitormethionine sulphoximine.Root enzymes, together with residual levels of the deleted enzymesin the leaves, have sufficient capacityfor ammonia assimilation,through the glutamate synthase cycle, to provide adequate inputof nitrogen for normal growth of themutants, if photorespiratoryammonia production is suppressed. Key words: Hordeum vulgare, 15N, glutamine synthetase, glutamate synthase, ammonia assimilation  相似文献   

8.
Protein analysis and electron microscopic observation of thefreeze-fractured plane of the plasma membrane were performedwith an acriflavine-sensitive mutant carrying mutation acrA(at min 10) and with the wild type (acrA+) strain of Escherichiacoli K-12. The acrA mutant membrane was deficient (or much lower)in one protein when analyzed by the polyacrylamide gel electrophoresistechnique. (Received May 7, 1981; Accepted July 28, 1981)  相似文献   

9.
A novel photorespiratory mutant of Arabidopsis thaliana, designatedgld2, was isolated based on a growth requirement for abnormallyhigh levels of atmospheric CO2. Photosynthetic CO2 fixationwas inhibited in the mutant following illumination in air butnot in atmosphere containing 2% O2. Photosynthetic assimilationof 14CO2 in an atmosphere containing 50% O2 resulted in accumulationof 48% of the soluble label in glycine in the mutant comparedto 9% in the wild type. The rate of glycine decarboxylationby isolated mitochondria from the mutant was reduced to 6% ofthe wild type rate. In genetic crosses, the mutant complementedtwo previously described photorespiratory mutants of A. thalianathat accumulate glycine during photosynthesis in air due todefects in glycine decarboxylase (glyD, now designated gld1)and serine transhydroxymethylase (stm). Because glycine decarboxylaseis a complex of four enzymes, these results are consistent witha mutation in a glycine decarboxylase subunit other than thataffected in the gld1 mutant. The two gld loci were mapped tochromosomes 2 and 5, respectively. 3Present address: Department of Crop and Soil Sciences, MichiganState University, East Lansing, MI 48824, U.S.A. 4Present address: Department of Applied Bioscience, Facultyof Agriculture, Hokkaido University, Kita-Ku, Sapporo, 060 Japan 5Present address: Department of Biology, Carnegie Institutionof Washington, 290 Panama Street, Standford, CA 94305, U.S.A.  相似文献   

10.
The ndhB and psaE mutants of the cyanobacteriumSynechocystis sp. PCC 6803 are partly deficient in PSI-drivencyclic electron transport. We compared photoinhibition in thesemutants to the wild type to test the hypothesis that PSI cyclicelectron transport protects against photoinhibition. Photoinhibitorytreatment greatly accelerated PSI cyclic electron transportin the wild type and also in both the mutants. The psaEmutant showed rates of PSI cyclic electron transport similarto the wild type under all conditions tested. The ndhBmutant showed much lower rates of PSI cyclic electron transportthan the wild type following brief dark adaptation but exceededwild type rates after exposure to photoinhibitory light. Thewild type and both mutants showed similar rates of photoinhibitiondamage and photoinhibition repair at PSII. Photoinhibition atPSI was much slower than at PSII and was also similar betweenthe wild type and both mutants, despite the known instabilityof PSI in the psaE mutant. We conclude that photoinhibitorylight induces sufficient PSI-driven cyclic electron transportin both the ndhB and psaE mutants to fulfill anyrole that cyclic electron transport plays in protection againstphotoinhibition. 4 Corresponding author: E-mail, sherbert@uwyo.edu; Fax, +1-307-766-2851;Phone, +1-307-766-4353.  相似文献   

11.
Site-directed mutagenesis was performed on Glu143, an essential amino acid in Lactobacillus casei folylpolyglutamate synthetase (FPGS) and the structurally equivalent residue, Glu146, in Escherichia coli FPGS. Glu143 is positioned near the P-loop and interacts with the Mg(2+) of Mg NTP-binding proteins. We have solved the structure of the E143A mutant of L. casei FPGS in the presence of AMPPCP and Mg(2+). The structure showed a water molecule at the place where Mg(2+) bound to the wild type enzyme. Mutant proteins E143A, and even E143D and E143Q with conservative mutations, lacked enzyme activity and failed to complement the methionine auxotrophy of the E. coli folC mutant SF4, showing that Glu143 is an essential residue. Both the L. casei and the E. coli FPGS mutant proteins bound methylene-tetrahydrofolate diglutamate and dihydropteroate normally. The E. coli E146Q mutant FPGS bound ADP with the same affinity as the wild type enzyme but bound ATP with much lower affinity and had higher ATPase activity than the wild type enzyme. The mutant enzyme was defective in forming the acyl-phosphate reaction intermediate from ATP and dihydropteroate. The E. coli FPGS requires activation by dihydropteroate or tetrahydrofolate binding to allow full activity. In the absence of a pteroate substrate, only 30% of the total enzyme binds ATP. We suggest that dihydropteroate causes a conformational change to allow increased ATP binding. The mutant enzyme was similarly activated by dihydropteroate resulting in increased ADP binding.  相似文献   

12.
The regulation of folate and folate analogue metabolism was studied in vitro by using purified hog liver folylpolyglutamate synthetase as a model system and in vivo in cultured mammalian cells. The types of folylpolyglutamates that accumulate in vivo in hog liver, and changes in cellular folate levels and folylpolyglutamate distributions caused by physiological and nutritional factors such as changes in growth rates and methionine, folate, and vitamin B12 status, can be mimicked in vitro by using purified enzyme. Folylpolyglutamate distributions can be explained solely in terms of the substrate specificity of folylpolyglutamate synthetase and can be modeled by using kinetic parameters obtained with purified enzyme. Low levels of folylpolyglutamate synthetase activity are normally required for the cellular metabolism of folates to retainable polyglutamate forms, and consequently folate retention and concentration, while higher levels of activity are required for the synthesis of the long chain length derivatives that are found in mammalian tissues. The synthesis of very long chain derivatives, which requires tetrahydrofolate polyglutamates as substrates, is a very slow process in vivo. The slow metabolism of 5-methyltetrahydrofolate to retainable polyglutamate forms causes the decreased tissue retention of folate in B12 deficiency. Although cellular folylpolyglutamate distributions change in response to nutritional and physiological modulations, it is unlikely that these changes play a regulatory role in one-carbon metabolism as folate distributions respond only slowly. 4-Aminofolates are metabolized to retainable forms at a slow rate compared to folates. Although folate accumulation by cells is not very responsive to changes in folylpolyglutamate synthetase levels and cellular glutamate concentrations, cellular accumulation of anti-folate agents would be highly responsive to any factor that changes the expression of folylpolyglutamate synthetase activity.  相似文献   

13.
In vivo synthesised protein with norleucine occupying one half of the normal methionine loci was prepared using a methionine auxotroph of Escherichia coli K12. The extent of charging of the analogue onto both tRNAmet species and subsequent incorporation into soluble protein was monitored with a double-labelling system comprising [G-3H]norleucine and [35S]methionine. Further experiments established that norleucine can be formylated in vivo once charged onto the initiator tRNAfmet. An N-terminal analysis of the crude soluble protein revealed that formylnorleucyl-tRNAfmet can initiate protein synthesis and that the formyl group is then removed from the nascent polypeptide. We were also led to conclude that the N-terminal methionine-amino peptidase does not recognise the analogue in this position. Slow growth rates on the methionine analogue have been partly attributed to limiting levels of charged tRNAmmet, resulting in turn from the inefficiency of norleucine charging by methionyl-tRNA synthetase. Finally no evidence has been found for the production of aberrant protein as a result of norleucine incorporation, implying that limited growth on the analogue is due to its inability to replace methionine as the precursor of S-adenosyl methionine.  相似文献   

14.
The carbon-2 of glycine can be incorporated into the methylgroup of dimethyl-ß-propiothetin in Ulva lactuca.This conversion is stimulated by unlabelled methionine. Highconcentrations of unlabelled glycine inhibit the incorporationof either L-methionine-35S or L-methionine-methyl-14C into DMP.The specific activity of methionine, isolated from alga incubatedwith glycine-2-14C and a high concentration of unlabelled methionine,is too low to permit it to be an intermediate in glycine-2-14Cincorporation into DMP. The incorportaion of radioctivity fromL-methionine-35S and L-methionine-methyl-3H into DMP indicatesthat while at least one methyl group is derived from methionine,other compounds can donate a portion of the second methyl group.It is concluded that glycine incorporation into the methyl groupof DMP is not via methionine.  相似文献   

15.
We continue our development of a kineticmodel of bursting electrical activity in the pancreatic -cell( J. Keizer and G. Magnus. Biophys. J. 56: 229-242,1989), including the influence of Ca2+ handling by themitochondria. Our minimal model of mitochondrial Ca2+handling [G. Magnus and J. Keizer. Am. J. Physiol. 273 (Cell Physiol. 42): C717-C733, 1997] is expanded toinclude the D-glucose dependence of the rate of productionof mitochondrial reducing equivalents. The Ca2+ dependenceof the mitochondrial dehydrogenases, which is also included in themodel, plays only a small role in the simulations, since thedehydrogenases appear to be maximally activated when D-glucose concentrations are sufficient to producebursting. A previous model of ionic currents in the plasma membrane isupdated using a recent experimental characterization of the dependence of the conductance of the ATP-sensitive K+(KATP) current on adenine nucleotides. The resultingwhole cell model is complex, involving 12 dynamic variables that coupleCa2+ handling in the cytoplasm and the mitochondria withelectrical activity in the plasma and inner mitochondrial membranes.Simulations with the whole cell model give rise to bursting electricalactivity similar to that seen in pancreatic islets and clusters ofpancreatic -cells. The full D-glucose dose response ofelectrical activity is obtained if the cytosolic rate of ATP hydrolysisis a sigmoidal function of glucose. The simulations give the correctshape, period, and phase of the associated oscillations in cytosolicCa2+, predict that the conductance of the KATPcurrent oscillates out of phase with electrical activity [as recentlyobserved in ob/ob mice (O. Larsson, H. Kindmark, R. Bränstrom, B. Fredholm, and P.-O. Berggren. Proc. Natl. Acad.Sci. USA 93: 5161-5165, 1996)], and make other novelpredictions. In this model, bursting results because Ca2+uptake into mitochondria during the active phase reduces the mitochondrial inner membrane potential, reducing the rate of production of ATP, which in turn activates the KATP current andrepolarizes the plasma membrane.

  相似文献   

16.
A plant-determined pea mutant Sprint-2 Fix and the parentalline Sprint-2 were compared for selected physiological and biochemicalparameters. The Fix mutation prevented differentiationof Rhizobium leguminosarum bacteria into bacteroids and producedlarge, white, non-fixing nodules. These lacked nitrogenase-linkedrespiration, but had a background rate of CO2 evolution similarto the normal Fix+ nodules. The cortical structure of the ineffectivenodules suggests the existence of an oxygen diffusion barrierand this was supported by a low oxygen concentration in thecentral region (0.5–3.0%), measured using an O2 sensitivemicro-electrode. Sucrose and starch contents were similar innormal and ineffective nodules while ononitol content was about15 times lower in the Fix nodules. The distribution ofstarch was also different in the two nodule types. The activitiesof glutamine synthetase (GS), sucrose synthase (SS), phosphoenolpyruvatecarboxylase (PEPC) and alanine pyruvate aminotransferase (APAT)were markedly higher in Fix+ nodules while the activities ofpyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH) andglutamate dehydrogenase (GDH) were higher in Fix nodules.The data from immunodetection of host nodule proteins confirmedthe reduced levels of sucrose synthase and the almost completeabsence of glutamine synthetase and leghaemoglobin in mutantnodules. There was no significant difference in the amount ofnitrogenase component 1 extracted from the microsymbiont ofnormal and ineffective nodules, but component 2 was hardly detectablein the Fix mutant. Key words: Pisum sativum, Fix mutant, nodules  相似文献   

17.
We isolated a mutant from Vicia faba L. cv. House Ryousai. Itwilts easily under strong light and high temperature conditions,suggesting that its stomatal movement may be disturbed. We determinedresponses of mutant guard cells to some environmental stimuli.Mutant guard cells demonstrated an impaired ability to respondto ABA in 0.1 mM CaCl2 and stomata did not close in thepresence of up to 1 mM ABA, whereas wild-type stomata closedwhen exposed to 10 µM ABA. Elevating external Ca2+caused a similar degree of stomatal closure in the wild typeand the mutant. A high concentration of CO2 (700 µlliter–1) induced stomatal closure in the wild type, butnot in the mutant. On the basis of these results, we proposethe working hypothesis that the mutation occurs in the regiondownstream of CO2 and ABA sensing and in the region upstreamof Ca2+ elevation. The mutant is named fia (fava bean impairedin ABA-induced stomatal closure). 3 Corresponding author: E-mail, smoiwai{at}agri.kagoshima-u.ac.jp;Fax, +81-99-285-8556.  相似文献   

18.
Pigment mutant C-2A{acute} of Scenedesmus obliquus whose chlorophyllformation and chloroplast development are light dependent, wasstudied for the nucleic acid content of its plastids. The ribosomalRNA of plastids of the achlorophyllous or greened mutant C-2A{acute},did not show any difference from that of the wild type. Incorporationof [5-3H] uridine into mutant cells was partially inhibitedby rifampicin, indicating this part as being plastidial incorporation.Since there were no significant differences in the ribosomalRNA of plastids between the mutant and the wild type of Scenedesmus,the ribosomal system in the plastids of mutant C-2A' seemednot to be affected by the mutation. CsCl gradient patterns ofScenedesmus mutant and wild-type DNA were almost identical withthose of Chlorella DNA. A peak at a buoyant density of 1.69g/cm3, the same as that of Chlorella chloroplast DNA, couldbe identified in Scenedesmus also as plastid DNA because itdisappeared after prolonged treatment with myxin and hybridizedwith rifampicin-sensitive pulse-labelled RNA. This peak waspresent to nearly the same degree in the mutant and the wildtype, indicating that a larger deficit of plastid DNA did notoccur in the mutant. Whether or not the mutation might be localizedin the plastid genome is discussed. (Received March 19, 1976; )  相似文献   

19.
To studythe role of sgk (serum, glucocorticoid-induced kinase) inhormonal regulation of Na+ transport mediated by theepithelial Na+ channel (ENaC), clonal cell lines stablyexpressing human sgk, an S422A sgk mutant, or aD222A sgk mutant were created in the background of the A6model renal epithelial cell line. Expression of normal sgkresults in a 3.5-fold enhancement of basal transport and potentiationof the natriferic response to antidiuretic hormone (ADH). Transfectionof a S422A mutant form of sgk, which cannot bephosphorylated by phosphatidylinositol-dependent kinase (PDK)-2, results in a cell line that is indistinguishable from the parent linein basal and hormone-stimulated Na+ transport. The D222Asgk mutant, which lacks kinase activity, functions as adominant-negative mutant inhibiting basal as well as peptide- andsteroid hormone-stimulated Na+ transport. Thussgk activity is necessary for ENaC-mediated Na+transport. Phosphorylation and activation by PDK-2 are necessary forsgk stimulation of ENaC. Expression of normal sgkover endogenous levels results in a potentiated natriferic response toADH, suggesting that the enzyme is a rate-limiting step for the hormoneresponse. In contrast, sgk does not appear to be therate-limiting step for the cellular response to aldosterone or insulin.

  相似文献   

20.
Nine 14C-labeled amino acids and 14C-acetic acid from root tipsof Fe-deficient Graminaceae plants (Hordeum vulgare, Oryzaesativa and Avena saliva) were surveyed to determine the precursoramino acid of phytosiderophores. The dominant precursor wasmethionine, which was incorporated into avenic acid deoxymugineicacid mugineic acid epihydroxymugineic acid and/or hydroxymugineicacid in this order. Methionine sulfoxide or methionine sulfonemay be important intermediates in going from methionine to avenicacid. (Received May 6, 1987; Accepted June 12, 1987)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号