首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic analyses of cpTat-mediated protein transport across the thylakoid membrane were conducted, revealing three important characteristics of this translocation pathway. First, transport via the cpTAT system displays a non-Michaelis–Menten, sigmoidal rate–substrate relationship with an apparent Hill coefficient of 1.80, indicative of positive homotropic cooperativity. Second, the presence of transport-incompetent substrates was found not to competitively inhibit the translocation of transport-competent substrates. However, the presence of low concentrations of transport-incompetent protein enhances the transport of wild type substrate. Together, these findings suggest that interaction between Tat machinery components and both transport-competent and transport-incompetent protein may elicit a cooperative effect on the translocation rate.  相似文献   

2.
T J Hallam  T J Rink 《FEBS letters》1985,186(2):175-179
Agonists such as thrombin, PAF (platelet-activating factor) and ADP are known to cause a larger elevation in [Ca2+]i in quin2-loaded platelets in the presence of extracellular Ca2+ than in its absence. The simplest interpretation of these observations is that in the presence of extracellular calcium there is an influx component across the cell surface. In the presence of Mn2+, a divalent cation which is known to avidly bind to quin2 and to quench its fluorescence, the agonists produce a small initial rise in quin2 fluorescence followed by a decrease in fluorescence to well below the resting level. The result indicates entry of Mn2+, presumably through some form of receptor-operated Ca2+ channel.  相似文献   

3.
A sensitive high-resolution electron diffraction assay for change in structure is described and harnessed to analyze the binding of divalent cations to the purple membrane (PM) of Halobacterium halobium. Low-dose electron diffraction patterns are subject to a matched filter algorithm (Spencer, S. A., and A. A. Kossiakoff. 1980. J. Appl. Crystallogr. 13:563-571). to extract accurate values of reflection intensities. This, coupled with a scheme to account for twinning and specimen tilt in the microscope, yields results that are sensitive enough to rapidly quantitate any structure change in PM brought about by site-directed mutagenesis to the level of less than two carbon atoms. Removal of tightly bound divalent cations (mainly Ca2+ and Mg2+) from PM causes a color change to blue and is accompanied by a severely altered photocycle of the protein bacteriohodopsin (bR), a light-driven proton pump. We characterize the structural changes that occur upon association of 3:1 divalent cation to PM, versus membranes rendered purple by addition of excess Na+. High resolution, low dose electron diffraction data obtained from glucose-embedded samples of Pb2+ and Na+ reconstituted PM preparations at room temperature identify several sites with total occupancy of 2.01 +/- 0.05 Pb2+ equivalents. The color transition as a function of ion concentration for Ca2+ or Mg2+ and Pb2+ are strictly comparable. A (Pb2(+)-Na+) PM Fourier difference map in projection was synthesized at 5 A using the averaged data from several nominally untilted patches corrected for twinning and specimen tilt. We find six major sites located on helices 7, 5, 4, 3, 2 (nomenclature of Engelman et al. 1980. Proc. Natl. Acad. Sci. USA. 77:2023-2027) in close association with bR. These partially occupied sites (0.55-0.24 Pb2+ equivalents) represent preferential sites of binding for divalent cations and complements our earlier result by x-ray diffraction (Katre et al. 1986. Biophys. J. 50:277-284).  相似文献   

4.
Summary We have used a combination of chemical labeling and detergent fractionation techniques to locate the divalent cation binding sites on the chloroplast membrane. We determined the Ca2+-binding properties of Triton X-100 subchloroplast particles. Photosystem II (TSFII) particles showed one binding site withn=8.4 moles-mg chl–1 andk d =20 m. Photosystem I (TSFI) particles contained two binding sites. The first had ann=1.5 moles-mg chl–1 andk d =4 m. The second had ann=9.6 moles-mg chl–1 andk d =160 m. We have previously shown (Prochaska & Gross,Biochim. Biophys. Acta 376:126, 1975) that the divalent cation binding sites could be blocked using a water-soluble carbodiimide plus a nucleophile. Chlorophylla fluorescence and lightscattering changes were affected at the same carbodiimide concentrations emphasizing the relationship between these processes. The carbodiimide-sensitive sites were found to be located on the Photosystem II particles. A direct correlation between the inhibition of calcium binding and the carbodiimide-mediated incorporation of a (14C)-nucleophile was observed upon varying such parameters as carbodiimide concentration, nucleophile concentration, pH, and time of reaction. The presence of CaCl2 during the carbodiimide plus nucleophile modification procedure decreased the incorporation of (14C)-nucleophile, emphasizing the competition of the CaCl2 and the modification reagents for some of the same sites. Sodium dodecylsulfate gel electrophoresis of chlorophyll protein aggregates suggested that the site of competition of the calcium chloride and the modification reagents was the light-harvesting chlorophylla/b protein.  相似文献   

5.
The Ca2+ binding to plant (wheat germ) calmodulin was measured in 0.1 M NaCl by a flow-dialysis method. The four macroscopic binding constants best fitted to the data were 0.20, 0.25, 0.025, and 0.0024 microM-1. The cysteine residue of this calmodulin is located at the 27th position from the NH2-terminal (Yazawa, M. et al. (1982) Abstr. 33th Conf. Protein Structure pp. 9-12, Osaka). According to the quantitative analysis of the reaction of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) with Cys 27, the calmodulin which binds 3 Ca2+ showed the minimum reactivity with DTNB. This suggests that the site for the third Ca2+ binding is located close to Cys 27. Cys 27 was spin-labeled with N-(2,2,6,6-tetramethyl-4-piperidine-1-oxyl)maleimide, and its ESR spectrum was measured in the presence of Mn2+ and/or Ca2+. The rotational relaxation time of the label (1.2 ns) was increased by about one-tenth with 1 to 2 mol of bound Ca2+, but was unchanged with Mn2+. On the other hand, Mn2+ induced a remarkable quenching of the spectrum. From the decrease in the peak heights of the ESR spectrum, the distance between the label and the first bound Mn2+ was estimated to be 0.8 nm. It is concluded that the first Mn2+ binds to a domain near the NH2-terminal. The difference UV absorption spectrum induced by Mn2+ was similar to that induced by Ca2+. However, the amount of Mn2+ needed to saturate the difference spectrum was 1 mol more than the amount of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The kinetics of ATP hydrolysis and cation effects on ATPase activity in plasma membrane from Candida albicans ATCC 10261 yeast cells were investigated. The ATPase showed classical Michaelis-Menten kinetics for the hydrolysis of Mg X ATP, with Km = 4.8 mM Mg X ATP. Na+ and K+ stimulated the ATPase slightly (9% at 20 mM). Divalent cations in combination with ATP gave lower ATPase activity than Mg X ATP (Mg greater than Mn greater than Co greater than Zn greater than Ni greater than Ca). Divalent cations inhibited the Mg X ATPase (Zn greater than Ni greater than Co greater than Ca greater than Mn). Free Mg2+ inhibited Mg X ATPase weakly (20% inhibition at 10 mM). Computed analyses of substrate concentrations showed that free Zn2+ inhibited Zn X ATPase, mixed (Zn2+ + Mg2+) X ATPase, and Mg X ATPase activities. Zn X ATP showed high affinity for ATPase (Km = 1.0 mM Zn X ATP) but lower turnover (52%) relative to Mg X ATP. Inhibition of Mg X ATPase by (free) Zn2+ was noncompetitive, Ki = 90 microM Zn2+. The existence of a divalent cation inhibitory site on the plasma membrane Mg X ATPase is proposed.  相似文献   

7.
Y Doi  F Kim  S Kido 《Biochemistry》1990,29(6):1392-1397
Calcium binding of swine plasma gelsolin was examined. When applied to ion-exchange chromatography, its elution volume was drastically altered depending on the free Ca2+ concentration of the medium. The presence of two classes of Ca2+ binding sites, high-affinity sites (Kd = 7 microM) and low-affinity sites (Kd = 1 mM), was suggested from the concentration dependence of the elution volume. The tight binding sites were specific for Ca2+. The weakly bound Ca2+ could be replaced by Mg2+ once the tight binding sites were occupied with Ca2+. The binding of metal ions was totally reversible. Circular dichroism measurement of plasma gelsolin indicated that most change in secondary structure was associated with Ca2+ binding to the high-affinity sites. Binding of Mg2+ to the low-affinity sites caused a secondary structural change different from that caused by Ca2+ bound to the high-affinity sites. Gel permeation chromatography exhibited a small change in Stokes radius with and without Ca2+. Microheterogeneity revealed by isoelectric focusing did not relate to the presence of two classes of Ca2+ binding sites. These results indicated that plasma gelsolin drastically altered its surface charge property due to binding of Ca2+ or Ca2+, Mg2+ with a concomitant conformational change.  相似文献   

8.
White PJ  Davenport RJ 《Plant physiology》2002,130(3):1386-1395
A voltage-independent cation (VIC) channel has been identified in the plasma membrane of wheat (Triticum aestivum) root cells (P.J. White [1999] Trends Plant Sci 4: 245-246). Several physiological functions have been proposed for this channel, including roles in cation nutrition, osmotic adjustment, and charge compensation. Here, we observe that Ca(2+) permeates this VIC channel when assayed in artificial, planar lipid bilayers, and, using an energy barrier model to describe cation fluxes, predict that it catalyzes Ca(2+) influx under physiological ionic conditions. Thus, this channel could participate in Ca(2+) signaling or cytosolic Ca(2+) homeostasis. The pharmacology of (45)Ca(2+) influx to excised wheat roots and inward cation currents through the VIC channel are similar: Both are insensitive to 20 microM verapamil or 1 mM tetraethylammonium, but inhibited by 0.5 mM Ba(2+) or 0.5 mM Gd(3+). The weak voltage dependency of the VIC channel (and its lack of modulation by physiological effectors) suggest that it will provide perpetual Ca(2+) influx to root cells. Thus, it may effect cytosolic Ca(2+) homeostasis by contributing to the basal Ca(2+) influx required to balance Ca(2+) efflux from the cytoplasm through ATP- and proton-coupled Ca(2+) transporters under steady-state conditions.  相似文献   

9.
Monomeric actin labeled with the fluorescent probe N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-I-AEDANS-actin) displays a fast fluorescence intensity increase immediately upon addition of salt and then a slow fluorescence intensity change concurrent with Ca2+/Mg2+ exchange at the high affinity divalent cation binding site on actin. The fast change appears to reflect competitive binding of K+ at low affinity (nonspecific) sites and of Mg2+ or Ca2+ at low and intermediate affinity sites. Binding of cation at the low affinity sites (but apparently not at the intermediate affinity sites) results in an increase in k-Ca and k-Mg and thus a decrease in affinity for divalent cations at the high affinity site. The effect of Mg2+ on k-Ca is twice that of K+ for equal fractional saturations of the low affinity binding, and the effect of K+ and Mg2+ together on k-Ca reflects competitive binding at the low affinity sites. Thus the affinity and kinetics of divalent cation binding at the high affinity site of actin are significantly affected by concurrent cation binding at low affinity sites.  相似文献   

10.
A K Grover 《Cell calcium》1986,7(2):101-106
Rat myometrium plasma membrane showed a number of 45Ca-binding proteins as identified by gel electrophoresis. An attempt was made to identify these either by studying the inhibition of this binding by several ions or by studying binding of these proteins to calmodulin, A9 an antibody against skeletal muscle Ca-binding proteins and Stains-all. On the basis of the molecular weight, calmodulin binding and La-sensitivity of Ca-binding, the Ca-binding protein at 137 +/- 2 kDa has been identified as the Ca-pump. This protein as judged from Coomassie blue staining forms a very small percentage of the proteins present in the plasma membrane.  相似文献   

11.
Divalent cation permeability of rat parotid gland basolateral plasma membranes was examined in dispersed parotid acini (by Ca2+ or Mn2+ entry) and in isolated basolateral plasma membrane vesicles (BLMV, by45Ca2+ influx). Mn2+ entry (fura2 quenching) was about 1.6 fold higher in internal Ca2+ pool-depleted acini (Ca2+-depl acini) than in unstimulated cells. Mn2+ entry into Ca2+-depl acini was increased at external pH>7.4 and decreased at pH<7.4. Pretreatment of Ca2+-depl acini with the relatively hydrophobic carboxylic group reagent, N,N-dicyclohexylcarbodiimide (DCCD, 50 M for 30 min) resulted in the inhibition of Mn2+ entry into Ca2+-depl acini to unstimulated levels. Another hydrophobic carboxyl group reagent, N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) and the relatively hydrophilic carboxyl group reagents, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide (CMCD) did not affect Mn2+ entry.Similar to the effects in intact acini, Ca2+ influx into BLMV was decreased when the external pH was lowered below 7.4. Also DCCD (5 mM, 30 min), but not EEDQ, decreased (40%) Ca2+ influx in BLMV. However, unlike in acini, the hydrophilic reagents, EDC, EAC, and CMCD decreased Ca2+ permeability in BLMV and the effects were nonadditive with the decrease induced by DCCD. The aggregate effects of carboxyl group reagents on the Ca2+ and Mn2+ permeability in BLMV and intact acini, respectively, suggest that a critical carboxyl group (most likely accessible from the cytoplasmic side of the plasma membrane) is involved in divalent cation flux in rat parotid acinar cells.  相似文献   

12.
We have studied the effect of aluminum (A1) on lipid composition of plasma membranes from roots of an A1-resistant (PT741) and an A1-sensitive (Katepwa) cultivar of Triticum aestivum L. Several genotype–specific changes were observed in phospholipids and steryl lipids. While exposure to 20 μ M AICI3 for 3 days had no effect on total phospholipids in either genotype, the most abundant phospholipid, phosphatidylcholine, increased significantly in the A1-sensitive Katepwa. Aluminum also decreased steryl lipids (mainly free sterols) in PT741. Such changes were not observed in Katepwa. As a result of differential changes in lipid composition, the relative abundance of one lipid class to another changed. The ratio of steryl lipids to phospholipids decreased in PT741, with no change in Katepwa. While limited information on the relationship between membrane function and lipid composition makes it difficult to relate these changes to A1 toxicity and resistance, changes observed only in the A1–resistant genotype could contribute to continued plant growth in the face of A1 stress.  相似文献   

13.
Simple diffusion experiments indicated that oestriol was retained by human pregnancy plasma more effectively than by albumin solutions of a corresponding concentration. Oestriol bound (Ka = 6 X 10(6) l/mol at 4 degrees C) to a glycoprotein which had been isolated from plasma by adsorption to Concanavalin A. The free energy of binding at 37 degrees C was -38 kJ/mol. Competition experiments indicated that the oestriol binding glycoprotein had properties expected of sex hormone binding globulin. The distribution of oestriol among the protein fractions of human pregnancy plasma--glycoprotein bound 7.8%, albumin bound 78.6%, unbound 13.6%--suggests that this glycoprotein plays little part in the transport of oestriol.  相似文献   

14.
Summary Wound stress activated wheat root cells to produce oxygen radicals. The production was accompanied by an increased permeability for potassium ions and a depolarization of the plasma membrane. Various electron donors, such as the nonpenetrating donor potassium ferrocyanide as well as NADH and NADPH, caused the amplification of superoxide production by root cells. The -generating system in wheat root cells was found to be considerably sensitive to diphenylene iodonium, which is generally considered as a suicide inhibitor of neutrophil NADPH oxidase, and to other inhibitors of flavoprotein activity, chlorpromazine and quinine. The xenobiotic compound amidopyrine caused activation of the -generating system, which was depressed by DPI. The -generating system in root cells was shown to be significantly dependent on calcium content. Calcium loading of the root cells induced a powerful increase of the superoxide release. Data obtained indicate that superoxide generation is one of the early events of the wound stress response. Redox systems of the plasma membrane may be involved in the superoxide production in response to wound stress and detoxification of xenobiotic compounds in root cells.Abbreviations DPI diphenylene iodonium - MP membrane potential - superoxide anion radical - ROS reactive-oxygen species - SOD superoxide dismutase  相似文献   

15.
Polar lipids and membrane proteins are major components of biological membranes, both cell membranes and membranes of enveloped viruses. How these two classes of membrane components interact with each other to influence the function of biological membranes is a fundamental question that has attracted intense interest since the origins of the field of membrane studies. One of the most powerful ideas that driven the field is the likelihood that lipids bind to membrane proteins at specific sites, modulating protein structure and function. However only relatively recently has high resolution structure determination of membrane proteins progressed to the point of providing atomic level structure of lipid binding sites on membrane proteins. Analysis of X-ray diffraction, electron crystallography and NMR data over 100 specific lipid binding sites on membrane proteins. These data demonstrate tight lipid binding of both phospholipids and cholesterol to membrane proteins. Membrane lipids bind to membrane proteins by their headgroups, or by their acyl chains, or binding is mediated by the entire lipid molecule. When headgroups bind, binding is stabilized by polar interactions between lipid headgroups and the protein. When acyl chains bind, van der Waals effects dominate as the acyl chains adopt conformations that complement particular sites on the rough protein surface. No generally applicable motifs for binding have yet emerged. Previously published biochemical and biophysical data link this binding with function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

16.
17.
Adenosine and its analogues inhibited increases in divalent cation influx stimulated by platelet-activating factor (PAF) and formyl-methionyl-leucyl-phenylalanine (FMLP) in a dose-dependent fashion. This effect was antagonized by theophylline, an adenosine receptor antagonist. When extracellular adenosine was removed by adenosine deaminase, the effect of adenosine was completely abolished. Two adenosine analogues with different affinities for adenosine receptor subtypes, 5'-N-ethylcarboxamideadenosine (NECA) and L-N6-phenylisopropyladenosine (PIA), also inhibited divalent cation influx, NECA being more potent than PIA. These results suggest that adenosine and its analogues inhibit divalent cation influx across neutrophil plasma membranes via surface adenosine A2 receptors. Adenosine had little effect on the initial peaks of intracellular free calcium rises induced by chemoattractants, but it inhibited the subsequent rise in free calcium. Since calcium influx through the divalent cation channels or neutrophil plasma membranes is responsible for maintaining free calcium concentration following the initial peaks, we suggest that adenosine modulates neutrophil function by interfering with this calcium influx.  相似文献   

18.
19.
One of the most important morphological changes occurring in arbuscular mycorrhizal (AM) roots takes place when the plant plasma membrane (PM) invaginates around the fungal arbuscular structures resulting in the periarbuscular membrane formation. To investigate whether AM symbiosis-specific proteins accumulate at this stage, two complementary MS approaches targeting the root PM from the model legume Medicago truncatula were designed. Membrane extracts were first enriched in PM using a discontinuous sucrose gradient method. The resulting PM fractions were further analysed with (i) an automated 2-D LC-MS/MS using a strong cation exchange and RP chromatography, and (ii) SDS-PAGE combined with a systematic LC-MS/MS analysis. Seventy-eight proteins, including hydrophobic ones, were reproducibly identified in the PM fraction from non-inoculated roots, representing the first survey of the M. truncatula root PM proteome. Comparison between non-inoculated and Glomus intraradices-inoculated roots revealed two proteins that differed in the mycorrhizal root PM fraction. They corresponded to an H(+)-ATPase (Mtha1) and a predicted glycosylphosphatidylinositol-anchored blue copper-binding protein (MtBcp1), both potentially located on the periarbuscular membrane. The exact role of MtBcp1 in AM symbiosis remains to be investigated.  相似文献   

20.
Potential toxicity of transition metals like Hg, Cu and Cd are well known and their affinity toward proteins is of great concern. This work explores the selective nature of interactions of Cu2+, Hg2+ and Cd2+ with the heme proteins leghemoglobin, myoglobin and cytochrome C. The binding profiles were analyzed using absorbance spectrum and steady-state fluorescence spectroscopy. Thermodynamic parameters like enthalpy, entropy and free energy changes were derived by isothermal calorimetry and consequent binding parameters were compared for these heme proteins. Free energy (DG) values revealed Cu2+ binding toward myoglobin and leghemoglobin to be specific and facile in contrast to weak binding for Hg2+ or Cd2+. Time correlated single photon counting indicated significant alteration in excited state lifetimes for metal complexed myoglobin and leghemoglobin suggesting bimolecular collisions to be involved. Interestingly, none of these cations showed significant affinity for cytochrome c pointing that, presence of conserved sequences or heme group is not the only criteria for cation binding toward heme proteins, but the microenvironment of the residues or a specific folding pattern may be responsible for these differential conjugation profile. Binding of these cations may modulate the conformation and functions of these biologically important proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号