首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms dependent upon leg position coordinate the alternate stepping of adjacent ipsilateral and contralateral legs in the stick insect. In this insect, swing duration and step amplitude are independent of walking speed. A simple geometrical model of the leg controller is used here to test different mechanisms for compatibility with these two invariant features. Leg position is the state variable of a relaxation oscillator and position thresholds determine the transitions between swing and stance. The coordination mechanisms alter these thresholds. The position-dependent mechanisms considered differ either in the form or the speed-dependence of the function relating the shift in the posterior threshold of the receiving leg to the position of the sending leg. The results identify parameter combinations leading to alternate stepping with symmetric or asymmetric phase distributions, to shifts in the posterior extreme position as a function of speed, to double stepping or to in-phase stepping. An optimal position-dependent excitatory mechanism is described. Finally the consequences of adding either inhibitory influences or time-dependent excitatory influences are analyzed.  相似文献   

2.
A model of interleg coordination presented in a separate report is evaluated here by perturbing the step pattern in three ways. First, when the initial leg configuration is varied, the simulated leg movements assume a stable coordination from natural starting configurations in a natural way (Fig. 1a). They also rapidly re-establish the normal coordination when started from unnatural configurations (Fig. 1b-d). An explicit hierarchy of natural frequencies for the legs of the three thoracic segments is not required. Second, when the coordination is perturbed by assigning one or more legs a retraction velocity different from the rest, gliding coordination or various integer step ratios can be produced (Figs. 2–4). Third, when the swing of one leg is obstructed, characteristic changes in the stepping of other legs occur (Fig. 5). Overall differences between the step patterns of the model and those of the stick insect are related to the form of the coordinating mechanisms. Errors made by the model, such as overlapping swings by adjacent legs or discrepancies in step timing and step end-points, point out the limitations of a model restricted to kinematic parameters.  相似文献   

3.
4.
The hypertrehalosaemic hormone from the stick insect Carausius morosus (Cam-HrTH) contains a hexose covalently bound to the ring of the tryptophan, which is in the eighth position in the molecule. We show by solution NMR spectroscopy that the tryptophan is modified at its C(delta1)(C2) by an alpha-mannopyranose. It is the first insect hormone to exhibit C-glycosylation whose exact nature has been determined experimentally. Chemical shift analysis reveals that the unmodified as well as the mannosylated Cam-HrTH are not completely random-coil in aqueous solution. Most prominently, C-mannosylation strongly influences the average orientation of the tryptophan ring in solution and stabilizes it in a position clearly different from that found in the unmodified peptide. NMR diffusion measurements indicate that mannosylation reduces the effective hydrodynamic radius. It induces a change of the average peptide conformation that also diminishes the propensity for aggregation of the peptide.  相似文献   

5.
6.
Summary A detailed kinematical analysis of oscillating fly wings using high speed cine films in three-table projection and model reconstructions show a variety of quick changes in beating and rotating movements. There are especially quick changes in the geometrical angle of attack during the upper and lower reversal phases and quick twisting movements and bending oscillations during some of the beating phases. A dozen possibilities for instationary aerodynamic effects are discussed, including quick oscillations in angle of attack, quick turning movements in the reversal points, circulation possibly induced by a quick supination during the beginning of upstroke (fast supination effect), oblique attack by the fluid, circulation possibly induced by a forced oscillation of the trailing edge during the beginning of downstroke (swinging edge effect), tangential transport of the boundary layer by undulatory movements, rolling movements during the turning phases, high-frequency small oscillations of the wing surface, and a quick oscillation during late upstroke. Weis-Fogh's clap and fling mechanism and flip mechanism could not be detected in Calliphorid flies.

Mit Unterstützung der Deutschen Forschungsgemeinschaft  相似文献   

7.
The co-ordination of the walking behaviour of decerebrate stick insects is examined and compared with normal behaviour. The walks are fully coordinated but undergo subtle changes in timing, have a longer average step period and show momentary pauses of 50 ms during the time course of protraction movements. In addition a new intersegmental reflex has been discovered. This tactile reflex is used to avoid errors in co-ordination that would be produced by posterior legs stepping onto the tarsi of the legs in front. The reflex has a latency of 100 ms and is easily observed in lesioned animals but is also active, although seldom seen, in slowly walking intact animals.  相似文献   

8.
Newly laid eggs of stick insects comprise a unique fluid ooplasm that is gradually partitioned into a number of yolk granules by invasion of secondary vitellophages. This study aimed at establishing how yolk granules become acidified in the course of embryonic development. Data show that acidified yolk granules are rather scarce and randomly distributed in vitellophages of early embryos, while they tend to increase gradually in number as development proceeds to completion. Yolk granule acidification is progressively more inhibited in the presence of increasing concentrations of chloroquine, monensin and bafilomycin. A pro-protease was identified cytochemically and by immunoblotting in yolk extracts of progressively more advanced embryos. A specific monoclonal antibody raised against this pro-protease helped to demonstrate that it is gradually processed to yield a lower molecular weight polypeptide as development proceeds to completion. This latter polypeptide was identified as a protease using electrophoresis in polyacrylamide gels containing yolk extracts. Simultaneous administration of a fluorescent substrate for cysteine protease and an acidotropic probe produced superimposable labelling patterns, suggesting that only acidified yolk granules possess a proteolytic activity. On the other hand, yolk granules probed simultaneously for acidification and latent pro-protease yielded labelling patterns partially superimposed. Pro-protease labelling is gradually lost as yolk granules are progressively more acidified during development. Distinct labelling patterns were also obtained in vitellophages processed for the simultaneous detection of pro-protease and protease, suggesting that the two activities are expressed by different yolk granule populations, and that one is gradually converted into the other as time goes by.  相似文献   

9.
10.
1.  The function of the legs of a free walking mature stick insect (Carausius morosus) is investigated in four different walking situations: walks on a horizontal path, walks on a horizontal plane, walks on a horizontal beam with the body hanging from the beam and walks up a vertical path.
2.  The geometrical data, which are necessary to describe the movement of the legs, are determined (Tables 1, 2, 3, 4; Figs. 2, 3, 4, 5).
3.  The forces, by which the leg of a free walking animal acts on the walking surface, are measured (Table 5). Typical results are shown in Figures 6, 7, 8, 9 for each walking situation. From these forces and the known geometrical relationships the torques, which are produced by the antagonistic muscle systems at each leg joint, can be calculated (Fig. 10). Those torques calculated for different typical leg positions are shown in Table 6, 7, 8, 9 for each walking situation.
4.  The results show that many things change depending upon the particular walking situation: the angular range in which the leg is moved (Table 2, Fig. 4), the activation and the kind of predominance of the antagonistic muscles (Table 6, 7, 8, 9), and especially the function of the single legs. Additionally, when looking at the direction of movement of a limb one cannot say which of the antagonistic muscles is predominating. Sometimes just the muscle opposite to the actual movement predominates (Table 7).
5.  For two walking situations the function of the legs can be demonstrated in a simple way. In a walk on the horizontal plane: the forelegs mainly have feeler function, the middlelegs have only supporting function, while the hindlegs have supporting as well as propulsive function. In a walk with the body hanging from the horizontal beam: forelegs and hindlegs are used mainly to support the body, while the middlelegs additionally provide the propulsive forces.
6.  In walking up the vertical path all legs provide support and propulsive forces. When walking on the horizontal path fore- and middlelegs on the
one hand and hindlegs on the other form the static construction of a three centered arch (Fig. 11). In the same way when the insect walks hanging from the horizontal beam, a hanging three centered arch is assumed. The importance of this construction is discussed.  相似文献   

11.
The stick insect Carausius morosus continuously moves its antennae during locomotion. Active antennal movements may reflect employment of antennae as tactile probes. Therefore, this study treats two basic aspects of the antennal motor system: First, the anatomy of antennal joints, muscles, nerves and motoneurons is described and discussed in comparison with other species. Second, the typical movement pattern of the antennae is analysed, and its spatio-temporal coordination with leg movements described. Each antenna is moved by two single-axis hinge joints. The proximal head-scape joint is controlled by two levator muscles and a three-partite depressor muscle. The distal scape-pedicel joint is controlled by an antagonistic abductor/ adductor pair. Three nerves innervate the antennal musculature, containing axons of 14-17 motoneurons, including one common inhibitor. During walking, the pattern of antennal movement is rhythmic and spatiotemporally coupled with leg movements. The antennal abduction/adduction cycle leads the protraction/retraction cycle of the ipsilateral front leg with a stable phase shift. During one abduction/adduction cycle there are typically two levation/depression cycles, however, with less strict temporal coupling than the horizontal component. Predictions of antennal contacts with square obstacles to occur before leg contacts match behavioural performance, indicating a potential role of active antennal movements in obstacle detection.  相似文献   

12.
Summary The receptor cells in a poreless sensillum on the antenna ofCarausius morosus were examined electrophysiologically. Two of the units are antagonistic regarding humidity, one responding with an increase in impulse frequency to rising humidity (moistair unit) and the other to falling humidity (dry-air unit). Another reacts to falling temperature with a rise in impulse frequency (cold unit). In some cases responses from a fourth unit were also present. Its modality is uncertain. A method of marking the sensillum with a cactus needle for subsequent structural examination after recording is described.Supported by the Alexander von Humboldt Foundation and by the Fonds zur Förderung der wissenschaftlichen Forschung in ÖsterreichI wish to express my gratitude to Prof. Dr. F. Schaller and to Prof. Dr. H. Altner for their support of this study, to Dr. R. Loftus for very valuable discussion, and to Ms. C. Danner for her technical assistance.  相似文献   

13.
As in the preceding paper stick insects walk on a treadwheel and different legs are put on platforms fixed relative to the insect's body. The movement of the walking legs is recorded in addition to the force oscillations of the standing legs. The coordination between the different legs depends upon the number and arrangement of the walking legs and the legs standing on platforms. In most experimental situations one finds a coordination which is different from that of a normal walking animal.Supported by DFG (Cr 58/1)  相似文献   

14.
Newly laid eggs of the stick insect Carausius morosus contain two native vitellins (Vit A and Vit B). Under denaturing conditions, these vitellins resolved into 3 (A1, A2, and A3) and 2 (B1 and B2) polypeptides. All of these polypeptides had counterparts in the female hemolymph from which they were shown to be derived by in vivo labelling. During ovarian development, the 2 vitellins changed both in charge and polypeptide composition. In EV and LV follicles, Vit A resolved into 4 distinct vitellin polypeptides (A0, A1, A2 and A3). Using a panel of monoclonal antibodies, polypeptide A0 proved to be immunologically related to polypeptide A2. In follicles about to begin choriongenesis, polypeptide A3 was gradually replaced by a lower Mr polypeptide. Over the same time period, polypeptide B1 changed in charge, but not in Mr. To confirm the existence of a polypeptide processing in C. morosus, ovarian follicles of different developmental stages were exposed in vivo to [35S]-methionine from 6 to 72 h. Data showed that A0 and B1 were the polypeptides most heavily labelled after short time exposures to the radioisotope. Polypeptides B2 and A3 were also labelled to some extent. With progressively longer exposures, polypeptides A1 and A2 also became labelled. In vivo exposure to [3H]-GlcNAc caused all vitellin polypeptides to become heavily labelled. Autoradiographic analysis of ovarian follicles labelled this way showed that, during development, radioactivity was gradually transferred from newly formed yolk spheres in the cortical ooplasm to the central ooplasm. Data were interpreted as suggesting a causal relationship between polypeptide processing and progressive yolk sphere fusion to yield the central ooplasm. © 1993 Wiley-Liss, Inc.  相似文献   

15.
The angle of the coxa-trochanter (C-T) joint in the stick insect Carausius morosus is controlled by a negative feedback mechanism. It is shown that the trochanteral hair plate alone functions as the feedback transducer and that the rhomboid hair plate is not involved in the feedback loop.The properties of the C-T control system were investigated by means of force measurements. The results cannot be adequately described in all details by either a fractional differentiator model, a model which fits many sensory systems, or a nonlinear bandpass filter, a model which fits the force response of the femur-tibia feedback loop. The fractional differentiator model adequately describes the frequency response of the open-loop system to sinusoidal stimulation with 34 deg stimulus amplitude. However, the responses to sinusoidal and steplike stimulation with 10 deg stimulus amplitude do not fit this model. They are better described by the model of a nonlinear bandpass filter.The possible contribution of mechanical properties of the musculature and the joint to the total force response is discussed. It is suggested that cocontractions occurring at higher stimulus frequencies alters the muscle properties and enables the animal to respond to stimulus frequencies above the upper corner frequency of the active feedback loop.  相似文献   

16.
An investigation has been made of the way, in which the height of the body of an insect (Carausius morosus) is controlled when walking over an uneven terrain. The animals have been filmed from the side while walking over different types of irregularity (step up, step down, obstacle, ditch). A frame by frame analysis of the height of the three thoracic segments of the insect has been performed. A computer model has been set up, which is able to describe the experimental results within the exactness of measurement. This model consists of three independent height controllers, each having a unique characteristic. The coupling of these three controllers is performed mechanically. One possible interpretation of this model is that the height of each segment is controlled by a closed loop mechanism with a proportional element as a controller.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

17.
Ovarian follicles of the stick insect Carausius morosus were analyzed by confocal laser microscopy and immunocytochemistry with a view to studying cell polarity in the follicular epithelium. Such probes as anti-α-tubulin antibodies and Rh-phalloidin were employed to establish how the follicle cell cytoskeleton changes during ovarian development. Data show that α-tubulin prevails over the basal end, while F-actin appears more abundant along the apical end of the follicle cells. This finding was further corroborated by immunogold cytochemistry, showing that label along the basal end is primarily associated with microtubules, while that along the apical end is due to follicle cell microvilli interdigitating with the oocyte plasma membrane. A monoclonal antibody specifically raised against a vitellin polypeptide was used to investigate the role the follicular epithelium might play in relation to vitellogenin (Vg) uptake by the oocyte. Data show that under these conditions label is restricted to the intercellular channels of the follicular epithelium, thus providing further support to the notion that Vg enters the oocyte through the extracellular pathway leading from the basement lamina to the oocyte surface. By contrast, the use of a monoclonal antibody raised against a fat-body-derived protein of 85 kDa that is specifically sulfated within the follicle cells provides evidence for the existence of an alternative way of gaining access to the oocyte surface, that is by transcytosis through the follicular cell epithelium. These findings confirm our earlier observations on stick insect ovarioles whereby polarization in the follicular epithelium is primarily addressed to sustain a transcytotic vesicular traffic between opposite poles of the follicle cell of Vg toward the oocyte surface.  相似文献   

18.
The path of yolk proteins through stick insect embryos at two developmental levels was studied immunologically. In 18-day-old embryos, all the blastema takes up the yolk proteins directly. In 30-day-old embryos, two transport systems are developed: embryonic contraction moves the yolk particles throughout the embryonic cavities, and amoeboid cells complete the yolk transport to its destination.  相似文献   

19.
The kinematic model presented in a separate report is used here to investigate several questions concerning the nature of the coordinating mechanisms. First, one or more mechanisms are inactivated in order to compare the relative efficiencies of the different coordinating mechanisms in maintaining proper coordination. Second, the most efficient mechanism, the position-dependent influence, is varied in order to illustrate the consequences for coordination. Third, the strength of the contralateral coupling is varied in order to make predictions about how contralateral legs establish alternation when started from symmetric positions. The consequences of adding reciprocal contralateral inhibition during swing is tested in the same context.  相似文献   

20.
Summary Structural features of the principal, urine-secreting cells (type 1 cells) of the Malpighian tubules of Carausius are de scribedquantitatively and discussed in relation to possible mechanisms of water and solute transport. Mitochondria are arranged in two bands of about equal volume near to the basal and apical surfaces, suggesting active processes occur at both surfaces. Basal infoldings and apical microvilli which greatly amplify the cell surface are probably primarily devices to increase the passive permeability of the tissue to solutes. They do not provide functionally significant standing-osmotic-gradients. The extensive endoplasmic reticulum is locally differentiated into several components and ramifies between the infoldings and along microvilli but probably is not an intracellular conduit for the majority of urinary constituents. Vesicles and stages in their formation or liberation are observed both basally and apically although they probably do not contribute significantly to transcellular transport. At present it remains a problem to satisfactorily account for observations that the urine of Carausius can be hypotonic.This investigation formed part of a dissertation for the degree of Ph. D. in the University of Newcastle upon Tyne. It is a pleasure to thank Prof. J. Shaw for his advice and encouragement and the Science Research Council for financial support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号