首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrolytic rates of juvenile hormones (JHs) I, II and III by the corpora cardiaca-corpora allata complex (CC-CA) and by the haemolymph of Galleria mellonella remain in the same order (III greater than I greater than II in CC-CA and I greater than III greater than II in haemolymph) throughout the last larval instar. Haemolymph hydrolytic activity shows peak at the end of feeding when 80 pmol JH I versus 15 pmol JH II is degraded per 1 microliter and minute; hydrolysis rapidly declines in the apolysing insects. Hydrolytic rates in CC-CA reach a maximum of 240 fmol/pair per min for JH III and 85 fmol/pair per min for JH II in pharate pupae. Brain implantations or chilling of freshly ecdysed last instar larvae, which are known to elevate JH titer and induce supernumerary larval molt, do not affect JH hydrolysis. The results indicate that the dominance of JH II in Galleria may be at least partly controlled by preferential hydrolysis of homologs I and III.  相似文献   

2.
Corpora cardiaca-corpora allata (CC-CA) from vitellogenic females of Nauphoeta cinerea degraded, in vitro, racemic and (10R)-juvenile hormone III (JH III) at a rate of 249 pmol/CC-CA/h and 786 pmol/CC-CA/h, respectively. The major metabolite formed was JH III acid, together with some highly polar products. CC-CA homogenates degraded racemic JH III to a small extent, whereas (10R)-JH III was degraded efficiently to JH III acid. No highly polar products were formed by CC-CA homogenates. When CC-CA were incubated with racemic JH III acid, some of this substance was degraded to highly polar products, and a minor part was methylated to JH III. CC degraded very little JH III acid and did not methylate it to JH III. CC-CA homogenates methylated JH III acid very efficiently; we measured an apparent Kmax of 37.8 μM and a Vmax of 1,260 pmol/4 h/ CC-CA equivalent. The addition of JH III acid to CC-CA in vitro increased the rate of biosynthesis of JH III, as determined by measuring incorporation of methyl[14C]methionine into JH III. These data indicate that the metabolite JH III acid can enter the CA and be methylated to JH III.  相似文献   

3.
ABSTRACT. Incubation conditions have been established for the corpus cardiacum-corpus allatum (CC-CA) complex of female Phormia regina (Meigen), which will support CC-CA biosynthetic activities in vitro as measured by the incorporation of a labelled methyl group with L-[methyl-3H]methionine as the methyl donor. After incubation, radioactivity in the organic extract of the medium was determined by scintillation counting. Analysis of the organic extract with reverse phase high-performance liquid chromatography (HPLC) revealed that a compound which has similar retention time (UV absorbance) with synthetic JH III was synthesized by the CC-CA complexes of liver-fed females. By using this short-term, in vitro , radiochemical assay for CA activity, it was shown that a protein diet significantly increases the activity of the CA compared with females fed only a sugar-water diet. Furthermore, use of HPLC separation, in conjunction with scintillation counting of time-collected fractions, demonstrated the existence of a moiety containing incorporated radiolabeled methyl group (from the methionine) which did not co-elute with JH I or JH III standards. These results suggest that in P. regina use of the incorporation of a radiolabeled methyl group to measure JH biosynthesis (CA activity) can be misleading if the compounds which do not co-elute with JHs are not considered.  相似文献   

4.
The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.  相似文献   

5.
We studied the metabolism of [U-14C]isoleucine by intact and homogenized corpora allata (CA) from various insect species to determine how this substrate is converted to precursors of juvenile hormone (JH). CA homogenates of the lepidopterans Manduca sexta, Hyalophora cecropia, and Samia cynthia metabolize [U-14C]isoleucine to several products including 2-keto-3-methyl-valerate, 2-methylbutyrate, CO2, propionate, and acetate. Intact CA of male H. cecropia produce particularly high levels of 2-keto-3-methylvalerate, indicating a highly active branched-chain-amino acid transaminase. In contrast, CA homogenates from the nonlepidopterans Periplaneta americana, Schistocerca nitens, Tenebrio molitor, and Diploptera punctata barely metabolize [U-14C]isoleucine. However, P. americana CA homogenate metabolizes [U-14C]2-keto-3-methylvalerate, the transamination product of [U-14C]isoleucine, more rapidly than does a homogenate of M. sexta CA. Furthermore, intact CA from P. americana incubated with [U-14C]2-keto-3-methylvalerate incorporate low levels of 14C into JH III, but do not metabolize this substrate to JH II or JH I. Intact CA from female Diploptera punctata produce very high levels of JH III, but are also unable to incorporate radiolabel from [U-14C]isoleucine into JH III, which substantiates our findings with other nonlepidopteran CA. The results suggest that CA of nonlepidopteran insects lack an active branched-chain amino acid transaminase and, consequently, are unable to utilize these substrates for JH biosynthesis.  相似文献   

6.
In vitellogenic females of Nauphoeta cinerea, injected (10R)-juvenile hormone (JH) III was degraded more rapidly than racemic JH III: we measured a half-life of 21 min (with or without coinjection of lipophorin) for the former and 24 min (with coinjection of lipophorin) and 43 min (without coinjection of lipophorin) for the latter. One to two hours after injection, JH III acid was the major metabolite observed; in addition, several highly polar products were found. The half-life of injected racemic JH III acid was 19 min with coinjection of lipophorin and 4 min without. The JH III acid titer in hemolymph was low (around 5–10 pmol/ml) in last instar larvae and previtellogenic and pregnant females and reached higher values (40–100 pmol/ml) in vitellogenic and ovulating females. Racemic JH III acid could be methylated in vitro to JH III by corpora cardiaca–corpora allata (CC-CA) from penultimate instar larvae and females at stages between adult ecdysis and ovulation and at the very end of pregnancy, but not by CC-CA from last instar larvae and adult females at earlier stages of pregnancy. This indicates that CC-CA are capable of methylating JH III acid only at stages when JH III is detectable in the hemolymph. In double-labelling experiments with CC-CA from vitellogenic females and L-[14C]methionine and [3H]JH III acid as precursors, we observed that only a small proportion (1–8%) of total biosynthesized JH III was derived from JH III acid when the latter was present at physiological concentration. This suggests that in vivo recycling of JH III acid by CC-CA plays only a minor role in the regulation of the titer of JH III and JH III acid.  相似文献   

7.
The in vitro production of juvenile hormones (JH) was investigated by using corpora allata (CA) of larvae and corpora cardiaca-corpora allata (CC-CA) complexes of adult females of the fall armyworm Spodoptera frugiperda. In female moths, JH release was high compared to that in 5th and 6th instar larvae. Concentrations of 0.11-0.12 mM methionine, 180-200 mM Na(+), 5.8-8.3 mM K(+), 10-50 mM Ca(2+) and a pH range of 5.7-6.3 yielded optimal incorporation of L-[methyl-(3)H] methionine in vitro by CC-CA complexes. The highest hourly incorporation occurred during a 9-h incubation period following a 1.5-h lag-phase. JH release from CC-CA complexes of adult females was shown to be age-dependent with a peak value on day 2 (approx. 4 pmol h(-1) CA(-1)). By a combination of reversed phase (RP)- and normal phase (NP)-high performance liquid chromatography (HPLC), two major labelled products released by the complex were separated. One compound co-migrated with chemically synthesized JH II diol, the second compound with JH III diol. Only traces of JH II and III could be detected in some samples. Gland extracts also contained both the major radiolabelled products. Double labelling experiments using [3H]methionine and [14C]acetate confirmed their de novo synthesis in CC-CA complexes of female moths. The nature of chemically synthesized reference JH III diol was proved by LC-MS (ESI mass spectrometry) and 1H-NMR (nuclear magnetic resonance spectroscopy).  相似文献   

8.
Exogenous farnesol or farnesoic acid (FA) stimulates juvenile hormone III (JH III) biosynthesis by isolated corpora allata from Locusta migratoria in a dose-dependent manner. Farnesol and FA also stimulate a dose-dependent accumulation of substantial amounts of methyl farnesoate (MF), identified by gas chromatography-mass spectroscopy (GCMS) analysis, in the corpora allata. Lower quantities of MF were found in the incubation medium. Corpora allata, denervated 2 days prior to assay, showed low spontaneous rates of JH biosynthesis which were stimulated by farnesol and FA. The dose-response curves for control and denervated corpora allata were similar. During oocyte maturation the rate of farnesol and FA stimulation of JH biosynthesis increased gradually. However, after transection of nervus corporis allati 1 (NCA-1), the rate of stimulated JH synthesis was maintained at preoperative levels. Although the spontaneous rate of JH biosynthesis decreased rapidly after NCA-1 transection, denervated glands could still be stimulated by farnesol or FA to produce large amounts of JH. These results suggest that the low spontaneous rate of JH biosynthesis in denervated corpora allata is not caused by inhibition of the final steps of JH biosynthesis.  相似文献   

9.
A radiochemical assay for Juvenile Hormone (JH) biosynthesis and release by the corpus allatum (CA) was used to assess the effects of diet on CA activity of adult female Phormia regina (Meigen) fed either sugar-water or sugar-water-liver. CC-CA complexes were incubated in L-methionine-free medium 199 supplemented with 3H-L-methionine. The rate of JH release by the CC-CA complexes is linear for 3 h and declines slightly thereafter. JH III appears to be one of the major components of the isooctane-extractable product from incubated CC-CA. High pressure liquid chromatographic analysis indicates that 10% of the released radiolabelled product is JH III. Rates of JH release show a strict dependence on L-methionine concentration in the incubation medium, with optimal rates occurring between 100 and 150 μM L-methionine. JH release is at a low level (<0.02pmolh-1 per pair of CC-CA) in flies fed only sugar-water, but increases dramatically in flies fed sugar-water-liver (average release rate of 0.2pmolh-1 per pair of CA, 24h after a liver meal). The rate of JH release increases steadily to more than 1.2pmolh-1 per pair at 128h of age (i.e. 56h after a liver meal) at which time oocytes are mature. Elevated rates of JH release in vitro appear to be correlated in vivo with the appearance of vitellogenin in the haemolymph and its uptake by the developing oocytes.  相似文献   

10.
An in vitro sensitive bioassay for the Galleria mellonella brain allatotropic hormone (ATTH) was developed. This assay measures the rate of juvenile hormone (JH) synthesis in corpora cardiacacorpora allata complex (CC-CA) stimulated in vitro by ATTH released from the brain during short-term in vitro incubation, or by ATTH extracted from the tissue with methanol. CC-CA of the late VIth instar (VI3) larvae were used for assessment of ATTH. The maximum activation of test CC-CA by ATTH occurred at a concentration of 2 brain equivalents (per 100 ul medium). The highest ATTH activity was exhibited by the brains of chilled VII1 larvae: ATTH extracted from freshly dissected brains, or ATTH released from these brains during 6 h in vitro incubation, activated JH synthesis in the CC-CA nearly five or four times, respectively. The brain of VII1 hydroprenetreated larvae were ATTH inactive.  相似文献   

11.
To study the effect of brain signals on the biosynthesis of juvenile hormone by the corpora allata of the grey fleshfly Neobellieria bullata, exposed corpora allata connected to the brain were surgically removed from sugar-fed flies and incubated in vitro with L -[3H-methyl]methionine. After incubation, the media together with the tissues were analyzed by HPLC. [3H]Juvenile hormone III (JH III), [3H]JH III bisepoxide (BE), [3H]methyl farnesoate (MF) and an unknown [3H]labeled metabolite (Un) were identified as the primary products. The rate of synthesis of [3H]JH III bisepoxide was higher than that of [3H]JH III, [3H]MF and [3H]Un. Two days after a liver meal, female flies synthesized more JH III, MF, BE, and the Un than did males. Synthesis of JH III, BE, and MF in females was lower during the previtellogenic, sugar-feeding period than during the vitellogenic liver-feeding period. Isolated corpus cardiacum–corpus allatum (CC-CA) complexes that were incubated in vitro synthesized less JH III, MF, and BE, as compared to complexes that were attached to the brain, indicating that the brain probably modulates the biosynthesis of JH III, MF, and BE in the corpora allata. Upon incubation of brain–CC–CA complexes with Neb-TMOF (10–8 M), Neb-colloostatin (10–8 M), ovarian, or brain extracts resulted in significant inhibition of JH III and BE biosynthesis in the presence of ovarian extracts. These results indicate that allatostatin-like factors are present in the ovary of the flesh fly. Arch. Insect Biochem. Physiol. 37:248–256, 1998. © 1998 Wiley–Liss, Inc.  相似文献   

12.
Juvenile hormone III biosynthesis by corpora allata of adult female Leucophaea maderae was measured by an in vitro radiochemical assay. In fed females, JH III synthesis increases more than 20-fold after mating to a peak of 55 pmol/pair/h on day 9 and then rapidly declines. This increase in JH III synthesis concomitant with rapid oocyte growth in mated females is not observed in virgin females. The corpora allata from starved, virgin females appear to be inactive. The addition of 150 microM 2E,6E-farnesol (a) JH III precursor) to the incubation medium stimulates the corpora allata from starved, virgin females less than the corpora allata from starved, mated females. Both feeding and mating are necessary for the expression of a normal cycle of JH III synthesis in this cockroach.  相似文献   

13.
The developmental expressions of the mRNA of JH synthetic enzymes have been studied using homogenates of the corpora cardiaca-corpora allata (CC-CA) complexes in Bombyx mori [Kinjoh, T., Kaneko, Y., Itoyama, K., Mita, K., Hiruma, K., Shinoda, T., 2007. Control of juvenile hormone biosynthesis in Bombyx mori: cloning of the enzymes in the mevalonate pathway and assessment of their developmental expression in the corpora allata. Insect Biochemistry and Molecular Biology 37, 808-818]. The in situ hybridization analyses in the CC-CA complex showed that the distribution of the mRNAs of all the mevalonate enzymes and juvenile hormone (JH) acid O-methyltransferase occurred only in the CA cells, indicating that the fluctuations of the enzyme mRNA amounts in the CC-CA complexes were derived solely from the CA. In addition, the size of the CA and their nuclei was not associated with the JH synthetic activity by the CA until the pharate adult. Only female adult CA synthesized JH in B. mori, and the CA and the nuclei were significantly larger than those of male CA which do not synthesize JH.  相似文献   

14.
《Insect Biochemistry》1985,15(2):175-179
The effect of varying l-methionine (l-met) concentration on rates of juvenile hormone (JH) biosynthesis/release by corpora allata of females of the viviparous cockroach Diploptera punctata has been studied using a radiochemical assay. Both high activity glands (corpora allata from day 5 females) and low activity glands (corpora allata from day 11 females) were used to study the dose dependence of JH biosynthesis on l-met concentrations, under both de novo (spontaneous) conditions of JH biosynthesis and stimulated conditions (in the presence of the exogenous JH III precursor farnesoic acid). Maximal rates of JH biosynthesis/release were observed at l-met concentration of 20 μM (spontaneous) and 40 μM (stimulated). Below these concentrations, rates of JH biosynthesis declined linearly with decreasing l-met concentration. Optimal concentration of l-met appeared to be similar for both high and low activity corpora allata, under spontaneous and stimulated conditions of biosynthesis. Above 40 μM l-met, no increase in rates of JH biosynthesis was observed. It appears that the corpora allata of D. punctata are efficient scavengers of l-met and are able to utilize even low concentrations of the substrate for JH biosynthesis. The corpora allata of D. punctata may prove useful for the biosynthesis of authentic JH III, radiolabelled in the methyl position using as methyl donor, l[methyl-3H]met of high specific activity.  相似文献   

15.
Summary

Corpora allata from 8-day-old female Locusta migratoria, during the phase of yolk deposition, exhibit high rates of C-16 juvenile hormone (JH) biosynthesis. The effect of different potential factors which may be involved in the regulation of corpora allata activity is reported. The biosynthetic activity of corpora allata was determined by radiochemical assay.

In maturing females, no changes in corpora allata activity are detected during one daily cycle. Starvation reduces JH biosynthesis only 3 days after the beginning of the food deprivation. Suppression of the median neurosecretory material by electrocoagulation of the internal cardiaca tract (TCC-I) does not disturb JH biosynthesis whereas the transection of the allata I nerve fibres (NCA-I) or the electrocoagulation of the lateral neurosecretory pericarya results in a rapid decline of JH biosynthesis. These data indicate that the median and lateral allatotropins are different, and that only the lateral neurosecretory material exerts an allatostimulating action on corpora allata at the time of vitellogenesis. The corpora allata response to the median allatotropin changes during oocyte growth. C-16 JH and/or 20-hydroxyecdysone treatments in vitro (addition in the culture medium) and in vivo (injection in female) do not influence JH production in our experimental conditions.  相似文献   

16.
The alpha-acetolactate decarboxylase gene aldB is clustered with the genes for the branched-chain amino acids (BCAA) in Lactococcus lactis subsp. lactis. It can be transcribed with BCAA genes under isoleucine regulation or independently of BCAA synthesis under the control of its own promoter. The product of aldB is responsible for leucine sensibility under valine starvation. In the presence of more than 10 microM leucine, the alpha-acetolactate produced by the biosynthetic acetohydroxy acid synthase IlvBN is transformed to acetoin by AldB and, consequently, is not available for valine synthesis. AldB is also involved in acetoin formation in the 2,3-butanediol pathway, initiated by the catabolic acetolactate synthase, AlsS. The differences in the genetic organization, the expression, and the kinetics parameters of these enzymes between L. lactis and Klebsiella terrigena, Bacillus subtilis, or Leuconostoc oenos suggest that this pathway plays a different role in the metabolism in these bacteria. Thus, the alpha-acetolactate decarboxylase from L. lactis plays a dual role in the cell: (i) as key regulator of valine and leucine biosynthesis, by controlling the acetolactate flux by a shift to catabolism; and (ii) as an enzyme catalyzing the second step of the 2,3-butanediol pathway.  相似文献   

17.
Parameters of branched-chain amino acids (BCAA; leucine, isoleucine and valine) and protein metabolism were evaluated using L-[1-(14)C]leucine and alpha-keto[1-(14)C]isocaproate (KIC) in the whole body and in isolated perfused liver (IPL) of rats fed ad libitum or starved for 3 days. Starvation caused a significant increase in plasma BCAA levels and a decrease in leucine appearance from proteolysis, leucine incorporation into body proteins, leucine oxidation, leucine-oxidized fraction, and leucine clearance. Protein synthesis decreased significantly in skeletal muscle and the liver. There were no significant differences in leucine and KIC oxidation by IPL. In starved animals, a significant increase in net release of BCAA and tyrosine by IPL was observed, while the effect on other amino acids was non-significant. We conclude that the protein-sparing phase of uncomplicated starvation is associated with decreased whole-body proteolysis, protein synthesis, branched-chain amino acid (BCAA) oxidation, and BCAA clearance. The increase in plasma BCAA levels in starved animals results in part from decreased BCAA catabolism, particularly in heart and skeletal muscles, and from a net release of BCAA by the hepatic tissue.  相似文献   

18.
Juvenile hormone (JH) acid O-methyltransferase (JHAMT) is the enzyme that transfers a methyl group from S-adenosyl-l-methionine (SAM) to the carboxyl group of JH acids to produce active JHs in the corpora allata. While the JHAMT gene was originally identified and characterized in the silkworm Bombyx mori, no orthologs from other insects have been studied until now. Here we report on the functional characterization of the CG17330/DmJHAMT gene in the fruit fly Drosophila melanogaster. Recombinant DmJHAMT protein expressed in Escherichia coli catalyzes the conversion of farnesoic acid and JH III acid to their cognate methyl esters in the presence of SAM. DmJHAMT is predominantly expressed in corpora allata, and its developmental expression profile correlates with changes in the JH titer. While a transgenic RNA interference against DmJHAMT has no visible effect, overexpression of DmJHAMT results in a pharate adult lethal phenotype, similar to that obtained with application of JH analogs, suggesting that the temporal regulation of DmJHAMT is critical for Drosophila development.  相似文献   

19.
  • 1.1. A radiochemical assay was used to examine juvenile hormone (JH) synthesis and secretion in vitro by incubating two pairs of larval corpus cardiacum-corpus allatum complexes (CC-CA) from, Lymantria dispar, in 50 μl of osmotically balanced Grace's medium containing 1 μC1 [3H-methyl]-methionine for 6 hr.
  • 2.2. For CC-CA of fourth instar female larvae, maximal incorporation of 3H-methyl was 0.15 pmol/pr/hr between days 2 and 3. High pressure liquid chromatographic (HPLC) analysis suggested that the biosynthetic products are mainly JH III with a little JH II at times.
  • 3.3. For CC-CA of last instar female larvae, incorporation of 3H-methyl was 0.48 pmol/pr/hr at the beginning of the stadium and decreased to negligible levels by day 10. HPLC analysis suggested that CC-CA of last instar larvae produced only JH III. Volume increases in CA during the last instar were associated with declining activities of JH secretion.
  • 4.4. Comparisons of maximal rates of 3 H-methyl incorporation by each unit volume of CA revealed that in the last instar each unit volume (μm3) of glandular tissue secreted 50% more JH than in the fourth instar.
  相似文献   

20.
The aim was to determine the effects of enhanced availability of branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) on ammonia detoxification to glutamine (GLN) and protein metabolism in two types of skeletal muscle under hyperammonemic conditions. Isolated soleus (SOL, slow-twitch) and extensor digitorum longus (EDL, fast-twitch) muscles from the left leg of white rats were incubated in a medium with 1 mM ammonia (NH3 group), BCAAs at four times the concentration of the controls (BCAA group) or high levels of both ammonia and BCAA (NH3 + BCAA group). The muscles from the right leg were incubated in basal medium and served as paired controls. L-[1-14C]leucine was used to estimate protein synthesis and leucine oxidation, and 3-methylhistidine release was used to evaluate myofibrillar protein breakdown. We observed decreased protein synthesis and glutamate and α-ketoglutarate (α-KG) levels and increased leucine oxidation, GLN levels, and GLN release into medium in muscles in NH3 group. Increased leucine oxidation, release of branched-chain keto acids and GLN into incubation medium, and protein synthesis in EDL were observed in muscles in the BCAA group. The addition of BCAAs to medium eliminated the adverse effects of ammonia on protein synthesis and adjusted the decrease in α-KG found in the NH3 group. We conclude that (i) high levels of ammonia impair protein synthesis, activate BCAA catabolism, enhance GLN synthesis, and decrease glutamate and α-KG levels and (ii) increased BCAA availability enhances GLN release from muscles and attenuates the adverse effects of ammonia on protein synthesis and decrease in α-KG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号