首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis of kinetic and thermodynamic parameters of binding of peptide and nonpeptide dimerization inhibitors of HIV protease (HIVp) to the enzyme monomers immobilized on an optical chip has been studied by surface plasmon resonance. The molecular interactions were investigated at different inhibitor concentrations (0–80 μM) and temperatures (15–35°C). Determination of kinetic (k on, k off), equilibrium (K d), and thermodynamic (ΔG, ΔH, and -TΔS) has shown that both inhibitors are characterized by similar interaction parameters and the entropic term (-TΔS) of about −20 kcal/mol is the main driving force for the HIVp complex formation with the inhibitors, while the positive value (14 kcal/mol) of the enthalpic term (ΔH) counteracted the complex formation.  相似文献   

2.
A novel mechanism of inhibiting HIV-1 protease (HIVp) is presented. Using computational solvent mapping to identify complementary interactions and the Multiple Protein Structure method to incorporate protein flexibility, we generated a receptor-based pharmacophore model of the flexible flap region of the semiopen, apo state of HIVp. Complementary interactions were consistently observed at the base of the flap, only within a cleft with a specific structural role. In the closed, bound state of HIVp, each flap tip docks against the opposite monomer, occupying this cleft. This flap-recognition site is filled by the protein and cannot be identified using traditional approaches based on bound, closed structures. Virtual screening and dynamics simulations show how small molecules can be identified to complement this cleft. Subsequent experimental testing confirms inhibitory activity of this new class of inhibitor. This may be the first new inhibitor class for HIVp since dimerization inhibitors were introduced 17 years ago.  相似文献   

3.
To explore new scaffolds for the treat of Alzheimer’s disease appears to be an inspiring goal. In this context, a series of varyingly substituted flavonols and 4-thioflavonols have been designed and synthesized efficiently. All the newly synthesized compounds were characterized unambiguously by common spectroscopic techniques (IR, 1H-, 13C NMR) and mass spectrometry (EI-MS). All the derivatives (124) were evaluated in vitro for their inhibitory potential against cholinesterase enzymes. The results exhibited that these derivatives were potent selective inhibitors of acetylcholinesterase (AChE), except the compound 11 which was selective inhibitor of butyrylcholinesterase (BChE), with varying degree of IC50 values. Remarkably, the compounds 20 and 23 have been found the most potent almost dual inhibitors of AChE and BChE amongst the series with IC50 values even less than the standard drug. The experimental results in silico were further validated by molecular docking studies in order to find their binding modes with the active pockets of AChE and BChE enzymes.  相似文献   

4.
2-Cys peroxiredoxin (Prx) is the major subgroup of a family of Prx enzymes that reduce peroxide molecules such as hydrogen peroxide (H2O2). 2-Cys Prxs are inactivated when their active site cysteine residue is hyperoxidized to sulfinic acid. Sulfiredoxin (Srx) is an enzyme that catalyzes reduction of hyperoxidized 2-Cys Prxs in the presence of ATP, Mg2+, and thiol equivalent. Therefore, Srx activity is crucial for cellular function of 2-Cys Prxs. The method currently available for the determination of Srx activity relies on immunoblot detection using antibodies to hyperoxidized enzymes. Here we introduce a simple quantitative assay for Srx activity based on the colorimetric determination of inorganic phosphate released in Srx-dependent reduction of hyperoxidized Prx using the malachite green. The colorimetric assay was used for high-throughput screening of 25,000 chemicals to find Srx inhibitors.  相似文献   

5.
In an effort to produce new lead antimycobacterial compounds, herein we have reported the synthesis of a sequence of new pyrrolyl benzamide derivatives. The new chemical entities were screened to target enoyl-ACP reductase enzyme, which is one of the key enzymes of M. tuberculosis that are involved in type II fatty acid biosynthetic pathway. Compound 3q exhibited H-bonding interactions with Tyr158, Thr196 and co-factor NAD+ that binds the active site of InhA. All the pyrrolyl benzamide compounds were evaluated as inhibitors of M. tuberculosis H37Rv as well as inhibitors of InhA. Among them, few representative compounds were tested for mammalian cell toxicity on the human lung cancer cell-line (A549) and MV cell line that presented no cytotoxicity. Five of these compounds exhibited a good activity against InhA.  相似文献   

6.
Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are enzymes, which have emerged as attractive targets for the development of analgetic and anti-inflammatory drugs. We recently reported that 1-[3-(4-octylphenoxy)-2-oxopropyl]indole-5-carboxylic acid (10) and related compounds are inhibitors of cPLA2α. Since cPLA2α and FAAH possess several common structural features, we now screened this substance series together with some new derivatives for FAAH inhibition. Some of the assayed compounds proved to be selective cPLA2α inhibitors, while others showed high FAAH and moderate cPLA2α inhibitory potency. Furthermore, several derivatives were favorably active against both enzymes and, therefore, could represent agents, which have improved analgetic and anti-inflammatory qualities in comparison with selective cPLA2α and FAAH inhibitors.  相似文献   

7.
《Insect Biochemistry》1990,20(5):467-477
Manduca sexta pharate pupal molting fluid contains more than 10 proteolytic enzymes that differ in relative mobility during electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate and gelatin. The major gelatin digesting enzyme was an endoprotease with an apparent molecular weight of 100 kDa. Gel filtration on a Sephacryl S-300 column resolved another endoprotease of similar size that digests azocoll and [3H]casein. In addition we found an aminopeptidase-like enzyme (MWapp 500 kDa) and at least three carboxypeptidase-like enzymes (MWapp 10–60 kDa). Use of pseudosubstrates and inhibitors suggested the presence of both trypsin-like and chymotrypsin-like enzymes with the former activity approx. 10-fold greater than the latter. However, none of the proteolytic enzymes were substantially inhibited by diisopropylphosphorofluoridate or phenylmethylsulfonyl fluoride which are poteint inhibitors of trypsin and chymotrypsin. No carboxyl or sulfhydryl proteases were detected. The enzymes were most active in the neutral to alkaline pH range, but they were relatively unstable during storage which precluded their purification to homogeneity. Proteolysis of Manduca cuticular protein appears to involve a rather complex and unique mixture of endo- and exo-cleaving proteolytic enzymes.  相似文献   

8.
Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are serine hydrolases. cPLA2α is involved in the generation of pro-inflammatory lipid mediators, FAAH terminates the anti-inflammatory effects of endocannabinoids. Therefore, inhibitors of these enzymes may represent new drug candidates for the treatment of inflammation. We have reported that certain 1-heteroarylpropan-2-ones are potent inhibitors of cPLA2α and FAAH. The serine reactive ketone group of these compounds, which is crucial for enzyme inhibition, is readily metabolized resulting in inactive alcohol derivatives. In order to obtain metabolically more stable inhibitors, we replaced this moiety by α-ketoheterocyle, cyanamide and nitrile serine traps. Investigations on activity and metabolic stability of these substances revealed that in all cases an increased metabolic stability was accompanied by a loss of inhibitory potency against cPLA2α and FAAH, respectively.  相似文献   

9.
In this cross-sectional study we evaluated T-cell responses using several assays to determine immune correlates of HIV control that distinguish untreated viraemic controllers (VC) from noncontrollers (NC) with similar CD4 counts. Samples were taken from 65 ART-naïve chronically HIV-infected VC and NC from Thailand with matching CD4 counts in the normal range (>450 cells/μl). We determined HIVp24-specific T-cell responses using standard Interferon-gamma (IFNγ) ELISpot assays, and compared the functional quality of HIVp24-specific CD8+ T-cell responses using polychromatic flow cytometry. Finally, in vitro HIV suppression assays were performed to evaluate directly the activity of CD8+ T cells in HIV control. Autologous CD4+ T cells were infected with primary patient-derived HIV isolates and the HIV suppressive activity of CD8+ T cells was determined after co-culture, measuring production of HIVp24 Ag by ELISA. The HIVp24-specific T-cell responses of VC and NC could not completely be differentiated through measurement of IFNγ-producing cells using ELISpot assays, nor by the absolute cell numbers of polyfunctional HIVp24-specific CD8+ T cells. However, in vitro HIV suppression assays showed clear differences between VC and NC. HIV suppressive activity, mediated by either ex vivo unstimulated CD8+ T cells or HIVp24-specific T-cell lines, was significantly greater using cells from VC than NC cells. Additionally, we were able to demonstrate a significant correlation between the level of HIV suppressive activity mediated by ex vivo unstimulated CD8+ T cells and plasma viral load (pVL) (Spearman r = -0.7345, p = 0.0003). This study provides evidence that in vitro HIV suppression assays are the most informative in the functional evaluation of CD8+ T-cell responses and can distinguish between VC and NC.  相似文献   

10.
New active sites can be introduced into naturally occurring enzymes by the chemical modification of specific amino acid residues in concert with genetic techniques. Chemical strategies have had a significant impact in the field of enzyme design such as modifying the selectivity and catalytic activity which is very different from those of the corresponding native enzymes. Thus, chemical modification has been exploited for the incorporation of active site binding analogs onto protein templates and for atom replacement in order to generate new functionality such as the conversion of a hydrolase into a peroxidase. The introduction of a coordination complex into a substrate binding pocket of trypsin could probably also be extended to various enzymes of significant therapeutic and biotechnological importance.

The aim of this study is the conversion of trypsin into a copper enzyme: tyrosinase by chemical modification. Tyrosinase is a biocatalyst (EC.1.14.18.1) containing two atoms of copper per active site with monooxygenase activity. The active site of trypsin (EC 3.4.21.4), a serine protease was chemically modified by copper (Cu+2) introduced p-aminobenzamidine (pABA- Cu+2: guanidine containing schiff base metal chelate) which exhibits affinity for the carboxylate group in the active site as trypsin-like inhibitor. Trypsin and the resultant semisynthetic enzyme preparation was analysed by means of its trypsin and catechol oxidase/tyrosinase activity. After chemical modification, trypsin-pABA-Cu+2 preparation lost 63% of its trypsin activity and gained tyrosinase/catechol oxidase activity. The kinetic properties (Kcat, Km, Kcat/Km), optimum pH and temperature of the trypsin-pABA-Cu+2 complex was also investigated.  相似文献   

11.
Glutamate decarboxylase (l-glutamate 1-carboxylyase, E.C. 4.1.1.15, GAD) is the rate-limiting enzyme for the production of γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in vertebrates and invertebrates. We report the identification, isolation and characterization of cDNAs encoding GAD from the parasitic arthropods Ctenocephalides felis (cat flea) and Rhipicephalus microplus (cattle tick). Expression of the parasite GAD genes and the corresponding Drosophila melanogaster (fruit fly) GAD1 as well as the mouse GAD65 and GAD67 genes in Escherichia coli as maltose binding protein fusions resulted in functional enzymes in quantities compatible with the needs of high throughput inhibitor screening (HTS). A novel continuous coupled spectrophotometric assay for GAD activity based on the detection cascade GABA transaminase/succinic semialdehyde dehydrogenase was developed, adapted to HTS, and a corresponding screen was performed with cat flea, cattle tick and fruit fly GAD. Counter-screening of the selected 38 hit substances on mouse GAD65 and GAD67 resulted in the identification of non-specific compounds as well as inhibitors with preferences for arthropod GAD, insect GAD, tick GAD and the two mouse GAD forms. Half of the identified hits most likely belong to known classes of GAD inhibitors, but several substances have not been described previously as GAD inhibitors and may represent lead optimization entry points for the design of arthropod-specific parasiticidal compounds.  相似文献   

12.
Matrix metalloproteinase 9 (MMP-9) plays an important role in cancer invasion and metastasis and has been an attractive target for therapeutic intervention of cancer metastasis. However, considering the high cost and intricacy associated with the expression, isolation and purification of the recombinant enzyme for the screening of drug candidates, alternative methods that explore the recycling of enzymes become desirable. In this study, a new immobilized enzyme reactor (IMER) containing human recombinant MMP-9 enzyme was developed and characterized for the on-line screening of MMP-9 inhibitors. The MMP-9 IMER containing active unit of the enzyme (U = 0.08 μmol/min) on the disk was inserted into a HPLC system connected to a UV–vis detector for on-line chromatographic screening. The resulting conjugated enzyme was shown to be an active and stable catalyst for the hydrolysis of MMP-9 chromogenic thiopeptide substrate Ac-PLG-[2-mercapto-4-methyl-pentanoyl]-LG-OC2H5. The kinetics profile of the enzyme in IMER and free solution were determined and compared. Selected reversible MMP inhibitors, N-isobutyl-N-(4-methoxyphenylsulfonyl)-glycyl hydroxamic acid (NNGH), doxycycline and minocycline were further characterized using the MMP-9 IMER and free enzyme solution assays. Our system demonstrated applicability as a rapid and cost-effective screening tool for inhibitors of the MMP-9 enzyme.  相似文献   

13.
Flavins are active components of many enzymes. In most cases, riboflavin (vitamin B2) as a coenzyme represents the catalytic part of the holoenzyme. Riboflavin is an amphiphatic molecule and allows a large variety of different interactions with the enzyme itself and also with the substrate. A great number of active riboflavin analogs can readily be synthesized by chemical methods and, thus, a large number of possible inhibitors for many different enzyme targets is conceivable. As mammalian and especially human biochemistry depends on flavins as well, the target of the inhibiting flavin analog has to be carefully selected to avoid unwanted effects. In addition to flavoproteins, enzymes, which are involved in the biosynthesis of flavins, are possible targets for anti-infectives. Only a few flavin analogs or inhibitors of flavin biosynthesis have been subjected to detailed studies to evaluate their biological activity. Nevertheless, flavin analogs certainly have the potential to serve as basic structures for the development of novel anti-infectives and it is possible that, in the future, the urgent need for new molecules to fight multiresistant microorganisms will be met.  相似文献   

14.
Two esteroproteolytic enzymes (A and D) have been isolated from the mouse submaxillary gland and shown to be pure by ultracentrifugation, immunoelectrophoresis, acrylamide-gel electrophoresis, and amino acid analyses. The enzymes have molecular weights of approximately 30,000 and are structurally and antigenically related. Narrow pH optima between 7.5 and 8.0 are exhibited by both enzymes. The “pK1's” are between 6.0 and 6.5 and the “pK2's” are near 9.0. A marked preference for arginine-containing esters is shown by both enzymes. The maximum specific activity of enzyme A on p-tosylarginine methyl ester (TAME) at pH 8 was 2500–3000 μm min?1 mg?1 and for enzyme D, 400–600 μm min?1 mg?1. With TAME as substrate, the Km for enzyme A was 8 × 10?4m at 25 °C and 6 × 10?4m at 37 °C. For D, Km was 3 × 10?4 at 25 °C and 2 × 10?4m at 37 °C.An apparent activation of enzyme D by tosylarginine (TA), a product of TAME hydrolysis, and all α-amino acids examined was due to removal of an inhibitor by chelation. This effect could be duplicated by 8-hydroxyquinoline and diethyldithiocarbamate but not by EDTA. Enzyme A was not affected by these substances to any remarkable extent. Several divalent ions proved to be potent inhibitors of enzyme D. Both enzymes are inactivated by the active site reagents diisopropyl phosphofluoridate and tosyllysine chloromethylketone but much less rapidly than is trypsin. Nitrophenyl-4-guanidionobenzoate reacts with a burst of nitrophenol liberation but with a rapid continuing hydrolysis. One active site per molecule is indicated. Enzyme D is inactivated by urea, reversibly at 10 m and with maximal permanent losses at 6 m. Autolysis of the unfolded form by the native enzyme when they coexist at intermediate urea concentrations appears to occur.Identity of enzyme D and the epithelial growth factor binding protein is demonstrated.  相似文献   

15.
In this work, we describe the preparation of some new Tacrine analogues modified with a pyranopyrazole moiety. A one-pot multicomponent reaction of 3-methyl-1H-pyrazol-5(4H)-one, aryl(or hetero)aldehydes, malononitrile and cyclohexanone involving a Friedländer condensation led to the title compounds. The synthesized heterocyclic analogues of this molecule were evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 0.044 to 5.80?µM, wherein compounds 5e and 5j were found to be most active inhibitors against AChE with IC50 values of 0.058 and 0.044?µM respectively. Molecular modeling simulation on AChE and BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes.  相似文献   

16.
High-throughput screening of a library of diverse molecules has identified the 1,4-naphthoquinone scaffold as a new class of Hsp90 inhibitors. The synthesis and evaluation of a rationally-designed series of analogues containing the naphthoquinone core scaffold has provided key structure–activity relationships for these compounds. The most active inhibitors exhibited potent in vitro activity with low micromolar IC50 values in anti-proliferation and Her2 degradation assays. In addition, 3g, 12, and 13a induced the degradation of oncogenic Hsp90 client proteins, a hallmark of Hsp90 inhibition. The identification of these naphthoquinones as Hsp90 inhibitors provides a new scaffold upon which improved Hsp90 inhibitors can be developed.  相似文献   

17.
We have performed a computational study of different protomeric states of the methionine aminopeptidase active site using a combined quantum-mechanical/molecular mechanical simulation approach. The aim of this study was to clarify the native protonation state of the enzyme, which is needed for the development of novel irreversible inhibitors that can possibly be used as antiangiogenic and antibiotic drugs by virtual screening and other drug design methods. The results of the simulations indicated that two protonation states are possible without disturbing the overall geometry of the active site. We then verified experimentally the presence of the two protonation states by studying the substrate hydrolysis and inhibitor binding reactions at different pH values and come to the conclusion that one of the protomeric states is relevant for inhibitor binding, whereas the other is relevant for substrate hydrolysis. This result has implications for the development of other inhibitors of this class of enzymes and adds a new perspective to the pharmacological properties of the antiangiogenic drug fumagillin, which is an irreversible inhibitor of the human methionine aminopeptidase type II.  相似文献   

18.
Adenylyl cyclases catalyze the production of the second messenger cyclic AMP from ATP. Until now, there has been no fluorescent adenylyl cyclase assay known that is applicable to high-throughput screening and kinetic determinations that can directly monitor the turnover of the unmodified substrate ATP. In this study, a fluorescence-based assay is described using the Ca(II)- and calmodulin-dependent adenylyl cyclase edema factor (EF) from Bacillus anthracis and Tb(III)-norfloxacin as probe for the enzyme activity. This assay can be used to study enzyme regulators, allows real-time monitoring of adenylyl cyclase activity, and does not substitute ATP by fluorescent derivatives. These derivatives must be judged critically due to their interference on the activity of enzymes. Furthermore, the new assay makes redundant the application of radioactively labeled substrates such as [α-32P]ATP or fluorescently labeled antibodies such as anti-cyclic AMP. We determined the Michaelis-Menten constant (KM), the v0max value of ATP turnover, and the IC50 values for three inhibitors of EF by this newly developed fluorescent method.  相似文献   

19.
Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the 14C-labeled crystalline polymeric substrates 14C chitin nanowhiskers and 14C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki(obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki(obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation.  相似文献   

20.
Cytochrome P450 enzymes play an important role in steroid hormone biosynthesis of the human adrenal gland, e.g., the production of cortisol and aldosterone. Aldosterone, the most important human mineralocorticoid, is involved in the regulation of the salt and water homeostasis of the body and thus in the regulation of blood pressure, whereas cortisol is the most important glucocorticoid of the human body. CYP11B-dependent steroid hydroxylases are drug development targets, and since they are very closely related enzymes, the discovery of selective inhibitors has been subject to intense investigations for several years. Here we report the development of a whole-cell medium throughput screening technology for the discovery of CYP11B2 inhibitors. The new screening system displayed high reproducibility and was applied to investigate a library of pharmacologically active compounds. 1268 compounds were investigated during this study which revealed 5 selective inhibitors of CYP11B2 (after validation against CYP11B1). The new inhibitors of CYP11B2 are already existing drugs that could be used either in the treatment of hyperaldosteronism-related diseases or as lead compounds that could further be optimised to achieve safer and selective inhibitors of aldosterone synthase. Article from the Special issue on 'Targeted Inhibitors'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号