首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The growth cone, a terminal structure on developing and regenerating axons, is specialized for motility and guidance functions. In vivo the growth cone responds to environmental cues to guide the axon to its appropriate target. These cues are thought to be responsible for position-specific morphological changes in the growth cone, but the molecules that control growth cone behavior are poorly characterized. We used scanning electron microscopy to analyze the morphology of retinal ganglion cell growth cones in vitro on different adhesion molecules that axons normally encounter in vivo. L1/8D9, N-cadherin, and laminin each induced distinctive morphological characteristics in growth cones. Growth cones elaborated lamellipodial structures in response to the cell adhesion molecules L1/8D9 and N-cadherin, whereas laminin supported filopodial growth cones with small veils. On L1/8D9, the growth cones were larger and produced more filopodia. Filopodial associations between adjacent growth cones and neurites were frequent on L1/8D9 but were uncommon on laminin or N-cadherin. These results demonstrate that different adhesion molecules have profoundly different effects on growth cone morphology. This is consistent with previous reports suggesting that changes in growth cone morphology in vivo occur in response to changes in substrate composition.  相似文献   

2.
To assess the role of cdc42 during neurite development, cmyc-tagged constitutively active (CA) and dominant negative (DN) cdc42 were expressed in dissociated primary chick spinal cord neurons using adenoviral-mediated gene transfer. Three days after infection, >85% of the neurons in infected cultures expressed cdc42 proteins, as detected by indirect immunofluorescence against cmyc. Growth cones of infected neurons displayed 1.83- (CAcdc42) and 1.93-fold (DNcdc42) higher cmyc immunofluorescence per square micrometer than uninfected controls. CAcdc42 expression stimulated growth cones, almost doubling growth cone size and number of filopodia, and increased neurite growth rates by 65-89%. In neurons plated onto fibronectin, the percent of growth cones with both filopodia and lamellipodia increased from 71 to 92%. Total Texas Red-phalloidin staining in these growth cones doubled, and the percent of growth cones with F-actin localized to peripheral regions increased from 52% in controls to 78% after CAcdc42 expression. Expression of DNcdc42 did not significantly alter growth cone morphology or neurite growth rates. Addition of soluble laminin to spinal cord neurons resulted in the identical phenotype as CAcdc42 expression, including changes in growth cone morphology, F-actin localization, and neurite growth rates. Significantly, expression of DNcdc42 blocked the effects of laminin on growth cones. These results show that cdc42 promotes neurite outgrowth and filopodial and lamellipodial formation in growth cones and suggests that cdc42 and laminin share a common signaling pathway during neurite development. Addition of laminin to CAcdc42-expressing neurons is inhibitory to growth cones, indicating that laminin also may activate some other pathways.  相似文献   

3.
The adhesive interactions of nerve growth cones stabilize elongating nerve fibers and mediate transmembrane signaling to regulate growth cone behaviors. We used interference reflection microscopy and immunocytochemistry to examine the dynamics and composition of substratum contacts that growth cones of chick sensory neurons make with extracellular adhesive glycoproteins, fibronectin and laminin. Interference reflection microscopy indicated that sensory neuronal growth cones on fibronectin-treated substrata, but not on laminin, make contacts that have the appearance and immobility of fibroblastic focal contacts. Interference reflection microscopy and subsequent immunocytochemical staining showed that β1 integrin and phosphotyrosine residues were concentrated at growth cone sites that resemble focal contacts. Two other components of focal contacts, paxillin and zyxin, were also co-localized with concentrated phosphotyrosine residues at sites that resemble focal contacts. Such staining patterns were not observed on laminin-treated substrata. Growth cone migration on fibronectin-treated substrata was inhibited by herbimycin A, a tyrosine kinase inhibitor. We conclude that sensory neuronal growth cones distinguish fibronectin from laminin by making contacts with distinct organization and regulation of cytoskeletal components at the adhesive sites. This finding suggests that growth cone interactions with different adhesive molecules lead to distinctive transmembrane organization and signaling to regulate nerve fiber elongation. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
We have devised a simple bioassay for the identification of molecules that inhibit growth cone motility. Chick dorsal root ganglion (DRG) growth cones extending on laminin collapse when exposed to a suspension of embryonic brain membranes. Detergent-solubilized membranes from which the detergent has been removed collapse DRG growth cones extending on either laminin or chick L1. Collapse occurs over a time course of minutes and is fully reversible. Solubilized liver, primary fibroblast, or RN22 schwannoma cell membranes do not collapse DRG or retinal growth cones. Solubilized PC12 membranes cause retinal but not DRG growth cones to collapse. The collapsing activity from embryonic brain is heat-labile, is trypsin-sensitive, and behaves as a macromolecule on a sizing column. It can be enriched 100-fold by chromatography on heparin and hydroxylapatite. These results are consistent with the idea that growth cone motility is inhibited by specific membrane-associated proteins in the developing nervous system.  相似文献   

5.
Laminin, an extracellular matrix molecule, is known to promote neurite growth. In the present study, the effects of soluble laminin on organelle transport and their relation to neurite growth were investigated in cultured dissociated mouse dorsal root ganglion (DRG) neurons. Laminin added into the extracellular medium was deposited on the surface of DRG neurons. DRG neurons incubated with soluble laminin exhibited branched, long, and thin neurites. Time-lapse study demonstrated that many small-diameter branches were newly formed after the addition of laminin. Thus, the growths of large-diameter primary neuritis, arising from cell bodies and branches extended from growth cones of primary neuritis, were analyzed separately. Laminin decreased the growth rate of primary neurites but increased that of branches. In primary neurites, acute addition of laminin rapidly decreased organelle movement in the neurite shaft and growth cone, accompanied by slowing of the growth cone advance. Branching of primary neurites occurred in response to laminin in some growth cones. In these growth cones, organelles protruded into nascent branches. In branches, soluble laminin increased organelle movement in the growth cone and the distal portion of the shaft. These results suggest that laminin inhibits the elongation of primary neurites but promotes branching and elongation of branches, all of which seem to be closely related to organelle transport.  相似文献   

6.
《The Journal of cell biology》1983,97(6):1882-1890
The ability of axons to grow through tissue in vivo during development or regeneration may be regulated by the availability of specific neurite-promoting macromolecules located within the extracellular matrix. We have used tissue culture methods to examine the relative ability of various extracellular matrix components to elicit neurite outgrowth from dissociated chick embryo parasympathetic (ciliary ganglion) neurons in serum-free monolayer culture. Purified laminin from both mouse and rat sources, as well as a partially purified polyornithine-binding neurite promoting factor (PNPF-1) from rat Schwannoma cells all stimulate neurite production from these neurons. Laminin and PNPF-1 are also potent stimulators of neurite growth from cultured neurons obtained from other peripheral as well as central neural tissues, specifically avian sympathetic and sensory ganglia and spinal cord, optic tectum, neural retina, and telencephalon, as well as from sensory ganglia of the neonatal mouse and hippocampal, septal, and striatal tissues of the fetal rat. A quantitative in vitro bioassay method using ciliary neurons was used to (a) measure and compare the specific neurite-promoting activities of these agents, (b) confirm that during the purification of laminin, the neurite-promoting activity co- purifies with the laminin protein, and (c) compare the influences of antilaminin antibodies on the neurite-promoting activity of laminin and PNPF-1. We conclude that laminin and PNPF-1 are distinct macromolecules capable of expressing their neurite-promoting activities even when presented in nanogram amounts. This neurite-promoting bioassay currently represents the most sensitive test for the biological activity of laminin.  相似文献   

7.
During the purification of laminin-proteoglycan complexes from rat RN22 Schwannoma cell-conditioned medium, a laminin-rich fraction was obtained which lacked neurite-promoting activity. Since laminin from several sources is known to have potent neurite-promoting activity, this result suggested that either this laminin was inactive or its activity was somehow masked by associated molecule(s). The latter possibility was supported by the demonstration that the inactive laminin-containing fraction inhibited active laminin-containing fractions. This inhibitory activity was partially purified by using ion exchange chromatography and isopycnic centrifugation. The purified material contained proteoglycan based on its high affinity for cationic resin, high buoyant density, large heterodisperse appearance on electrophoretic gels, ability to label with inorganic sulfate, sensitivity to trypsin and glycosaminoglycan lyases, and heat stability. A quantitative in vitro bioassay was used to monitor the inhibitor after treatments aimed at defining its activity. The isolated Schwannoma-derived inhibitor (a) inhibits the neurite-promoting activity of purified rat, mouse, and human laminin; (b) is active whether presented to laminin in solution or after either the inhibitor or laminin is first bound to the culture substratum; (c) does not act by displacing laminin from the substratum; (d) can be prevented from binding to neurite-promoting laminin substrates by polyclonal and monoclonal anti-laminin or polyclonal anti-entactin antibodies; and (e) is abolished by proteases or glycosaminoglycan lyases but not by heat. The above results suggest that the neurite-promoting activity of laminin is subject to regulation through association with a proteoglycan and entactin.  相似文献   

8.
Chick embryo retinal ganglion cell (RGC) axons grow to the optic tectum along a stereotyped route, as if responding to cues distributed along the pathway. We showed previously that, in culture, RGCs from embryonic Day 6 retina are responsive to the neurite-promoting effects of the extracellular matrix glycoprotein laminin and that this response is lost by RGCs at a later stage of development. Here we report that, before axon outgrowth is initiated in vivo, laminin, is expressed along the optic pathway at nonbasal lamina sites that are accessible to the growth cones of RGC axons. The distribution of laminin within the pathway is consistent with its localization at the end-feet of neuroepithelial cells that line the route, and it continues to be expressed at these marginal sites during the first week of embryonic development. At later stages, concomitant with the loss of response by RGCs in culture, laminin becomes restricted to basal laminae at the retinal inner limiting membrane and pial surface of the optic pathway. Neurofilament-positive RGC axons bind a monoclonal antibody, JG22, which recognizes the laminin/fibronectin receptor complex, and continue to do so throughout embryonic development. We show that, in vitro, the JG22 antigen expressed by RGCs appears to function as a laminin receptor, by demonstrating that JG22 antibody blocks neurite outgrowth on a substrate of laminin. These findings are consistent with the possibility that laminin defines a transient performed pathway specifically recognized by early RGC growth cones as they navigate toward their central target.  相似文献   

9.
《The Journal of cell biology》1994,127(6):2049-2060
Neurons were grown on plastic surfaces that were untreated, or treated with polylysine, laminin, or L1 and their growth cones were detached from their culture surface by applying known forces with calibrated glass needles. This detachment force was taken as a measure of the force of adhesion of the growth cone. We find that on all surfaces, lamellipodial growth cones require significantly greater detachment force than filopodial growth cones, but this differences is, in general, due to the greater area of lamellipodial growth cones compared to filopodial growth cones. That is, the stress (force/unit area) required for detachment was similar for growth cones of lamellipodial and filopodial morphology on all surfaces, with the exception of lamellipodial growth cones on L1-treated surfaces, which had a significantly lower stress of detachment than on other surfaces. Surprisingly, the forces required for detachment (760-3,340 mudynes) were three to 15 times greater than the typical resting axonal tension, the force exerted by advancing growth cones, or the forces of retraction previously measured by essentially the same method. Nor did we observe significant differences in detachment force among growth cones of similar morphology on different culture surfaces, with the exception of lamellipodial growth cones on L1-treated surfaces. These data argue against the differential adhesion mechanism for growth cone guidance preferences in culture. Our micromanipulations revealed that the most mechanically resistant regions of growth cone attachment were confined to quite small regions typically located at the ends of filopodia and lamellipodia. Detached growth cones remained connected to the substratum at these regions by highly elastic retraction fibers. The closeness of contact of growth cones to the substratum as revealed by interference reflection microscopy (IRM) did not correlate with our mechanical measurements of adhesion, suggesting that IRM cannot be used as a reliable estimator of growth cone adhesion.  相似文献   

10.
To determine the relationship between growth cone structure and motility, we compared the neurite extension rate, the form of individual growth cones, and the organization of f-actin in embryonic (E21) and postnatal (P30) sympathetic neurons in culture. Neurites extended faster on laminin than on collagen, but the P30 nerites were less than half as long as E21 neurites on both substrata. Growth cone shape was classified into one of five categories, ranging from fully lamellipodial to blunt endings. The leading margins of lamellipodia advanced smoothly across the substratum ahead of any filopodial activity and contained meshworks of actin filaments with no linear f-actin bundles, indicating that filopodia need not underlie lamellipodia. Rapid translocation (averaging 0.9-1.4 microns/min) was correlated with the presence of lamellipodia; translocation associated with filopodia averaged only 0.3-0.5 microns/min. This relationship extended to growth cones on a branched neurite where the translocation of each growth cone was dependent on its shape. Growth cones with both filopodial and lamellipodial components moved at intermediate rates. The prevalence of lamellipodial growth cones depended on age of the neurites; early in culture, 70% of E21 growth cones were primarily lamellipodial compared to 38% of P30 growth cones. A high percentage of E21 lamellipodial growth cones were associated with rapid neurite elongation (1.2 mm/day), whereas a week later, only 16% were lamellipodial, and neurites extended at 0.5 mm/day. Age-related differences in neurite extension thus reflected the proportion of lamellipodial growth cones present rather than disparities in basic structure or in the rates at which growth cones of a given type moved at different ages. Filopodia and lamellipodia are each sufficient to advance the neurite margin; however, rapid extension of superior cervical ganglion neurites was supported by lamellipodia independent of filopodial activity.  相似文献   

11.
Laminin derived from the Engelbreth-Holm-Swarm (EHS) tumor and a lamininlike molecule synthesized by RN22 Schwannoma cells both stimulate rapid neurite outgrowth, consistent with a common neurite-promoting site. However, antilaminin antisera can only inhibit the activity of the EHS laminin. The blocking antibodies in such sera are directed against the terminal heparin-binding domain of the laminin long arm (Edgar, D., R. Timpl, and H. Thoenen. 1984. EMBO [Eur. Mol. Biol. Organ.] J. 3: 1463-1468). These epitopes are demonstrated by immunoblotting to be part of the A chain and to be absent in RN22 laminin, showing (through metabolic labeling) that the cells synthesized little if any 440-kD A chain. This indicates that the antibody inhibition was probably due to steric hindrance, a common neurite-promoting site, apparently not being antigenic in native molecules. Antibodies raised against a 25-kD proteolytic fragment derived from the long arm of laminin were then used as probes to identify other potential neurite-promoting structures. Although these antibodies do not cross-react with native laminin, they recognized the B chains of denatured EHS and RN22 molecules on immunoblots. The antibodies also bound to the large proteolytic fragment, derived from the long arm of laminin that contains the neurite-promoting site, thus inhibiting its activity. Taken together, these results point to the localization of normally nonantigenic, defined, B chain sequences within or close to the neurite-promoting site of laminin.  相似文献   

12.
The cell adhesion, spreading and neurite-promoting properties of mouse tumor laminin fragment E8, which contains major site(s) responsible for laminin-cell interactions, were probed by proteolytic degradation, denaturation, synthetic peptides and antibody inhibition. Removal of more than half of the N-terminal portion contributing to the rod-like domain did not effect cell attachment or spreading although neurite-promoting activity was reduced. More extensive degradation of the rod or of the globular domains of E8, or separation of the globule from the rod, also resulted in loss of cell spreading activity although weak attachment was found to an A chain subfragment comprising the globular domain and a short piece of the rod. Exposure of E8 to increasing concentrations of dissociating agents produce an apparently reversible denaturation but an irreversible loss of both attachment and neurite-promoting activities, as did reduction and alkylation of disulfide bonds in the globular domain. Although cell adhesion and spreading were blocked by antibodies to an alpha 6 integrin subunit, neurite outgrowth was unaffected, indicating two distinct receptors for these two activities. Furthermore, a synthetic peptide, the sequence of which is found in the vicinity of adhesion and neurite-promoting sites and previously implicated in neurite growth and cell attachment activities, was found to be inactive. These results indicate that the major cell attachment and neurite-promoting sites of laminin are distinct although both require the native conformation of parts of the rod and the terminal globular domain of the long arm of laminin.  相似文献   

13.
Growth cone navigation is guided by extrinsic environmental proteins, called guidance cues. Many in vitro studies have characterized growth cone turning up and down gradients of soluble guidance cues. Although previous studies have shown that axonal elongation rates can be regulated by gradients of surface-bound molecules, there are no convincing demonstrations of growth cones turning to migrate up a surface-bound gradient of an adhesive ligand or guidance cue. In order to test this mode of axonal guidance, we used a photo-immobilization technique to create grids and gradients of an adhesive laminin peptide on polystyrene culture dish surfaces. Chick embryo dorsal root ganglia (DRGs) were placed on peptide grid patterns containing surface-bound gradients of the IKVAV-containing peptide. DRG growth cones followed a path of surface-bound peptide to the middle of a perpendicularly oriented gradient with a 25% concentration difference across 30 microm. The majority of growth cones turned and migrated up the gradient, turning until they were oriented directly up the gradient. Growth cones slowed their migration when they encountered the gradient, but growth cone velocity returned to the previous rate after turning up or down the gradient. This resembles in vivo situations where growth cones slow at a choice point before changing the direction of axonal extension. Thus, these results support the hypothesis that mechanisms of axonal guidance include growth cone orientation by gradients of surface-bound adhesive molecules and guidance cues.  相似文献   

14.
《The Journal of cell biology》1986,103(6):2457-2465
Monoclonal antibodies were made against a truncated form of human laminin isolated from placenta. 12 antibodies were isolated and characterized. All antibodies stained basement membranes in placenta and immunoprecipitated laminin from media of cultured choriocarcinoma cells. Three antibodies, 3E5, 4C7, and 4E10, partially blocked the neurite-promoting activity of laminin. Addition of a second antibody, goat anti-mouse IgG, caused more complete blocking of the activity. Two of the blocking antibodies, 4C7 and 4E10, reacted with epitopes within the globular domain at the end of the long arm of laminin, and the third one, 3E5, reacted at the end of the rod-like portion of the long arm adjacent to the globular domain, as shown by electron microscopy after rotary shadowing. Five nonblocking antibodies used in the same test reacted with epitopes in other domains of the molecule. Blocking antibodies 3E5 and 4E10 could be used in immunoblotting and both antibodies reacted with the same polypeptides in pepsin fragments of human laminin, the predominant polypeptides being approximately 400 kD. When a crude extract of human amnion was used as a source of intact laminin, the 4E10 antibody detected a single polypeptide of approximately 400 kD. A nonblocking antibody, 2E8, which reacted at the center of the laminin cross, reacted predominantly with a 200-kD polypeptide in human laminin fragments and exclusively with a 200-kD polypeptide in amnion extract and in rat laminin. Our results with human laminin match the results by Edgar, D., R. Timpl, and H. Thoenen, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 3:1463-1468, in which the neurite-promoting activity of mouse laminin resides at the end of the long arm, which is also the site for heparin binding. However, since the active fragments of human laminin did not bind to heparin, the neurite-promoting site should be different from the heparin-binding site. Our results further suggest that the neurite-promoting site may be contained in or close to the 400-kD component of laminin.  相似文献   

15.
Growth cones of sympathetic neurons from the superior cervical ganglia of neonatal rats were studied using video-microscopy to determine events following contact between growth cones and other cell surfaces, including other growth cones and neurites. A variety of behaviors were observed to occur upon contact between growth cones. Most commonly, one growth cone would collapse and subsequently retract upon establishing filopodial contact with the growth cone of another sympathetic neuron. Contacts resulting in collapse and retraction were often accompanied by a rapid and transient burst of lamellipodial activity along the neurite 30-50 microns proximal to the retracting growth cone. In no instances did interactions between growth cones and either fibroblasts or red blood cells result in the growth cone collapsing, suggesting that a specific recognition event was involved. On several occasions, growth cones were seen to track other growth cones, although fasciculation was rare. In some cases, there was no obvious response between contacting growth cones. Growth cone-growth cone contact was almost four times more likely to result in collapse and retraction than was growth cone-neurite contact (45% vs 12%, respectively). These observations suggest that the superior cervical ganglion may be composed of neurons with different cell surface determinants and that these determinants are more concentrated on the surface of growth cones than on neurites. These results further suggest that contact-mediated inhibition of growth cone locomotion may play an important role in growth cone guidance.  相似文献   

16.
Sensory neurons were dissociated from lumbar dorsal root ganglia of embryonic chick and put into culture, either directly or after removing non-neuronal cells by density gradient centrifugation. The cells were grown on culture substrata of various kinds in medium containing nerve growth factor (NGF). After 24 h the cultures were fixed, mounted and analysed. Lengths of neurites were measured, and the numbers of primary processes formed at the cell body and of growth cones were counted. From these values, the rates of growth cone advance and frequency of growth cone branching were calculated. Neuronal outgrowths increased strikingly in length and complexity with embryonic age; there was a 3.5-fold increase in total neurite length and a 3-fold increase in the number of growth cones when neurons from 15-day embryos (E15) were compared with those from 8-day embryos (E8) grown on the same substratum (glass). Growth was markedly greater on surfaces prepared with laminin or conditioned medium compared with plain glass or air-dried collagen. When E15 neurons grown on glass were compared with those grown on laminin, for example, a 2.5-fold increase in total neurite length and a 3-fold increase in the number of growth cones was observed. Calculations showed that a major factor in these changes was an increase in the frequency of growth cone branching. The number of initial processes emanating from the cell body changed with age, but not with the different substrata tested. Non-neuronal cells when present in low numbers and in contact with neurons did not appear to influence neuronal geometry in a systematic way. Our results document the fact that both external factors (in this case, the nature of the culture substratum) and intrinsic factors (stage of development of the neuron) can influence the geometry of neurite outgrowth.  相似文献   

17.
The activity of filopodia and lamellipodia determines the advance, motility, adhesion, and sensory capacity of neuronal growth cones. The shape and dynamics of these highly motile structures originate from the continuous reorganization of the actin cytoskeleton in response to extracellular signals. The small GTPases, Rac1, Rho, and CDC42, regulate the organization of actin filament structures in nonneuronal cells; yet, their role in growth cone motility and neurite outgrowth is poorly understood. We investigated in vitro the function of Rac1 in neurite outgrowth and differentiation by introducing purified recombinant mutants of Rac1 into primary chick embryo motor neurons via trituration. Endogenous Rac1 was expressed in growth cone bodies as well as in the tips and shafts of filopodia, where it often colocalized with actin filament structures. The introduction of constitutively active Rac1 resulted in an increase in rhodamine–phalloidin staining, presumably from an accumulation of actin filaments in growth cones, while dominant negative Rac1 caused a decrease in rhodamine–phalloidin staining. Nevertheless, both Rac1 mutants retarded growth cone advance, and hence attenuated neurite outgrowth and inhibited differentiation of neurites into axons and dendrites on laminin and fibronectin. In contrast, on poly-D -lysine, neither Rac1 mutant affected growth cone advance, neurite outgrowth, or neurite differentiation despite inducing similar changes in the amount of rhodamine–phalloidin staining in growth cones. Our data demonstrate that Rac1 regulates actin filament organization in neuronal growth cones and is pivotal for β1 integrin–mediated growth cone advance, but not for growth on poly-D lysine. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 524–540, 1998  相似文献   

18.
A number of cell surface receptors bind to distinct laminin domains, thereby mediating laminin's diverse biological activities. Cell surface beta 1,4-galactosyltransferase (GalTase) functions as one of these laminin receptors, facilitating mesenchymal cell migration and PC12 cell neurite outgrowth on laminin. In this study, the GalTase binding site within laminin was identified as the E8 fragment by assaying purified fragments and by immunoprecipitating and immunoblotting galactosylated laminin using E8-reactive antibodies. Compared with intact laminin and other laminin fragments, E8 possessed the highest GalTase binding activity, using both membrane-bound and solubilized GalTase. More significantly, the neurite-promoting activity of fragment E8 was shown to be dependent upon its interaction with GalTase. Pregalactosylating purified E8 eliminated subsequent GalTase binding and consequently inhibited neurite initiation; parallel studies on laminin fragments E1-4 or E1 failed to affect neurite outgrowth. Furthermore, anti-GalTase IgG inhibited neurite initiation on purified E8 substrates; control IgG had no effect. These results localize the predominant GalTase binding domain in laminin to fragment E8 and demonstrate that the neurite-promoting activity of E8 is dependent upon its interaction with GalTase.  相似文献   

19.
The development and survival of spinal motor neurons depends upon muscle-derived trophic factors. Some circumstantial evidence suggested to us that the regulatory subunit of cyclic adenosine 3':5'-monophosphate-dependent protein kinase (cAMP-dPK)-type II might be involved in neuritic outgrowth from spinal neurons. In the present study, we tested a commercial preparation of cAMP-dPK for neurite-promoting activity. Commercial cAMP-dPK-type II from skeletal and cardiac muscles elicited a significant neurite outgrowth from cultured embryonic chicken neurons when the enzyme preparation was bound to polylysine-coated substrata; type I cAMP-dPK from skeletal muscle was ineffective. Neither cAMP-dPK-type I nor -type II had a significant effect on the survival of spinal neurons in culture. Type II cAMP-dPK also stimulated neurite outgrowth from chicken cerebral hemisphere neurons, dorsal root ganglionic neurons, ciliary ganglionic neurons, and rat sympathetic ganglionic neurons in culture. The neurite-promoting activity appears to reside in a contaminant of the preparation since neither the purified regulatory nor catalytic subunits of cAMP-dPK-type II had an effect on neurite outgrowth per se from cultured neurons and since neurite-promoting activity did not correlate with [3H]cAMP binding or cAMP-dependent kinase activity. The neurite-promoting protein was then partially purified from commercial cAMP-dPK-type II by gel filtration on Sephadex G-200 followed by ion-exchange chromatography on DE-52 cellulose. Sodium dodecyl sulfate gel electrophoresis of the active protein peak revealed a major protein band (MW 50 kDa) and several minor bands (e.g., MW 200 kDa, 52 kDa, 45 kDa). Also, immunoblot analysis and immunoprecipitation revealed that the partially purified neurite-promoting protein was distinct from laminin, heparan sulfate proteoglycan, nerve growth factor, neural cell adhesion molecule, and fibronectin. Furthermore, the neurite-promoting activity was not diminished by treatment with heparinase nor was it bound to heparin conjugated to Sepharose. Our results demonstrate that a protein unrelated to laminin or its associated macromolecules and which copurifies with the type II cAMP-dPK of striated muscle stimulates neurite outgrowth from neurons of the central and peripheral nervous systems.  相似文献   

20.
《The Journal of cell biology》1994,127(6):1693-1701
Cyclic AMP-dependent activity at the growth cone or the soma of cultured Xenopus spinal neurons was elevated by local extracellular perfusion of the neuron with culture medium containing 8-bromoadenosine 3',5'-cyclic monophosphate (8-br-cAMP) or forskolin. During local perfusion of one of the growth cones of multipolar neurons with these drugs, the perfused growth cone showed further extension, while the distant, unperfused growth cones were inhibited in their growth. Local perfusion of the growth cone with culture medium or local perfusion with 8-br-cAMP at a cell-free region 100 microns away from the growth cone did not produce any effect on the extension of the growth cone. Reduced extension of all growth cones was observed when the perfusion with 8-br-cAMP was restricted to the soma. The distant inhibitory effect does not depend on the growth of the perfused growth cone since local coperfusion of the growth cone with 8-br-cAMP and colchicine inhibited growth on both perfused and unperfused growth cones, while local perfusion with colchicine alone inhibited only the perfused growth cone. The distant inhibitory effect was abolished when the perfusion of 8-br-cAMP was carried out together with kinase inhibitor H- 8, suggesting the involvement of cAMP-dependent protein kinase and/or its downstream factors in the long-range inhibitory signaling. Uniform exposure of the entire neuron to bath-applied 8-br-cAMP, however, led to enhanced growth activity at all growth cones. Thus, local elevation of cAMP-dependent activity produces long-range and opposite effects on distant parts of the neuron, and a cytosolic gradient of second messengers may produce effects distinctly different from those following uniform global elevation of the messenger, leading to differential growth regulation at different regions of the same neuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号