首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for analysis of deletions and duplications of individual exons and groups of exons in the parkin gene (PARK2) in both homozygous and heterozygous states has been developed. The method is based on semiquantitative polymerase chain reaction (PCR). The method has been used for analysis of the frequency of deletions in gene PARK2 in patients with idiopathic Parkinson's disease from Bashkortostan. Two unrelated patients have been found to carry a deletion of the 12th (last) exon of gene PARK2. Possibly, this deletion has caused the disease in the given patients.  相似文献   

2.
Von Hippel-Lindau (VHL) disease is a hereditary tumor syndrome characterized by predisposition for bilateral and multi-centric hemangioblastoma in the retina and central nervous system, pheochromocytoma, renal cell carcinoma, and cysts in the kidney, pancreas, and epididymis. We describe five families for which direct sequencing of the coding region of the VHL gene had failed to identify the family-specific mutation. Further molecular analysis revealed deletions involving the VHL gene in each of these families. In four families, partial deletions of one or more exons were detected by Southern blot analysis. In the fifth family, FISH analysis demonstrated the deletion of the entire VHL gene. Our results show that (quantitative) Southern blot analysis is a sensitive method for detecting germline deletions of the VHL gene and should be implemented in routine DNA diagnosis for VHL disease. Our data support the previously established observation that families with a germline deletion have a low risk for pheochromocytoma. Further unraveling of genotype-phenotype correlations in VHL disease has revealed that families with a full or partial deletion of the VHL gene exhibit a phenotype with a preponderance of central nervous system hemangioblastoma.  相似文献   

3.
Mutations in the methyl-CpG-binding protein-2 (MECP2) gene on Xq28 have been found to be a cause of Rett syndrome (RS). In a previous mutation screening, we found MECP2 mutations in 81% of Swedish classical Rett women. In this study, we have analyzed 22 patients for MECP2 deletions using multiplex-ligation-dependent probe amplification (MLPA). Clinically, 11 of the patients who were classical Rett women, 3 were forme fruste, 1 was congenital RS, and 7 were Rett variants. As inclusion criteria, we used DNA from patients in whom previous sequencing results showed no mutations in coding portions of the MECP2 gene. MLPA is a method based on multiplex PCR. In one PCR, as many as 40 probes are amplified with the same primers. The specificity of the amplification products is determined by the site-specific hybridization of each probe construct, prior to amplification. Each PCR product has a unique length, which makes it possible to identify it by size separation. In 3 of 11 (27%) classical Rett women, we detected large deletions in MECP2 using MLPA. All these patients had deletions covering two exons; in 2 cases the deletion involved exons 3 and 4 and, in one case, exons 1 and 2 were missing. In the forme fruste, congenital and Rett-variant patients, we found no large deletions. We have found that MLPA is useful when it comes to finding large deletions compromising whole exons in MECP2. Used as a complementary method to DNA sequencing, it revealed new MECP2 mutations in classical RS patients.  相似文献   

4.
L Yuge  L Hui  X Bingdi 《Life sciences》1999,65(9):863-869
One hundred thirty-eight patients with Duchenne/Becker muscular dystrophy (DMD/BMD) were screened with complete cDNA probes and the multiplex polymerase chain reaction (mPCR) amplification of 18 pairs of oligonucleotide primers. Eighty-six deletions and 4 duplications were detected, the deletion frequency being 62.3%. Eighty-two deletions were detected with the two sets of primers described by Chamberlain et al. and Beggs et al, which was 95.4% of deletions detected by complete cDNA probes. Consistent with the deletion locations described previously, the deletions of dystrophin gene in Chinese individuals are clustered mainly in two high-frequency deletion regions of exons 44-52 (68.6%) of 3' side of the gene central regions and exons 1-19 (26.7%) in the 5' side. The distribution of deletions in dystrophin gene is associated with the phenotype of DMD/BMD. In the 25 cases with in-frame deletions, 15 deletions located in the region of exons 2-47 were milder BMD and intermediate patients, as the location of deletions was not the important region of the dystrophin gene.  相似文献   

5.
Patterns of exon deletions in Duchenne and Becker muscular dystrophy   总被引:11,自引:0,他引:11  
Summary A panel of patients with Duchenne and Becker muscular dystrophy (DMD and BMD) has been screened with the cDNA probes Cf56a and Cf23a, which detect exons in the central part of the DMD gene. One or more exons were deleted in 60% of patients. The deletions were mapped and prove to be heterogeneous in size and extent, particularly in DMD. Deletions specific to DMD and to BMD are described. Half of all BMD patients have a deletion of one particular small group of exons; smaller deletions within this same group produce the more severe DMD.  相似文献   

6.
Mutations in genes for any of the six subunits of NADPH oxidase cause chronic granulomatous disease (CGD), but almost 2/3 of CGD cases are caused by mutations in the X-linked CYBB gene, also known as NAD (P) H oxidase 2. Approximately 260 patients with CGD have been reported in Japan, of whom 92 were shown to have mutations of the CYBB gene and 16 to have chromosomal deletions. However, there has been very little detailed analysis of the range of the deletion or close understanding of the disease based on this. We therefore analyzed genomic rearrangements in X-linked CGD using array comparative genomic hybridization analysis, revealing the extent and the types of the deletion genes. The subjects were five Japanese X-linked CGD patients estimated to have large base deletions of 1 kb or more in the CYBB gene (four male patients, one female patient) and the mothers of four of those patients. The five Japanese patients were found to range from a patient exhibiting deletions only of the CYBB gene to a female patient exhibiting an extensive DNA deletion and the DMD and CGD phenotype manifested. Of the other three patients, two exhibited CYBB, XK, and DYNLT3 gene deletions. The remaining patient exhibited both a deletion encompassing DNA subsequent to the CYBB region following intron 2 and the DYNLT3 gene and a complex copy number variation involving the insertion of an inverted duplication of a region from the centromere side of DYNLT3 into the deleted region.  相似文献   

7.
Comprehensive molecular testing for mutations in the DMD gene causing Duchenne and Becker muscular dystrophy (DMD/BMD) is challenging because of the large size of the gene and the variety of mutation types. There is an increasing demand for comprehensive DMD gene molecular testing, including deletion/duplication testing of 79 exons and direct sequencing of the 14-kb coding region from genomic DNA, to provide confirmation of clinical diagnoses in affected patients and to determine carrier risk for family members. To determine an efficient strategy to prioritize patients for comprehensive molecular testing of the DMD gene, we tested a consecutive cohort of 165 males referred over a 4-year period because of a suspicion of DMD or BMD using: (1) a new quantitative multiplex polymerase chain reaction (PCR) assay designed to detect deletions or duplications in all exons of the gene and the brain promoter and (2) direct sequencing of the coding region and intron/exon boundaries. For the patients being tested because of a suspicion of DMD, deletion/duplication testing followed by direct sequencing detected pathogenic mutations in 98% (106/108 total patients). However, of the patients tested because of a suspicion of BMD, only 60% (34/57 total patients) had causative mutations identified, all of which were deletions or duplications. Our results suggest that direct genomic sequence analysis of the DMD gene is a useful addition to deletion/duplication testing for diagnosis of DMD, but does not provide an improved sensitivity compared to deletion/duplication analysis alone for the diagnosis of BMD. In addition, due to the relatively common finding of single exon deletions and duplications (22%, 27 of 125 total patients with deletions/duplications), methods to examine all exons of the gene for deletions/duplications should be used as the initial molecular quantitative test for DMD and BMD.  相似文献   

8.
Mutations in the HPRT gene cause a spectrum of diseases that ranges from hyperuricemia alone to hyperuricemia with profound neurological and behavioral dysfunction. The extreme phenotype is termed Lesch-Nyhan syndrome. In 271 cases in which the germinal HPRT mutation has been characterized, 218 different mutations have been found. Of these, 34 (13%) are large- (macro-) deletions of one exon or greater and four (2%) are partial gene duplications. The deletion breakpoint junctions have been defined for only three of the 34 macro-deletions. The molecular basis of two of the four duplications has been defined. We report here the breakpoint junctions for three new deletion mutations, encompassing exons 4-8 (20033bp), exons 4 and 5 (13307bp) and exons 5 and 6 (9454bp), respectively. The deletion breakpoints were defined by a combination of long polymerase chain reaction (PCR) amplifications, and conventional PCR and DNA sequencing. All three deletions are the result of non-homologous recombinations. A fourth mutation, a duplication of exons 2 and 3, is the result of an Alu-mediated homologous recombination between identical 19bp sequences in introns 3 and 1. In toto, two of three germinal HPRT duplication mutations appear to have been caused by Alu-mediated homologous recombination, while only one of six deletion mutations appears to have resulted from this type of recombination mechanism. The other five deletion mutations resulted from non-homologous recombination. With this admittedly limited number of characterized macro-mutations, Alu-mediated unequal homologous recombinations account for at least 8% (3 of 38) of the macro-alterations and 1% (3 of 271) of the total HPRT germinal mutations.  相似文献   

9.
Rubinstein-Taybi syndrome (RTS, MIM 180849) is a multiple malformation syndrome characterized by growth retardation, developmental delay, and dysmorphic features, including down-slanting palpebral fissures, a beaked nose, broad thumbs, and halluces. Mutations in the gene encoding the CREB-binding protein gene (CREBBP, also known as CBP) on chromosome 16p13.3 were identified in 1995. Recently, we developed a mutation analysis protocol using denaturing high-performance liquid chromatography (DHPLC) and identified heterozygous CREBBP mutations in 12 of 21 RTS patients. To test whether exonic deletions represent a common pathogenic mechanism, we assessed the copy number of all the coding exons using a recently developed method, the multiplex PCR/liquid chromatography assay (MP/LC). By using MP/LC, we performed screening for CREBBP exonic deletions among 25 RTS patients in whom no point mutations or small insertions/deletions were identified by DHPLC screening. We identified four classic RTS patients with deletions encompassing multiple exons (14-16, 5-31, 1-16, and 4-26). We conclude that large deletions including several exons are a relatively frequent cause of RTS, and that MP/LC is an effective method for detecting these deletions.  相似文献   

10.
Fanconi anaemia is an autosomal recessive disease characterized by chromosome fragility, multiple congenital abnormalities, progressive bone marrow failure and a high predisposition to develop malignancies. Most of the Fanconi anaemia patients belong to complementation group FA-A due to mutations in the FANCA gene. This gene contains 43 exons along a 4.3-kb coding sequence with a very heterogeneous mutational spectrum that makes the mutation screening of FANCA a difficult task. In addition, as the FANCA gene is rich in Alu sequences, it was reported that Alu-mediated recombination led to large intragenic deletions that cannot be detected in heterozygous state by conventional PCR, SSCP analysis, or DNA sequencing. To overcome this problem, a method based on quantitative fluorescent multiplex PCR was proposed to detect intragenic deletions in FANCA involving the most frequently deleted exons (exons 5, 11, 17, 21 and 31). Here we apply the proposed method to detect intragenic deletions in 25 Spanish FA-A patients previously assigned to complementation group FA-A by FANCA cDNA retroviral transduction. A total of eight heterozygous deletions involving from one to more than 26 exons were detected. Thus, one third of the patients carried a large intragenic deletion that would have not been detected by conventional methods. These results are in agreement with previously published data and indicate that large intragenic deletions are one of the most frequent mutations leading to Fanconi anaemia. Consequently, this technology should be applied in future studies on FANCA to improve the mutation detection rate.  相似文献   

11.
We have assayed deletions of two candidate genes for spinal muscular atrophy (SMA), the survival motor neuron (SMN) and neuronal apoptosis inhibitory protein (NAIP) genes, in 101 patients from 86 Chinese SMA families. Deletions of exons 7 and 8 of the telomeric SMN gene were detected in 100%, 78.6%, 96.6%, and 16.7%, in type I, II, III, and adult-onset SMA patients, respectively. Deletion of exon 7 only was found in eight type II and one type III patient. One type II patient did not have a deletion of either exon 7 or 8. The prevalence of deletions of exons 5 and 6 of the NAIP gene were 22.5% and 2.4% in type I and II SMA patients, respectively. We also examined four polymorphisms of SMN genes and found that there were only two, SMN-2 and CBCD541-2, in Chinese subjects. In our study, analysis of the ratio of the telomeric to centromeric portion (T/C ratio) of the SMN gene after enzyme digestion was performed to differentiate carriers, normals, and SMA patients. We found the T/C ratio of exon 7 of the SMN gene differed significantly among the three groups, and may be used for carrier analysis. An asymptomatic individual with homozygous deletion of exons 7 and 8 of the SMN gene showed no difference in microsatellite markers in the SMA-related 5q11.2–5q13.3. In conclusion, SMN deletion in clinically presumed child-onset SMA should be considered as confirmation of the diagnosis. However, adult-onset SMA, a heterogeneous disease with phenotypical similarities to child-onset SMA, may be caused by SMN or other gene(s). Received: 13 November 1996 / Accepted: 13 May 1997  相似文献   

12.
The genetic basis for association of the PARK11 region of chromosome 2 with familial Parkinson disease (PD) is unknown. This study examined the GIGYF2 (Grb10-Interacting GYF Protein-2) (TNRC15) gene, which contains the PARK11 microsatellite marker with the highest linkage score (D2S206, LOD 5.14). The 27 coding exons of the GIGYF2 gene were sequenced in 123 Italian and 126 French patients with familial PD, plus 131 Italian and 96 French controls. A total of seven different GIGYF2 missense mutations resulting in single amino acid substitutions were present in 12 unrelated PD index patients (4.8%) and not in controls. Three amino acid insertions or deletions were found in four other index patients and absent in controls. Specific exon sequencing showed that these ten sequence changes were absent from a further 91 controls. In four families with amino acid substitutions in which at least one other PD case was available, the GIGYF2 mutations (Asn56Ser, Thr112Ala, and Asp606Glu) segregated with PD. There were, however, two unaffected carriers in one family, suggesting age-dependent or incomplete penetrance. One index case (PD onset age 33) inherited a GIGYF2 mutation (Ile278Val) from her affected father (PD onset age 66) and a previously described PD-linked mutation in the LRRK2 gene (Ile1371Val) from her affected mother (PD onset age 61). The earlier onset and severe clinical course in the index patient suggest additive effects of the GIGYF2 and LRRK2 mutations. These data strongly support GIGYF2 as a PARK11 gene with a causal role in familial PD.  相似文献   

13.
Because standard techniques used to detect mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene do not detect single or multiple exonic rearrangements, the importance of such rearrangements may be underestimated. Using an in-house developed, single-tube, semi-quantitative fluorescent PCR (SQF PCR) assay, we analyzed 36 DNA samples submitted for extensive CFTR sequencing and identified ten samples with rearrangements. Of 36 patients with classic CF, 10 (28%) harbored various deletions in the CFTR gene, accounting for 14% of CF chromosomes. A deletion encompassing the CFTR promoter and exons 1 and 2 was detected in a sample from one proband, and in the maternal DNA as well. In another family, a deletion of the promoter and exon 1 was detected in three siblings. In both of these cases, the families were African American and the 3120+1G>A splice site mutation was also identified. These promoter deletions have not been previously described. In a third case, a deletion of exons 17a, 17b, and 18 was identified in a Caucasian female and the same mutation was detected in the paternal DNA. In the other seven cases, we identified the following deletions: exons 2 and 3 (n=2); exons 4, 5, and 6a; exons 17a and 17b; exons 22 and 23; and exons 22, 23, and 24 (n=2). In our series, the frequency of CFTR rearrangements in classic CF patients, when only one mutation was identified by extensive DNA sequencing, was >60% (10/16). Screening for exon deletions and duplications in the CFTR gene would be beneficial in classic CF cases, especially when only one mutation is identified by standard methodologies. An erratum to this article can be found at  相似文献   

14.
Cerebral cavernous malformations (CCMs) are vascular abnormalities of the brain that can result in a variety of neurological disabilities, including hemorrhagic stroke and seizures. Mutations in the gene KRIT1 are responsible for CCM1, mutations in the gene MGC4607 are responsible for CCM2, and mutations in the gene PDCD10 are responsible for CCM3. DNA sequence analysis of the known CCM genes in a cohort of 63 CCM-affected families showed that a high proportion (40%) of these lacked any identifiable mutation. We used multiplex ligation-dependent probe analysis to screen 25 CCM1, -2, and -3 mutation-negative probands for potential deletions or duplications within all three CCM genes. We identified a total of 15 deletions: 1 in the CCM1 gene, 0 in the CCM3 gene, and 14 in the CCM2 gene. In our cohort, mutation screening that included sequence and deletion analyses gave disease-gene frequencies of 40% for CCM1, 38% for CCM2, 6% for CCM3, and 16% with no mutation detected. These data indicate that the prevalence of CCM2 is much higher than previously predicted, nearly equal to CCM1, and that large genomic deletions in the CCM2 gene represent a major component of this disease. A common 77.6-kb deletion spanning CCM2 exons 2-10 was identified, which is present in 13% of our entire CCM cohort. Eight probands exhibit an apparently identical recombination event in the CCM2 gene, involving an AluSx in intron 1 and an AluSg distal to exon 10. Haplotype analysis revealed that this CCM2 deletion occurred independently at least twice in our families. We hypothesize that these deletions occur in a hypermutable region because of surrounding repetitive sequence elements that may catalyze the formation of intragenic deletions.  相似文献   

15.
Waardenburg syndrome (WS) is an autosomal-dominant neurocristopathy characterized by sensorineural hearing loss, pigmentary abnormalities of the iris, hair, and skin, and is responsible for about 3% of congenital hearing loss. Point mutations in PAX3 have been identified in more than 90% of affected individuals with WS Type 1/WS Type 3. MITF point mutations have been identified in 10-15% of individuals affected with WS Type 2 (lacking dystopia canthorum). Multiplex ligation-dependent probe amplification (MLPA) is now a standard technology in the molecular genetics laboratory to detect copy number changes in targeted genes. We employed MLPA for PAX3 and MITF in a cohort of patients submitted with a diagnosis of WS1, 2 or 3 who were sequence negative for PAX3 and/or MITF. All coding exons of PAX3 and exons 1, 2, 3, and 10 of MITF were included in the MLPA assay. MLPA on 48 patients with WS 1 or 3 revealed 3 PAX3 whole gene deletions (2 WS1; 1 WS3), 2 PAX3 partial gene deletions [WS1, exon 1 and promoter (1st report); WS1, exons 5-9], and 1 partial MITF deletion ("WS1", exons 3-10) (6/48 approximately 12.5%). MLPA on 41 patients with WS2 and 20 patients submitted with a diagnosis of either WS1 or WS2 revealed no copy number changes. The detection of both partial and whole gene deletions of PAX3/MITF in this clinical cohort increases the mutation detection yield by at least 6% and supports integrating MLPA into clinical molecular testing primarily for patients with WS1 and 3.  相似文献   

16.
Methods routinely used for investigating the molecular basis of antithrombin (AT) deficiency do not detect large SERPINC1 rearrangements. Between 2000 and 2008, 86 probands suspected of having AT-inherited type I deficiency were screened for SERPINC1 mutations in our laboratory. Mutations causally linked to the deficiency were identified by sequencing analysis in 63 probands. We present here results of multiplex ligation-dependent probe amplification (MLPA) analysis performed in 22 of the 23 remaining probands, in whom sequencing had revealed no mutation. Large deletions, present at the heterozygous state, were detected in 10 patients: whole gene deletions in 5 and partial deletions removing either exon 6 (n = 2), exons 1–2 (n = 1) or exons 5–7 (n = 2) in 5 others. Exon 6 partial deletions are a 2,769-bp deletion and a 1,892-bp deletion associated with a 10-bp insertion, both having 5′ and/or 3′ breakpoints located within Alu repeat elements. In addition, we identified the 5′ breakpoint of a previously reported deletion of exons 1–2 within an extragenic Alu repeat. Distinct mutational mechanisms explaining these Alu sequence-related deletions are proposed. Overall, in this series, large deletions detected by MLPA explain almost half of otherwise unexplained type I AT-inherited deficiency cases.  相似文献   

17.
18.
We have mapped the gene encoding the p40 subunit of the eukaryotic translation initiation factor eIF3 (EIF3S3) close to the distal border of the minimal critical region for tricho-rhino-phalangeal syndrome type I (TRPS I) on human chromosome 8q24. Because this location makes EIF3S3 a candidate for the TRPS1 gene, we have determined the genomic structure of the EIF3S3 gene and searched for gene deletions and mutations in patients with TRPS I. The gene has eight exons and is transcribed from telomere to centromere. No deletion could be detected in 32 unrelated patients with an apparently normal karyotype. Sequence analysis of all exons in 15 unrelated patients did not reveal any point mutation either. Our data exclude EIF3S3 as the TRPS1 gene.  相似文献   

19.
Nephropathic cystinosis is an autosomal recessive lysosomal storage disease characterized by renal failure at 10 years of age and other systemic complications. The gene for cystinosis, CTNS, has 12 exons. Its 2.6-kb mRNA codes for a 367-amino-acid putative cystine transporter with seven transmembrane domains. Previously reported mutations include a 65-kb "European" deletion involving marker D17S829 and 11 small mutations. Mutation analysis of 108 American-based nephropathic cystinosis patients revealed that 48 patients (44%) were homozygous for the 65-kb deletion, 2 had a smaller major deletion, 11 were homozygous and 3 were heterozygous for 753G-->A (W138X), and 24 had 21 other mutations. In 20 patients (19%), no mutations were found. Of 82 alleles bearing the 65-kb deletion, 38 derived from Germany, 28 from the British Isles, and 4 from Iceland. Eighteen new mutations were identified, including the first reported missense mutations, two in-frame deletions, and mutations in patients of African American, Mexican, and Indian ancestry. CTNS mutations are spread throughout the leader sequence, transmembrane, and nontransmembrane regions. According to a cystinosis clinical severity score, homozygotes for the 65-kb deletion and for W138X have average disease, whereas mutations involving the first amino acids prior to transmembrane domains are associated with mild disease. By northern blot analysis, CTNS was not expressed in patients homozygous for the 65-kb deletion but was expressed in all 15 other patients tested. These data demonstrate the origins of CTNS mutations in America and provide a basis for possible molecular diagnosis in this population.  相似文献   

20.
The gene for autosomal recessive juvenile Parkinsonism (AR-JP) recently has been mapped to chromosome 6q25.2-27 in Japanese families. We have tested one Algerian and 10 European multiplex families with early-onset Parkinson disease for linkage to this locus, with marker D6S305. Homogeneity analysis provided a conditional probability in favor of linkage of >.9 in eight families, which were analyzed further with eight microsatellite markers spanning the 17-cM AR-JP region. Haplotype reconstruction for eight families and determination of the smallest region of homozygosity in two consanguineous families reduced the candidate interval to 11.3 cM. If the deletion of two microsatellite markers (D6S411 and D6S1550) that colocalize on the genetic map and that segregate with the disease in the Algerian family is taken into account, the candidate region would be reduced to <1 cM. These findings should facilitate identification of the corresponding gene. We have confirmed linkage of AR-JP, in European families and in an Algerian family, to the PARK2 locus. PARK2 appears to be an important locus for AR-JP in European patients. The clinical spectrum of the disease in our families, with age at onset <=58 years and the presence of painful dystonia in some patients, is broader than that reported previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号