首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast telomerase is capable of limited repeat addition processivity   总被引:1,自引:1,他引:1  
  相似文献   

2.
3.
4.
5.
Alkylated polycytidylic acid templates for RNA polymerase   总被引:8,自引:0,他引:8  
  相似文献   

6.
7.
8.
The rapid rate at which cancer cells divide necessitates a mechanism for telomere maintenance, and in approximately 90% of all cancer types the enzyme telomerase is used to maintain the length of telomeric DNA. Telomerase is a multi-subunit enzyme that minimally contains a catalytic protein subunit, hTERT, and an RNA subunit, hTR. Proper assembly of telomerase is critical for its enzymatic activity and therefore is a requirement for the proliferation of most cancer cells. We have developed the first high-throughput screen capable of identifying small molecules that specifically perturb human telomerase assemblage. The screen uses a scintillation proximity assay to identify compounds that prevent a specific and required interaction between hTR and hTERT. Rather than attempting to disrupt all of the individual hTR-hTERT interactions, we focused the screen on the interaction of the CR4-CR5 domain of hTR with hTERT. The screen employs a biotin-labeled derivative of the CR4-CR5 domain of hTR that independently binds [(35)S]hTERT in a functionally relevant manner. The complex between hTERT and biotin-labeled RNA can be captured on streptavidin-coated scintillation proximity beads. Use of 96-well filter plates and a vacuum manifold enables rapid purification of the beads. After optimization, statistical evaluation of the screen generated a Z' factor of 0.6, demonstrating the high precision of the assay.  相似文献   

9.
Lustig AJ 《Current biology : CB》2004,14(14):R565-R567
Determination of the structure of the yeast telomerase RNA component TLC1 has been hampered by its large size and high rate of evolutionary divergence. But detailed phylogenetic comparisons have now revealed the unusually flexible and modular architecture of this important RNA molecule.  相似文献   

10.
The integral telomerase RNA subunit templates the synthesis of telomeric repeats. The biological accumulation of human telomerase RNA (hTR) requires hTR H/ACA domain assembly with the same proteins that assemble on other human H/ACA RNAs. Despite this shared RNP composition, hTR accumulation is particularly sensitized to disruption by disease-linked H/ACA protein variants. We show that contrary to expectation, hTR-specific sequence requirements for biological accumulation do not act at an hTR-specific step of H/ACA RNP biogenesis; instead, they enhance hTR binding to the shared, chaperone-bound scaffold of H/ACA core proteins that mediates initial RNP assembly. We recapitulate physiological H/ACA RNP assembly with a preassembled NAF1/dyskerin/NOP10/NHP2 scaffold purified from cell extract and demonstrate that distributed sequence features of the hTR 3' hairpin synergize to improve scaffold binding. Our findings reveal that the hTR H/ACA domain is distinguished from other human H/ACA RNAs not by a distinct set of RNA-protein interactions but by an increased efficiency of RNP assembly. Our findings suggest a unifying mechanism for human telomerase deficiencies associated with H/ACA protein variants.  相似文献   

11.
The RNA subunit of telomerase is encoded by Marek's disease virus   总被引:6,自引:0,他引:6       下载免费PDF全文
Marek's disease virus (MDV) is a herpesvirus of chickens that induces T lymphomas and tumors within 4 to 5 weeks of infection. Although the ability of MDV to induce tumors was demonstrated many years ago and although a number of viral oncogenic proteins have been identified, the mechanism by which the MDV is implicated in tumorigenesis is still unknown. We report the identification of a virus-encoded RNA telomerase subunit (vTR) within the genome of MDV. This gene is found in the genomic DNA of the oncogenic MDV strains, whereas it is not carried by the nononcogenic MDV strains. The vTR sequence exhibits 88% sequence identity with the chicken gene (cTR). Our functional analysis suggests that this telomerase RNA can reconstitute telomerase activity in a heterologous system (the knockout murine TR(-/-) cell line) by interacting with the telomerase protein component encoded by the host cell. We have also demonstrated that the vTR promoter region is efficient whatever the species of cell line considered and that vTR is expressed in vivo in peripheral blood leukocytes from chickens infected with the oncogenic MDV-RB1B and the vaccine MDV-Rispens strains. The functionality of the vTR gene and the potential implication of vTR in the oncogenesis induced by MDV is discussed.  相似文献   

12.
13.
14.
Telomerase is a promising "universal" anticancer target. It has been demonstrated that inhibition of telomerase leads to mortalization and death of previously immortal cell lines. We are interested in targeting telomerase by binding to the RNA/DNA duplex that forms during its catalytic cycle. The RNA strand of this duplex is a component of telomerase and acts as a template to direct the synthesis of the single-stranded DNA telomere. We have hypothesized that molecules that bind to this duplex will inhibit the enzyme by either preventing strand dissociation or by sufficiently distorting the substrate, thereby causing a misalignment of key catalytic residues. To test this hypothesis we have examined the activity of telomerase in the presence of a range of intercalating molecules, known for their broad duplex binding properties. Of the nine compounds we examined, four show promising lead activity in the low micromolar range. A kinetic analysis of the telomeric products suggests that these compounds do not act by stabilizing G-quartets, thereby supporting the telomeric RNA/DNA heteroduplex as the site of action. We anticipate using these lead compounds as the basis for combinatorial variation to increase the affinity and specificity for the target telomerase.  相似文献   

15.
Here we examine the ability of seven, 3'-related, short synthetic RNAs to serve as templates for the hepatitis C virus (HCV) polymerase, non-structural protein 5B (NS5B). These RNAs, termed HL, range from 8 to 16 nucleotides in length, each with ACC at the 3' terminus. Interestingly HL12 and longer templates have a predicted secondary structure. Those with one or two unpaired adenylates at the 5'-end of a stem were increased in size by one or two nucleotides, respectively, following incubation with NS5B and UTP. Using labeled template RNA and cold UTP, extension in size could be inhibited by addition of non-labeled template of the same size. This template elongation was not inhibited by cold linear HL10 template unless pGpG was added. Fluorescence anisotropy demonstrated HL14, a template with secondary structure, bound with an apparent K(d) of 22 nm. A linear template, HL10, plus pGpG primer was bound by NS5B with a K(d) of 45 nm, whereas HL10 alone bound with an apparent K(d) of 182 nm. The amplitude of the template extension product was increased by a brief preincubation at 4 degrees C followed by incubation at 23 or 30 degrees C. The nucleotide-mediated increase in size occurred for both templates that required a mismatch or bulge at the 3'-end as well as for those without the mismatch. These results suggest an NS5B active site pocket can readily accommodate short templates with four or five base stems and initiate copy-back replication in the presence of a one nucleotide mismatch.  相似文献   

16.
17.
An improved method for sequencing of RNA templates.   总被引:27,自引:2,他引:25       下载免费PDF全文
  相似文献   

18.
Telomerase synthesizes telomeric DNA repeats onto chromosome termini from an intrinsic RNA template. The processive synthesis of DNA repeats relies on a unique, yet poorly understood, mechanism whereby the telomerase RNA template translocates and realigns with the DNA primer after synthesizing each repeat. Here, we provide evidence that binding of the realigned RNA/DNA hybrid by the active site is an essential step for template translocation. Employing a template-free human telomerase system, we demonstrate that the telomerase active site directly binds to RNA/DNA hybrid substrates for DNA polymerization. In telomerase processivity mutants, the template-translocation efficiency correlates with the affinity for the RNA/DNA hybrid substrate. Furthermore, the active site is unoccupied during template translocation as a 5 bp extrinsic RNA/DNA hybrid effectively reduces the processivity of the template-containing telomerase. This suggests that strand separation and template realignment occur outside the active site, preceding the binding of realigned hybrid to the active site. Our results provide new insights into the ancient RNA/DNA hybrid binding ability of telomerase and its role in template translocation.  相似文献   

19.
20.
A conserved secondary structure for telomerase RNA.   总被引:41,自引:0,他引:41  
D P Romero  E H Blackburn 《Cell》1991,67(2):343-353
The RNA moiety of the ribonucleoprotein enzyme telomerase contains the template for telomeric DNA synthesis. We present a secondary structure model for telomerase RNA, derived by a phylogenetic comparative analysis of telomerase RNAs from seven tetrahymenine ciliates. The telomerase RNA genes from Tetrahymena malaccensis, T. pyriformis, T. hyperangularis, T. pigmentosa, T. hegewishii, and Glaucoma chattoni were cloned, sequenced, and compared with the previously cloned RNA gene from T. thermophila and with each other. To define secondary structures of these RNAs, homologous complementary sequences were identified by the occurrence of covariation among putative base pairs. Although their primary sequences have diverged rapidly overall, a strikingly conserved secondary structure was identified for all these telomerase RNAs. Short regions of nucleotide conservation include a block of 22 totally conserved nucleotides that contains the telomeric templating region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号