首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gangliosides of the plasma membrane are important modulatorsof cellular functions. Previous work from our laboratory hadsuggested that a plasma membrane sialidase was involved in growthcontrol and differentiation in cultured human neuroblastomacells (SK-N-MC), but its substrates had remained obscure. Wenow performed sialidase specificity studies in subcellular fractionsand found ganglioside GM3 desialylating activity in presenceof Triton X-100 to be associated with the plasma membrane, butabsent in lysosomes. This Triton-activated plasma membrane enzymedesialylated also gangliosides GDla, GD1b, and GT1b, therebyforming GM1; cleavage of GM1 and GM2, however, was not observed.Sialidase activity towards the glycoprotein fetuin with modifiedC-7 sialic acids and towards 4-methylumbelliferyl neuraminatewas solely found in lysosomal, but not in plasma membrane fractions. The role of the plasma membrane sialidase in ganglioside desialylationof living cells was examined by following the fate of [3H]galactose-labelledindividual gangliosides in pulse-chase experiments in absenceand presence of the extracellular sialidase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminicacid. When the plasma membrane sialidase was inhibited, radioactivityof all gangliosides chased at the same rate. In the absenceof inhibitor, GM3, GD1a, GD1b, GD2, GD3 and GT1b were degradedat a considerably faster rate in confluent cultures, whereasthe GM1-pool seemed to be filled by the desialylation of highergangliosides. The results thus suggest that the plasma membranesialidase causes selective ganglioside desialylation, and thatsuch surface glycolipid modification triggers growth controland differentiation in human neuroblastoma cells. ganglioside neuroblastoma cells plasma membrane sialidase  相似文献   

2.
In chronic myeloid leukemia K562 cells, differentiation is also blocked because of low levels of ganglioside GM3, derived by the high expression of sialidase Neu3 active on GM3. In this article, we studied the effects of Neu3 silencing (40-70% and 63-93% decrease in protein content and activity, respectively) in these cells. The effects were as follows: (a) gangliosides GM3, GM1, and sialosylnorhexaosylceramide increased markedly; (b) cell growth and [(3)H]thymidine incorporation diminished relevantly; (c) as mRNA, cyclin D2, and Myc were much less expressed, whereas cyclin D1 was expressed more like its inhibitor p21; (d) as mRNA, pro-apoptotic proteins Bax and Bad increased with concurrent decrease and increase in the anti-apoptotic proteins Bcl-2 and Bcl-XL, respectively; (e) the apoptosis inducers etoposide and staurosporine were active on Neu3 silencing cells but not on mock cells; (f) as mRNA, the megakaryocytic markers CD10, CD44, CD41, and CD61 increased similar to the case of mock cells stimulated with PMA; (g) the signaling cascades mediated by PLC-beta2, PKC, RAF, ERK1/2, RSK90, and JNK were largely activated. The induction of a GM3-rich ganglioside pattern in K562 cells by treatment with brefeldin A elicited a phenotype similar to that of Neu3 silencing cells. In conclusion, upon Neu3 silencing, K562 cells show a decrease in proliferation, propensity to undergo apoptosis, and megakaryocytic differentiation.  相似文献   

3.
Glycosphingolipids and glycoproteins play pivotal roles in the complex series of events governing cell adhesion and signal transduction. Aberrant glycosilation, typical of tumor cells, represents a key event in the induction of invasion and metastasis. Sialidases remove sialic acid residues from sialoconjugates and, in mammals, these enzymes have been proved to be involved in several cellular phenomena, including cell proliferation and differentiation, membrane function, and malignant transformation. Herein we show that only the lysosomal sialidase Neu1 and the plasma membrane-associated sialidase Neu3 are expressed in CFU-E erythroid precursors and K562 erythroleukemic cells. Tumour cells show much higher expression levels than CFU-E cells and, during differentiation, the content of the two enzymes progressively decreases. The sialoglycoconjugate pattern is different in the two cell types. In fact, the differentiating erythroid precursors show an increase of the typical erythrocyte sphingolipids, whereas K562 cells treated with butyrate show a marked increase of GD1a, GM2, PE, and ceramide. Finally, during differentiation the sialoglycoprotein content of erythroid cells shows a marked increase, and in K562 cells the process induces the synthesis of some sialoglycoprotein typical of the erythroid membrane. Overall, these results point out the great differences in sialoglycoconjugate and sialidase patterns exhibited by normal and tumour cells. The ganglioside nomenclature proposed by Svennerholm L. (1980) Adv. Exp. Mod. Biol. 125, 11.  相似文献   

4.
A reduction of 70% of the plasma membrane-associated sialidase Neu3 activity, due to a corresponding reduction of the enzyme expression by transducing cells with a short hairpin RNA encoding a sequence target (complementary messenger of mouse Neu3), caused neurite elongation in Neuro2a murine neuroblastoma cells. The differentiation process was accompanied in parallel by an increase of the acetylcholinesterase activity, a moderate increase of the c-Src expression and by the presence of the axonal marker tau protein on the neurites. The sphingolipid pattern and turnover in transduced and control cells were characterized by thin layer chromatography, mass spectrometry and metabolic radiolabeling after feeding cells with tritiated sphingosine. Control cells contained about 2 nmol of gangliosides/mg cell protein. GM2 was the main compound, followed by GD1a, GM3 and GM1. In Neu3 silenced cells, the total ganglioside content remained quite similar, but GM2 increased by 54%, GM3 remain constant, and GM1 and GD1a decreased by 66% and 50%, respectively. Within the organic phase sphingolipids, ceramide decreased by 50%, whereas the sphingomyelin content did not change in Neu3 silenced cells.  相似文献   

5.
6.
Kang SK  Kim YS  Kong YJ  Song KH  Chang YC  Park YG  Ko JH  Lee YC  Kim CH 《Proteomics》2008,8(16):3317-3328
By employing proteomics analysis tool, we examined the effects of GD3 synthase expression on the differentiation properties of chronic myelogenous leukemia (CML)-derived leukemia cells K562. Forced expression of GD3 synthase induced erythroid differentiation as determined by an increase in glycophorin A expression and synthesis of hemoglobins. The proteomic analysis revealed that 15 proteins were increased by GD3 synthase. In contrast, we observed three protein gel spots decreased in contents in the cell membranes of GD3 synthase-transfected K562 cells. Among the increased proteins, membrane transglutaminase 2 (TG2) was specifically increased in the cell membrane of GD3 synthase-transfected K562 cells. Then, we generated the GD3 synthase-transfected cells in the K562 cells. Interestingly, the TG2 level was increased in GD3 synthase-transfected cells compared with vector- and plasma membrane-associated ganglioside sialidase (Neu3)-transfected cells. In addition, its ability to be photoaffinity-labeled with [alpha-(32)P]GTP was also increased in the GD3 synthase- and TG2-transfected cells. Moreover, small interfering RNA (siRNA) analysis for the GD3 synthase showed the decrease or abolishment of the membrane TG2. Finally, GD3 synthase-transfected cells accelerated the erythroid differentiation. Therefore, we propose that the recruitment of TG2 into membranes by GD3 might play an important role in the erythroid differentiation in K562 cells.  相似文献   

7.
Previous reports indicated the presence of both gangliosides and sialidase in the nuclear envelope (NE) of primary neurons and the NG108-15 neural cell line. GM1, one of the major gangliosides of this membrane, was shown to be tightly associated with a sodium-calcium exchanger in the inner membrane of the NE and to potentiate exchanger activity. GD1a was the other major ganglioside detected in the NE and, like GM1, occurs in both inner and outer membranes. A subsequent report indicated the presence of sialidase activity in the NE without specification as to which of the two membranes express it. The present study was undertaken to determine the nature and locus of this activity within the NE of two cell lines: NG108-15 and SH-SY5Y. Western blot analysis of the separated membranes revealed occurrence of Neu3 in the inner membrane and Neu1 in the outer membrane of the NE. Moreover, sialidase activity at both sites was shown capable of catalyzing conversion of endogenous GD1a to GM1.  相似文献   

8.
Kopitz J  Oehler C  Cantz M 《FEBS letters》2001,491(3):233-236
The orientation of the catalytic site of a ganglioside-specific sialidase in the plasma membrane of SK-N-MC neuroblastoma cells was probed using water-soluble GD1a-neoganglioprotein substrate on intact cells and GM1-product detection by cholera toxin B. Desialylation of substrate was readily observed, whereas specific sialidase inhibitors prevented the reaction, and conditioned medium was inactive. Inhibitors of endocytosis and acidification had no effect on substrate degradation, and lowering temperature to 18 degrees C reduced activity but did not abolish it. We conclude that the ganglioside sialidase activity is cell surface-orientated and displays an in situ specificity that mirrors enzyme preparations in vitro.  相似文献   

9.
Gangliosides located in the outer leaflet of the plasma membrane are important modulators of cellular functions. Our previous work has shown that in cultured human SK-N-MC neuroblastoma cells a sialidase residing in the same membrane selectively desialylates gangliosides with terminal sialic acid residues, causing a shift from higher species to GM1 and a conversion of GM3 to lactosylceramide. Inhibition of this sialidase by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (NeuAc2en) resulted in increased cell proliferation and a loss of differentiation markers. In this study, we examined the occurrence and function of this ganglioside sialidase in other neuronal cells. Subcellular fractionation showed the sialidase to be located in the plasma membrane of all cell lines studied. The presence of the inhibitor NeuAc2en led to a profound decrease in the amount of the differentiation marker 200 kDa/70 kDa neurofilaments and an increase in cell proliferation in the cholinergic SK-N-MC and mixed cholinergic/adrenergic SK-N-FI and SK-N-DZ neuroblastoma lines, but had little or no effect in the human adrenergic SK-N-SH and SK-N-AS and the adrenergic/cholinergic PC12 cells from rat. The influence of the inhibitor on cell behaviour was paralleled by a diminished number of cholera toxin B-binding GM1 sites. The findings demonstrate that the plasma membrane ganglioside sialidase is an important element of proliferation and differentiation control in some, but not all, neuroblastoma cells and suggest that there might be a relationship between plasma membrane sialidase activity and cholinergic differentiation.  相似文献   

10.
Oehler C  Kopitz J  Cantz M 《Biological chemistry》2002,383(11):1735-1742
A ganglioside-specific sialidase that controls cellular functions such as growth, differentiation, and adhesion has been observed in a variety of cells, but its characterization proved difficult due to firm membrane attachment and lability of the purified enzyme. Here we report on the specificity toward gangliosides and susceptibility to certain inhibitors of a ganglioside sialidase solubilized and purified 5100-fold from human brain. The sialidase removed terminal sialic acids from gangliosides GM3, GM4, GD3, GD2, GD1 a, GD1 b, GT1 b and GQ1 b, but was inactive toward gangliosides with sialic acid in a branching position (as in GM1 and GM2). Lyso-GM3 and -GD1a were good substrates, too, whereas O-acetylation of the sialic acid as in 9-O-acetyl-GD3 caused strongly reduced cleavage. The new influenza virus drug 4-guanidino-2-deoxy-2,3-dehydro-N-acetylneuraminic acid (Zanamivir) exhibited an IC50 value of about 7 x 10(-5) M that was in the range of the 'classical' sialidase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid; the bacterial sialidase inhibitor 4-nitrophenyloxamic acid, however, was ineffective. The glycosaminoglycans heparan sulfate, heparin, chondroitin sulfates A and B, as well as dextran sulfate and suramin, were all strongly inhibitory, suggesting that glycosaminoglycans present on the cell surface or in the extracellular matrix may influence the ability of the sialidase to alter the ganglioside composition of the membrane.  相似文献   

11.
We describe herein the enzyme behavior of MmNEU3, the plasma membrane-associated sialidase from mouse (Mus musculus). MmNEU3 is localized at the plasma membrane as demonstrated directly by confocal microscopy analysis. In addition, administration of the radiolabeled ganglioside GD1a to MmNEU3-transfected cells, under conditions that prevent lysosomal activity, led to its hydrolysis into ganglioside GM1, further indicating the plasma membrane topology of MmNEU3. Metabolic labeling with [1-(3)H]sphingosine allowed the characterization of the ganglioside patterns of COS-7 cells. MmNEU3 expression in COS-7 cells led to an extensive modification of the cell ganglioside pattern, i.e. GM3 and GD1a content was decreased to about one-third compared with mock-transfected cells. At the same time, a 35% increase in ganglioside GM1 content was observed. Mixed culture of MmNEU3-transfected cells with [1-(3)H]sphingosine-labeled cells demonstrates that the enzyme present at the cell surface is able to recognize gangliosides exposed on the membrane of nearby cells. Under these experimental conditions, the extent of ganglioside pattern changes was a function of MmNEU3 transient expression. Overall, the variations in GM3, GD1a, and GM1 content were very similar to those observed in the case of [1-(3)H]sphingosine-labeled MmNEU3-transfected cells, indicating that the enzyme mainly exerted its activity toward ganglioside substrates present at the surface of neighboring cells. These results indicate that the plasma membrane-associated sialidase MmNEU3 is able to hydrolyze ganglioside substrates in intact living cells at a neutral pH, mainly through cell-to-cell interactions.  相似文献   

12.
Mammalian Neu3 is a ganglioside specific sialidase. Gangliosides are involved in various physiological events such as cell growth, differentiation and diseases. Significance of Neu3 and gangliosides is still unclear in aquaculture fish species. To gain more insights of fish Neu3 sialidases, molecular cloning and characterization were carried out in tilapia (Oreochromis niloticus). A tilapia genome-wide search for orthologues of human NEU1, NEU2, NEU3 and NEU4 yielded eight putative tilapia sialidases, five of which were neu3-like and designated as neu3a, neu3b, neu3c, neu3d and neu3e. Among five neu3 genes, neu3a, neu3d and neu3e were amplified by PCR from adult fish brain cDNA with consensus sequences of 1227 bp, 1194 bp and 1155 bp, respectively. Multiple alignments showed conserved three Asp-boxes (SXDXGXTW), YRIP and VGPG motifs. The molecular weights for Neu3a, Neu3d and Neu3e were confirmed using immunoblotting analysis as 45.9 kDa, 44.4 kDa and 43.6 kDa, respectively. Lysate from neu3 genes transfected HEK293 cells showed sialidase activity in Neu3a towards ganglioside mix optimally at pH 4.6. Using pure gangliosides as substrates, highest sialidase activity for Neu3a was observed towards GD3 followed by GD1a and GM3, but not GM1. On the other hand, sialidase activities were not observed in Neu3d and Neu3e towards various sialoglycoconjugates. Indirect immunofluorescence showed that tilapia Neu3a and Neu3d are localized at the plasma membrane, while most Neu3e showed a cytosolic localization. RT-PCR analyses for neu3a showed significant expression in the brain, liver, and spleen tissues, while neu3d and neu3e showed different expression patterns. Based on these results, tilapia Neu3 exploration is an important step towards full understanding of a more comprehensive picture of Neu3 sub-family of proteins in fish.  相似文献   

13.
14.
Ganglioside GM3 inhibits epidermal growth factor (EGF)-dependent cell proliferation in a variety of cell lines. Both in vitro and in vivo, this glycosphingolipid inhibits the kinase activity of the EGF receptor (EGFR). Furthermore, membrane preparations containing EGFR can bind to GM3-coated surfaces. These data suggest that GM3 may interact directly with the EGFR. In this study, the interaction of gangliosides with the extracellular domain (ECD) of the EGFR was investigated. The purified human recombinant ECD from insect cells bound directly to ganglioside GM3. The ganglioside interaction site appears to be distinct from the EGF-binding site. In agreement with previous reports on the effects of specific gangliosides on EGFR kinase activity, the ECD preferentially interacted with GM3. The order of relative binding of other gangliosides investigated was as follows: GM3 GM2, GD3, GM4 > GM1, GD1a, GD1b, GT1b, GD2, GQ1b > lactosylceramide. These data suggest that NeuAc-lactose is essential for binding and that any sugar substitution reduces binding. In agreement with the specificity of soluble ECD binding to gangliosides, GM3 specifically inhibited EGFR autophosphorylation. Identification of a ganglioside interaction site on the ECD of the EGFR is consistent with the hypothesis that endogenous GM3 may function as a direct modulator of EGFR activity.  相似文献   

15.
Sialyl-linkage specificity of sialidases of the human influenza A virus strains, A/Aichi/2/68 (H3N2) and A/PR/8/34 (H1N1) were studied using natural and synthetic gangliosides. The sialidase of the A/Aichi/2/68 strain hydrolyzed the terminal Neu5Acalpha2-3Gal sequence but not the Neu5Acalpha2-3 linkage on the inner Gal of GM1a, which is a ganglioside that has the gangliotetraose chain (Galbeta1-3GalNAcbeta1-4- (Neu5Acalpha2-3)Galbeta1++ +-4Glcbeta1-Cer). The sialidase hydrolyzed the Neu5Ac on the inner Gal of GM2, which had a shorter gangliotriose chain. GM4, which had the shortest chain (Neu5Acalpha2-3Galbeta1-Cer) of the gangliosides, had a lower substrate specificity. The N1 and N2 sialidase subtypes of the human influenza A virus had no significant variation in their substrate specificity for the gangliosides. Analysis of 11 synthetic gangliosides, which contained various ceramide or sialic acid moieties, demonstrated that A/Aichi/2/68 (H3N2) sialidase recognized the ceramide and sialic acid moiety and the length and structure of the sialyl sugar chain.   相似文献   

16.
Mammalian sialidases are key enzymes in the degradation of glycoconjugates. Neu4L sialidase is localized to mitochondria and specifically expressed in brain. To elucidate the pathophysiological roles of Neu4L in the nervous system, we investigated the possible involvement of Neu4L in the apoptotic neurodegeneration under the existence of catechol metabolites generated by tyrosinase. We demonstrated that: (i) the expression level of Neu4L was dramatically decreased prior to apoptosis; (ii) the apoptotic phenotype was characterized by cytochrome c release into cytosol concomitant with the trafficking of ganglioside GD3 to mitochondria; and (iii) the inhibitor of glucosylceramide synthase partially recovered cell viability. Neu4L and its substrate GD3 may act as key molecules in the mitochondrial apoptotic pathway in neuronal cells.  相似文献   

17.
Cytosolic Chinese hamster ovary (CHO) cell sialidase has been cloned as a soluble glutathione S-transferase (GST)-sialidase fusion protein with an apparent molecular weight of 69 kD in Escherichia coli. The enzyme has then been produced in mg quantities at 25-L bioreactor scale and purified by one-step affinity chromatography on glutathione sepharose (Burg, M.; Müthing, J. Carbohydr. Res. 2001, 330, 335-346). The cloned sialidase was probed for desialylation of a wide spectrum of different types of gangliosides using a thin-layer chromatography (TLC) overlay kinetic assay. Different gangliosides were separated on silica gel precoated TLC plates, incubated with increasing concentrations of sialidase (50 degreesU/mL up to 1.6 mU/mL) without detergents, and desialylated gangliosides were detected with specific anti-asialoganglioside antibodies. The enzyme exhibited almost identical hydrolysis activity in degradation of GM3(Neu5Ac) and GM3(Neu5Gc). A slightly enhanced activity, compared with reference Vibrio cholerae sialidase, was detected towards terminally alpha(2-3)-sialylated neolacto-series gangliosides IV3-alpha-Neu5Ac-nLc4Cer and VI3-alpha-Neu5Ac-nLc6Cer. The ganglio-series gangliosides G(D1a), G(D1b), and G(T1b), the preferential substrates of V. cholerae sialidase for generating cleavage-resistant G(M1), were less suitable targets for the CHO cell sialidase. The increasing evidence on colocalization of gangliosides and sialidase in the cytosol strongly suggests the involvement of the cytosolic sialidase in ganglioside metabolism on intracellular level by yet unknown mechanisms.  相似文献   

18.
Gangliosides of the plasma membrane are important modulators of cellular functions. Recent reports have shown their enrichment in glycosphingolipid-containing membrane microdomains, called glycosphingolipid-signaling domain or rafts, which can be isolated due to their insolubility in Triton X-100 and flotation through a sucrose gradient. In previous work on neuroblastoma cells we had found that a ganglioside-specific sialidase activity of the plasma membrane controlled proliferation and differentiation through selective ganglioside desialylation. Assuming the ganglioside sialidase to be close to its substrates in the membrane, we investigated its association with detergent-insoluble microdomains in the neuroblastoma cell line SK-N-MC. The results show that the ganglioside sialidase codistributes with the raft markers ganglioside GM1, flotillin, src family kinases, and glycosylphosphatidylinositol-anchored proteins in a fraction containing about 2% of cellular protein. The association of the ganglioside sialidase with glycosphingolipid-enriched membrane fractions therefore is in support of a role of this glycosidase in ganglioside-dependent signaling processes.  相似文献   

19.
20.
New ganglioside analogs that inhibit influenza virus sialidase   总被引:1,自引:0,他引:1  
Synthetic thioglycoside-analogs of gangliosides such as Neu5Ac alpha(2-S-6)Glc beta(1-1)Ceramide (1) and the GM3 analog Neu5Ac alpha(2-S-6)Gal beta(1-4)Glc beta(1-1)Ceramide (2), competitively inhibited GM3 hydrolysis by the sialidase of different subtypes of human and animal influenza viruses with an apparent Ki value of 2.8 x 10(-6) and 1.5 x 10(-5) M, respectively. The inhibitory activity of the ganglioside GM4 analog [Neu5Ac alpha(2-S-6)Gal beta(1-1)Ceramide (3)], in which the glucose of 1 was substituted by galactose, was lower than that of 1 (Ki = 1.0 x 10(-4) M). The thioglycoside-analogs (1, 2, 3) of the gangliosides were non-hydrolyzable substrates for influenza virus sialidase. The inhibitory activity of 1 to bacterial sialidases from Clostridium perfringens and Arthrobacter ureafaciens was considerably lower than that to influenza virus sialidase, indicating that the structure of the active site in bacterial and influenza virus sialidase may be different and the analogs may be useful to determine the orientation of the substrate to the active site of sialidases, especially of influenza viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号