首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurospora crassa colonizes burnt grasslands and metabolizes both cellulose and hemicellulose from plant cell walls. When switched from a favored carbon source to cellulose, N. crassa dramatically up-regulates expression and secretion of genes encoding lignocellulolytic enzymes. However, the means by which N. crassa and other filamentous fungi sense the presence of cellulose in the environment remains unclear. Previously, we have shown that a N. crassa mutant carrying deletions of three β-glucosidase enzymes (Δ3βG) lacks β-glucosidase activity, but efficiently induces cellulase gene expression and cellulolytic activity in the presence of cellobiose as the sole carbon source. These observations indicate that cellobiose, or a modified version of cellobiose, functions as an inducer of lignocellulolytic gene expression and activity in N. crassa. Here, we show that in N. crassa, two cellodextrin transporters, CDT-1 and CDT-2, contribute to cellulose sensing. A N. crassa mutant carrying deletions for both transporters is unable to induce cellulase gene expression in response to crystalline cellulose. Furthermore, a mutant lacking genes encoding both the β-glucosidase enzymes and cellodextrin transporters (Δ3βGΔ2T) does not induce cellulase gene expression in response to cellobiose. Point mutations that severely reduce cellobiose transport by either CDT-1 or CDT-2 when expressed individually do not greatly impact cellobiose induction of cellulase gene expression. These data suggest that the N. crassa cellodextrin transporters act as “transceptors” with dual functions - cellodextrin transport and receptor signaling that results in downstream activation of cellulolytic gene expression. Similar mechanisms of transceptor activity likely occur in related ascomycetes used for industrial cellulase production.  相似文献   

2.
In the post-genome era, insufficient functional annotation of predicted genes greatly restricts the potential of mining genome data. We demonstrate that an evolutionary approach, which is independent of functional annotation, has great potential as a tool for genome analysis. We chose the genome of a model filamentous fungus Neurospora crassa as an example. Phylogenetic distribution of each predicted protein coding gene (PCG) in the N. crassa genome was used to classify genes into six mutually exclusive lineage specificity (LS) groups, i.e. Eukaryote/Prokaryote-core, Dikarya-core, Ascomycota-core, Pezizomycotina-specific, N. crassa-orphans and Others. Functional category analysis revealed that only ∼23% of PCGs in the two most highly lineage-specific grouping, Pezizomycotina-specific and N. crassa-orphans, have functional annotation. In contrast, ∼76% of PCGs in the remaining four LS groups have functional annotation. Analysis of chromosomal localization of N. crassa-orphan PCGs and genes encoding for secreted proteins showed enrichment in subtelomeric regions. The origin of N. crassa-orphans is not known. We found that 11% of N. crassa-orphans have paralogous N. crassa-orphan genes. Of the paralogous N. crassa-orphan gene pairs, 33% were tandemly located in the genome, implying a duplication origin of N. crassa-orphan PCGs in the past. LS grouping is thus a useful tool to explore and understand genome organization, evolution and gene function in fungi.  相似文献   

3.
InSaccharomyces cerevisiae, most of the cellular chitin is produced by chitin synthase III, which requires the product encoded by theCSD2/CAL1/DIT101/KT12 gene. We have identified, isolated and structurally characterized aCSD2/CAL1/DIT101/KT12 homologue in the filamentous ascomyceteNeurospora crassa and have used a “reverse genetics” approach to determine its role in vivo. The yeast gene was used as a heterologous probe for the isolation of aN. crassa gene (designatedchs-4) encoding a polypeptide belonging to a class of chitin synthases which we have designated class IV. The predicted polypeptide encoded by this gene is highly similar to those ofS. cerevisiae andCandida albicans. N. crassa strains in whichchs-4 had been inactivated by the Repeat-Induced Point mutation (RIP) process grew and developed in a normal manner under standard growth conditions. However, when grown in the presence of sorbose (a carbon source which induces morphological changes accompanied by elevated chitin content), chitin levels in thechs-4 RIP strain were significantly lower than those observed in the wild type. We suggest that CHS4 may serve as an auxiliary enzyme inN. crassa and that, in contrast to yeasts, it is possible that filamentous fungi may have more than one class IV chitin synthase.  相似文献   

4.
5.
The homothallic Neurospora species, N. africana, contains sequences that hybridize to the A but not to a mating-type sequences of the heterothallic species N. crassa. In this study, the N. africana mating-type gene, mt A-1, was cloned, sequenced and its function analyzed in N. crassa. Although N. africana does not mate in a heterothallic manner, its mt A-1 gene functions as a mating activator in N. crassa. In addition, the N. africana mt A-1 gene confers mating type-associated vegetative incompatibility in N. crassa. DNA sequence analysis shows that the N. africana mt A-1 open reading frame (ORF) is 93% identical to that of N. crassa mt A-1. The mt A-1 ORF of N. africana contains no stop codons and was detected as a cDNA which is processed in a similar manner to mt A-1 of N. crassa. By DNA blot and orthogonal field agarose gel electrophoretic analysis, it is shown that the composition and location of the mating-type locus and the organization of the mating-type chromosome of N. africana are similar to that of N. crassa.  相似文献   

6.
Calcineurin is a calcium/calmodulin dependent protein phosphatase in eukaryotes that consists of a catalytic subunit A and a regulatory subunit B. Previous studies in the filamentous fungus Neurospora crassa had suggested that the catalytic subunit of calcineurin might be an essential protein. We generated N. crassa strains expressing the A (cna-1) and B (cnb-1) subunit genes under the regulation of Ptcu-1, a copper-responsive promoter. In these strains, addition of bathocuproinedisulfonic acid (BCS), a copper chelator, results in induction of cna-1 and cnb-1, while excess Cu2+ represses gene expression. Through analysis of these strains under repressing and inducing conditions, we found that the calcineurin is required for normal growth, asexual development and female fertility in N. crassa. Moreover, we isolated and analyzed cnb-1 mutant alleles generated by repeat-induced point mutation (RIP), with the results further supporting roles for calcineurin in growth and fertility in N. crassa. We demonstrated a direct interaction between the CNA-1 and CNB-1 proteins using an assay system developed to study protein-protein interactions in N. crassa.  相似文献   

7.
Microbial production of ethanol might be a potential route to replace oil and chemical feedstocks. Bioethanol is by far the most common biofuel in use worldwide. Lignocellulosic biomass is the most promising renewable resource for fuel bioethanol production. Bioconversion of lignocellulosics to ethanol consists of four major unit operations: pretreatment, hydrolysis, fermentation, and product separation/distillation. Conventional bioethanol processes for lignocellulosics apply commercial fungal cellulase enzymes for biomass hydrolysis, followed by yeast fermentation of resulting glucose to ethanol. The fungus Neurospora crassa has been used extensively for genetic, biochemical, and molecular studies as a model organism. However, the strain's potential in biotechnological applications has not been widely investigated and discussed. The fungus N. crassa has the ability to synthesize and secrete all three enzyme types involved in cellulose hydrolysis as well as various enzymes for hemicellulose degradation. In addition, N. crassa has been reported to convert to ethanol hexose and pentose sugars, cellulose polymers, and agro-industrial residues. The combination of these characteristics makes N. crassa a promising alternative candidate for biotechnological production of ethanol from renewable resources. This review consists of an overview of the ethanol process from lignocellulosic biomass, followed by cellulases and hemicellulases production, ethanol fermentations of sugars and lignocellulosics, and industrial application potential of N. crassa.  相似文献   

8.
Three antimalarial meroditerpenes have been isolated from two Fijian red macroalgae. The absolute stereochemistry of callophycolide A (1), a unique macrolide from Callophycus serratus, was determined using a combination of Mosher’s ester analysis, circular dichroism analysis with a dimolybdenum tetraacetate complex, and conformational analysis using NOEs. In addition, two known tocopherols, β-tocopherylhydroquinone (4) and δ-tocopherylhydroquinone (5), were isolated from Amphiroa crassa. By oxidizing 5 to the corresponding δ-tocopherylquinone (6), antimalarial activity against the human malaria parasite Plasmodium falciparum was increased by more than 20-fold.  相似文献   

9.
The “aromatic complex” or “arom aggregate” of Neurospora crassa catalyzes five consecutive reactions in the central pathway leading to the biosynthesis of the aromatic amino acids. Previously, this multienzyme system was shown variously to have a molecular weight of 230,000 to 300,000 and to contain up to four subunits. Recently, a protease and a corresponding specific inhibitor have been isolated from N. crassa and, as described in this report, a new method for isolating the multienzyme system has been developed. We have made the following observations: (a) Detergent (sodium dodecyl sulfate) gel electrophorograms of the “complex” isolated by two different methods are not comparable. In an earlier method, which involved more manipulations and time, the detergent gel banding patterns showed four polypeptides with molecular weights totaling about 300,000. With the new purification procedure, there are two major bands: the first with an apparent molecular weight of about 150,000 and the second with a molecular weight of 50,000. (b) When the freshly purified multienzyme system is incubated at 25 °C, four new bands appear within 30 h and a fifth is visible after 40 h. (c) The formation of these new bands is prevented for up to 40 h by the addition of phenylmethanesulfonylfluoride or a purified preparation of the specific N. crassa protease inhibitor, (d) The multienzyme system appears to remain intact, as shown by standard polyacrylamide gel electrophoresis, even after it has suffered several proteolytic clips. These results demonstrate that the purified complex is contaminated with a small but influential quantity of the inhibitable N. crassa protease and show that this protease is capable of creating an artificial subunit structure in the multienzyme system. Based on these observations, we hypothesize that the arom enzyme system is a five-component multifunctional enzyme.  相似文献   

10.
《Experimental mycology》1990,14(4):360-371
P59Nc, the constitutive polypeptide of 8- to 10-nm filaments in N. crassa, was purified almost to homogeneity using a new and more rapid procedure which involves differential centrifugation and assembly-disassembly of P59Nc supramolecular structures. Rabbit anti-P59Nc antibodies were purified by affinity chromatography on P59Nc-agarose. Using these antibodies and immunocytochemical techniques, we have studied the subcellular topography of P59Nc and 8- to 10-nm filaments in mature hyphae of N. crassa. Immunofluorescence staining was performed on mycelia after partial digestion of the cell wall, while ultrastructural images were obtained by colloidal-gold decoration and electron microscopy of N. crassa sections. The 8- to 10-nm filaments were distributed at random in the cytoplasm of each cell and along young and old zones of the hyphae. In some cases filaments were associated with septa. The fluorescence staining pattern and the colloidal-gold distribution indicate the presence of P59Nc in the assembled as well as in the nonassembled states. Bundles of filaments in N. crassa nuclei were often observed under the electron microscope. It is suggested that P59Nc and the 8- to 10-nm cytoplasmic filaments are constituents of the cellular matrix of N. crassa.  相似文献   

11.
Thigmotropism is the ability of an organism to respond to a topographical stimulus by altering its axis of growth. The thigmotropic response of the model fungus Neurospora crassa was quantified using microfabricated glass slides with ridges of defined height. We show that the polarity machinery at the hyphal tip plays a role in the thigmotropic response of N. crassa. Deletion of N. crassa genes encoding the formin, BNI-1, and the Rho-GTPase, CDC-42, an activator of BNI-1 in yeast, CDC-24, its guanine nucleotide exchange factor (GEF), and BEM-1, a scaffold protein in the same pathway, were all shown to significantly decrease the thigmotropic response. In contrast, deletion of genes encoding the cell end-marker protein, TEA-1, and KIP-1, the kinesin responsible for the localisation of TEA-1, significantly increased the thigmotropic response. These results suggest a mechanism of thigmotropism involving vesicle delivery to the hyphal tip via the actin cytoskeleton and microtubules. Neurospora crassa thigmotropic response differed subtly from that of Candida albicans where the stretch-activated calcium channel, Mid1, has been linked with thigmotropic behaviour. The MID-1 deficient mutant of N. crassamid-1) and the effects of calcium depletion were examined here but no change in the thigmotropic response was observed. However, SPRAY, a putative calcium channel protein, was shown to be required for N. crassa thigmotropism. We propose that the thigmotropic response is a result of changes in the polarity machinery at the hyphal tip which are thought to be downstream effects of calcium signalling pathways triggered by mechanical stress at the tip.  相似文献   

12.
Telomerase is a ribonucleoprotein with an intrinsic telomerase RNA (TER) component. Within yeasts, TER is remarkably large and presents little similarity in secondary structure to vertebrate or ciliate TERs. To better understand the evolution of fungal telomerase, we identified 74 TERs from Pezizomycotina and Taphrinomycotina subphyla, sister clades to budding yeasts. We initially identified TER from Neurospora crassa using a novel deep-sequencing–based approach, and homologous TER sequences from available fungal genome databases by computational searches. Remarkably, TERs from these non-yeast fungi have many attributes in common with vertebrate TERs. Comparative phylogenetic analysis of highly conserved regions within Pezizomycotina TERs revealed two core domains nearly identical in secondary structure to the pseudoknot and CR4/5 within vertebrate TERs. We then analyzed N. crassa and Schizosaccharomyces pombe telomerase reconstituted in vitro, and showed that the two RNA core domains in both systems can reconstitute activity in trans as two separate RNA fragments. Furthermore, the primer-extension pulse-chase analysis affirmed that the reconstituted N. crassa telomerase synthesizes TTAGGG repeats with high processivity, a common attribute of vertebrate telomerase. Overall, this study reveals the common ancestral cores of vertebrate and fungal TERs, and provides insights into the molecular evolution of fungal TER structure and function.  相似文献   

13.
14.
The filamentous fungus Neurospora crassa, which has played an important role in the development of modern genetics, has several unique genome-defense mechanisms, including a process called repeat-induced point mutation. The draft genome sequence has revealed several unusual features, which suggest that the evolution of N. crassa has been greatly influenced by these defense mechanisms.  相似文献   

15.
16.
We have chosen to use the filamentous fungus Neurospora crassa to produce subunit vaccines. Here we describe the production and purification of Influenza hemagglutinin and neuraminidase antigens in N. crassa. The N. crassa system used by Neugenesis offers many advantages over other systems for production of recombinant protein. In contrast to mammalian cell culture, N. crassa can be grown in a rapid and economic manner, generating large amounts of recombinant protein in simple, defined medium. Vaccines, therefore, can be produced more rapidly and at lower cost than conventional cell culture or egg-based systems. This has important applications to tailoring the seasonal vaccine supply and responding to new pandemics.  相似文献   

17.
The function of Neurospora crassa calcineurin was investigated in N. crassa strains transformed with a construct that provides for the inducible expression of antisense RNA for the catalytic subunit of calcineurin (cna-1). Induction of antisense RNA expression was associated with reduced levels of cna-1 mRNA and of immunodetectable CNA1 protein and decreased calcineurin enzyme activity, indicating that a conditional reduction of the target function had been achieved in antisense transformants with multiple construct integrations. Induction conditions caused growth arrest which indicated that the cna-1 gene is essential for growth of N. crassa. Growth arrest was preceded by an increase in hyphal branching, changes in hyphal morphology and concomitant loss of the distinctive tip-high Ca2+ gradient typical for growing wild-type hyphae. This demonstrates a novel and specific role for calcineurin in the precise regulation of apical growth, a common form of cellular proliferation. In vitro inhibition of N. crassa calcineurin by the complex of cyclosporin A (CsA) and cyclophilin20, and increased sensitivity of the induced transformants to the calcineurin-specific drugs CsA and FK506 imply that the drugs act in N. crassa, as in T-cells and Saccharomyces cerevisiae, by inactivating calcineurin. The finding that exposure of growing wild-type mycelium to these drugs leads to a phenotype very similar to that of the cna-1 antisense mutants is consistent with this idea.  相似文献   

18.
The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional analyses. The evolutionary history of BEM46 proteins is characterized by exonic indels in lineage specific manner.  相似文献   

19.
20.
Mitogen-activated protein (MAP) kinase signaling pathways are ubiquitous and evolutionarily conserved in eukaryotic organisms. MAP kinase pathways are composed of a MAP kinase, a MAP kinase kinase, and a MAP kinase kinase kinase; activation is regulated by sequential phosphorylation. Components of three MAP kinase pathways have been identified by genome sequence analysis in the filamentous fungus Neurospora crassa. One of the predicted MAP kinases in N. crassa, MAK-2, shows similarity to Fus3p and Kss1p of Saccharomyces cerevisiae, which are involved in sexual reproduction and filamentation, respectively. In this study, we show that an N. crassa mutant disrupted in mak-2 exhibits a pleiotropic phenotype: derepressed conidiation, shortened aerial hyphae, lack of vegetative hyphal fusion, female sterility, and autonomous ascospore lethality. We assessed the phosphorylation of MAK-2 during conidial germination and early colony development. Peak levels of MAK-2 phosphorylation were most closely associated with germ tube elongation, branching, and hyphal fusion events between conidial germlings. A MAP kinase kinase kinase (NRC-1) is the predicted product of N. crassa nrc-1 locus and is a homologue of STE11 in S. cerevisiae. An nrc-1 mutant shares many of the same phenotypic traits as the mak-2 mutant and, in particular, is a hyphal fusion mutant. We show that MAK-2 phosphorylation during early colony development is dependent upon the presence of NRC-1 and postulate that phosphorylation of MAK-2 is required for hyphal fusion events that occur during conidial germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号