首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Current industrial production of beta-lactam antibiotics, using the filamentous fungus Penicillium chrysogenum, is the result of many years of strain improvement by classical mutagenesis. More efficient production strains showed significant increases in the number and volume fraction of microbodies in their cells, organelles that harbor key enzymes involved in the biosynthesis of beta-lactam antibiotics. We have isolated the P. chrysogenum cDNA encoding Pc-Pex11p, a peroxin that is involved in microbody abundance. We demonstrate that overproduction of Pc-Pex11p in P. chrysogenum results in massive proliferation of tubular-shaped microbodies and a 2- to 2.5-fold increase in the level of penicillin in the culture medium. Notably, Pc-Pex11p-overproduction did not affect the levels of the enzymes of the penicillin biosynthetic pathway. Our results suggest that the stimulating effect of enhanced organelle numbers may reflect an increase in the fluxes of penicillin and/or its precursors across the now much enlarged microbody membrane.  相似文献   

2.
In the filamentous fungus Penicillium chrysogenum, microbodies are essential for penicillin biosynthesis. To better understand the role of these organelles in antibiotics production, we determined the matrix enzyme contents of P. chrysogenum microbodies. Using a novel in silico approach, we first obtained a catalogue of 200 P. chrysogenum proteins with putative microbody targeting signals (PTSs). This included two orthologs of proteins involved in cephalosporin biosynthesis, which we demonstrate to be bona fide microbody matrix constituents. Subsequently, we performed a proteomics based inventory of P. chrysogenum microbody matrix proteins using nano-LC-MS/MS analysis. We identified 89 microbody proteins, 79 with a PTS, including the two known microbody-borne penicillin biosynthesis enzymes, isopenicillin N:acyl CoA acyltransferase and phenylacetyl-CoA ligase. Comparative analysis revealed that 69 out of 79 PTS proteins identified experimentally were in the reference list. A prominent microbody protein was identified as a novel fumarate reductase-cytochrome b5 fusion protein, which contains an internal PTS2 between the two functional domains. We show that this protein indeed localizes to P. chrysogenum microbodies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Penicillium chrysogenum strains were constructed which express a mutant acyltransferase lacking the putative targeting signal for microbody proteins. The mutated enzyme was located in vacuoles and in neighbouring cytoplasm. Although acyltransferase was expressed in vivo and was active in vitro, the mutants did not produce penicillin. The results demonstrate the involvement of microbodies in penicillin production.  相似文献   

4.
5.
6.
Honda M  Hashimoto H 《Protoplasma》2007,231(3-4):127-135
Summary. Division and partitioning of microbodies (peroxisomes) of the green alga Klebsormidium flaccidum, whose cells contain a single microbody, were investigated by electron microscopy. In interphase, the rod-shaped microbody is present between the nucleus and the single chloroplast, oriented perpendicular to the pole-to-pole direction of the future spindle. A centriole pair associates with one distal end of the microbody. In prophase, the microbody changes not only in shape, from a rodlike to a branched form, but also in orientation, from perpendicular to parallel to the future pole-to-pole direction. Duplicated centriole pairs are localized in close proximity to both distal ends of the microbody. In metaphase, the elongated microbody flanks the open spindle, with both distal ends close to the centriole pair at either spindle pole. The microbody further elongates in telophase and divides after septum formation (cytokinesis) has started. The association between the centrioles and both distal ends of the microbody is maintained throughout mitosis, resulting in the distal ends of the elongated microbody being fixed at the cellular poles. This configuration of the microbody may be favorable for faithful transmission of the organelle during cell division. After cytokinesis is completed, the microbody reverts to the perpendicular orientation by changing its shape. Microtubules radiating from the centrosomes flank the side of the microbody throughout mitosis. The close association of centrosomes and microtubules with the microbody is discussed in respect to the partitioning of the microbody in this alga. Correspondence: H. Hashimoto, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan. Present address: M. Honda, Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.  相似文献   

7.
The proliferation cycle of the microbody was studied in the primitive red alga Cyanidioschyzon merolae, which contains one microbody per cell. Cells were synchronized with a dark/light cycle, and the morphology of the microbody and its interaction with other organelles were observed three-dimensionally by fluorescence microscopy, transmission electron microscopy, and computer-assisted three-dimensional reconstruction of serial thin sections. The microbody in interphase cells is a sphere of 0.3 μm in diameter without a core. In M-phase, the microbody passes through a series of irregular shapes, in the order rod, worm, branched, H-shaped and dumbbell, and symmetric fission occurs just before cytokinesis. The microbody duplicates its volume in M-phase and three-dimensional quantitative analysis revealed that its surface area increases before its volume does. The microbody touches the mitochondrion and the chloroplast throughout its proliferation cycle, except briefly in interphase cells, winding around the divisional plane of the mitochondrion at one phase. Immunocytochemical labeling of catalase as a marker of matrix proteins of the microbody revealed that the duplication of catalase occurs in tandem with the volume increase. While no specific apparatus was identified in the microbody divisional areas, we identified an electron-dense apparatus about 30–50 nm in diameter between the microbody and the mitochondrion that may play a role in segregating the daughter microbodies. These results are the first characterization to show the morphological changes of one microbody in a one-microbody alga without proliferation-inducing substrates, which have been used in many studies, and clearly show that two daughter microbodies arise by binary fission of the pre-existing microbody. Received: 11 November 1998 / Accepted: 22 December 1998  相似文献   

8.
Whole cell lysates of pathogenic and nonpathogenic strains of Cryptobia salmositica were subjected to subcellular fractionation using differential and isopycnic centrifugation in sucrose. The glycolytic enzymes hexokinase, fructose-1,6-biphosphate aldolase, triosephosphate isomerase, glucosephosphate isomerase and glyceraldehyde-3-phosphate-dehydrogenase and the peroxisomal enzyme catalase were associated with a microbody that had a buoyant density in sucrose of 1.21 g cm-3. Lactate dehydrogenase was detected in whole cell lysates, but not in purified organelles. A microbody with a positive reaction for catalase was detected in electron microscope sections of the pathogenic and nonpathogenic strains. These catalase-containing microbodies fused with lipid bodies and vacuoles, arose by division from pre-existing microbodies and expelled their contents into the cytoplasm of the cell. Both strains also modified the catalase content in their microbodies. Under aerobic conditions, they metabolized glucose to pyruvate and lactate. We conclude that part of the glycolytic pathway in C. salmositica is compartmentalized in a microbody called the glycosome.  相似文献   

9.
Zschoche WC  Ting IP 《Plant physiology》1973,51(6):1076-1081
Mitochondria and leaf microbodies isolated from leaves of pea (Pisum sativum) by sucrose density gradient centrifugation were each shown to have a unique form (isoenzyme) of malate dehydrogenase (EC 1.1.1.37) based on chromatographic and kinetic properties. Root organelle preparations were shown to contain only a mitochondrial malate dehydrogenase with physical and kinetic properties similar to the leaf form. The absence of a detectable root microbody malate dehydrogenase similar to the leaf enzyme, which is intermediate in electrophoretic and chromatographic properties between the mitochondrial and soluble isoenzymes, was confirmed by diethylaminoethyl cellulose column chromatography and starch-gel electrophoresis of total homogenates from leaf and root tissue. These findings tend to support the role of the leaf microbody isoenzyme in a pathway unique to photosynthetic tissue.  相似文献   

10.
We aim to introduce the penicillin biosynthetic pathway into the methylotrophic yeast Hansenula polymorpha. To allow simultaneous expression of the multiple genes of the penicillin biosynthetic pathway, additional markers were required. To this end, we constructed a novel host-vector system based on methionine auxotrophy and the H. polymorpha MET6 gene, which encodes a putative cystathionine beta-lyase. With this new host-vector system, the Penicillium chrysogenum pcl gene, encoding peroxisomal phenylacetyl-CoA ligase (PCL), was expressed in H. polymorpha. PCL has a potential C-terminal peroxisomal targeting signal type 1 (PTS1). Our data demonstrate that a green fluorescent protein-PCL fusion protein has a dual location in the heterologous host in the cytosol and in peroxisomes. Mutation of the PTS1 of PCL (SKI-COOH) to SKL-COOH restored sorting of the fusion protein to peroxisomes only. Additionally, we demonstrate that peroxisomal PCL-SKL produced in H. polymorpha displays normal enzymatic activities.  相似文献   

11.
Penicillin biosynthesis by Penicillium chrysogenum is a compartmentalized process. The first catalytic step is mediated by delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACV synthetase), a high molecular mass enzyme that condenses the amino acids L-alpha-aminoadipate, L-cysteine, and L-valine into the tripeptide ACV. ACV synthetase has previously been localized to the vacuole where it is thought to utilize amino acids from the vacuolar pools. We localized ACV synthetase by subcellular fractionation and immuno-electron microscopy under conditions that prevented proteolysis and found it to co-localize with isopenicillin N synthetase in the cytosol, while acyltransferase localizes in microbodies. These data imply that the key enzymatic steps in penicillin biosynthesis are confined to only two compartments, i.e., the cytosol and microbody.  相似文献   

12.
13.
Microbody division in mammalian cells, trypanosomes, and yeast depends on the PEX11 microbody membrane proteins. The function of PEX11 is not understood, and the suggestion that it affects microbody (peroxisome) numbers in mammals and yeast, because it plays a role in beta-oxidation of fatty acids, is controversial. PEX11 and two PEX11-related proteins, GIM5A and GIM5B, are the predominant membrane proteins of the microbodies (glycosomes) of Trypanosoma brucei. The compartmentation of glycosomal enzymes is essential in trypanosomes. Deletion of the GIM5A gene from the form of the parasite that lives in the mammalian blood has no effect on trypanosome growth, but depletion of GIM5B on a gim5a null background causes death. We show here that procyclic trypanosomes, adapted for life in the Tsetse fly vector, survive without GIM5A and with very low levels of GIM5B. The depleted cells have fewer glycosomes than usual and are osmotically fragile, which is a novel observation for a microbody defect. Thus trypanosomes require both GIM5B and PEX11 for the maintenance of normal glycosome numbers. Procyclic cells lacking GIM5A, like mouse cells partially defective in PEX11, have fewer ether-linked phospholipids, even when GIM5B levels are not reduced. Metabolite measurements on GIM5A/B-depleted bloodstream form trypanosomes suggested a change in the flux through the glycolytic pathway. We conclude that PEX11 family proteins play important roles in determining microbody membrane structure, with secondary effects on a subset of microbody metabolic pathways.  相似文献   

14.
Summary A novel procedure is described for fluorescence staining of microbodies, which can be applied quickly and easily. We developed this technique of microbody staining with the unicellular red algaCyanidioschyzon merolae. Cyanidioschyzon merolae only contains a single chloroplast, mitochondrion, and microbody per cell, and the mitotic cycle and the organelle division cycle are easily synchronized. Knowing that the concentration of H2O2 in the microbody is higher than it is in the cytosol and other cell components, we attempted to visualize the microbody by using fluorescence microscopy to detect H2O2. Brilliant sulfoflavin (BSF), used for detecting Fe2+ in analytical chemistry, fluoresces when it reacts with Fe2+ and H2C2. We were able to specifically stain microbodies with BSF, under acidic conditions (pH 3.0 or pH 2.5) with blue-light excitation. Using this procedure, we observed division of the microbody and the effect of aphidicolin on the microbody. We also discovered that microbody division is regulated by the cell nucleus and follows division of the cell nucleus.  相似文献   

15.
The microbody transition observed in the cotyledons of somefatty seedlings involves the conversion of glyoxysomes to leafperoxisomes. To clarify the molecular mechanisms underlyingthe microbody transition, we established a method for the preparationof highly purified microbodies. SDS-PAGE and immunoblot analysisof isolated microbodies from pumpkin cotyledons at various stagesshowed that glyoxysomal enzymes are replaced by leaf-peroxisomalenzymes during the microbody transition. Two proteins in glyoxysomalmembranes, with molecular masses of 31 kDa and 28 kDa, werenot solubilized from the membranes with 0.2 M KCl, an indicationthat these proteins are bound tightly with glyoxysomal membranes.Their polyclonal antibodies were raised against the respectivepurified protein. Immunoblot analysis of subcellular fractionsand immunogold analysis confirmed that these proteins were specificallylocalized on glyoxysomal membranes. Analysis of these membraneproteins during development revealed that the amounts of thesemembrane proteins decreased during the microbody transitionand that the large one was retained in leaf peroxisomes, whereasthe small one could not be found in leaf peroxisomes after completionof the microbody transition. The results clearly showed thatmembrane proteins in glyoxysomes change dramatically duringthe microbody transition, as do the enzymes in the matrix. 1Present address: School of Agriculture, Nagoya University Chikusa,Nagoya, 464-01 Japan.  相似文献   

16.
We studied the usefulness of flow cytometry for detection of penicillin resistance in E. faecalis and S. aureus by direct binding of commercially available fluorescent penicillin, Bocillin FL, to cells obtained from culture. There were significantly lower percentages of fluorescent cells and median and mean fluorescence values per particle in penicillin-resistant than in penicillin-sensitive strains of both species observed. The method allows rapid detection of penicillin resistance in S. aureus and E. faecalis. The results encourage further investigations on the detection of antibiotic resistance in bacteria using flow cytometry.  相似文献   

17.
To determine how microbody enzymes enter microbodies, we are studying the genes for cytosolic and glycosomal (microbody) isoenzymes in Trypanosoma brucei. We have found three genes (A, B and C) coding for phosphoglycerate kinase (PGK) in a tandem array in T. brucei. Gene B codes for the cytosolic and gene C for the glycosomal isoenzyme. Genes B and C are 95% homologous, and the predicted protein sequences share approximately 45% amino acid homology with other eukaryote PGKs. The microbody isoenzyme differs from the cytosolic form and other PGKs in two respects: a high positive charge and a carboxy-terminal extension of 20 amino acids. Our results show that few alterations are required to redirect a protein from cytosol to microbody. From a comparison of our results with the unpublished data for three other glycosomal glycolytic enzymes we infer that the high positive charge represents the major topogenic signal for uptake of proteins into glycosomes.  相似文献   

18.
Nafenopin (2-methyl-2[p-(1,2,3,4-tetrahydro-1-naphthyl)phenoxy]-propionic acid; Su-13437), a potent hypolipidemic compound, was administered in varying concentrations in ground Purina Chow to male and female rats, wild type (Csa strain) mice and acatalasemic (Csb strain) mice to determine the hepatic microbody proliferative and catalase-inducing effects. In all groups of animals, administration of nafenopin at dietary levels of 0.125% and 0.25% produced a significant and sustained increase in the number of peroxisomes. The hepatic microbody proliferation in both male and female rats and wild type Csa strain mice treated with nafenopin was of the same magnitude and was associated with a two-fold increase in catalase activity and in the concentration of catalase protein. The increase in microbody population in acatalasemic mice, although not accompanied by increase in catalase activity, was associated with a twofold increase in the amount of catalase protein. The absence of sex difference in microbody proliferative response in nafenopin-treated rats and wild type mice is of particular significance, since ethyl-α-p-chlorophenoxyisobutyrate (CPIB)-induced microbody proliferation and increase in catalase activity occurred only in males. Nafenopin can, therefore, be used as an inducer of microbody proliferation and of catalase synthesis in both sexes of rats and mice. The serum glycerol-glycerides were markedly lowered in all the animals given nafenopin, which paralleled the increase in liver catalase. All the above effects of nafenopin were fully reversed when the drug was withdrawn from the diet of male rats. During reversal, several microbody nucleoids were seen free in the hyaloplasm or in the dilated endoplasmic reticulum channels resulting from a rapid reduction in microbody matrix proteins after the withdrawal of nafenopin from the diet. Because of microbody proliferation and catalase induction with increasing number of hypolipidemic compounds, additional studies are necessary to determine the interrelationships of microbody proliferation, catalase induction, and hypolipidemia.  相似文献   

19.
The liver cells of intact male rats given ethyl-α-p-chlorophenoxyisobutyrate (CPIB) characteristically show a marked increase in microbodies and in catalase activity, while those of intact female rats do not. In castrated males given estradiol benzoate and CPIB the increase in catalase activity and microbody proliferation is abolished, while in castrated females given testosterone propionate and CPIB the livers show a marked increase in microbodies and in catalase activity. No sex difference in microbody and catalase response is apparent in fetal and neonatal rats. Both sexes show a sharp rise in catalase activity on the day of birth, with a rapid decline at 5 days after birth. Thyroidectomy abolishes the hypolipidemic effect of CPIB in rats, but microbody proliferation and increase in catalase activity persists in thyroidectomized male rats, indicating that microbody proliferation can be independent of hypolipidemia. Adrenalectomy does not alter appreciably the microbody-catalase response to CPIB. These experiments demonstrate that (1) in adult rats, hepatic microbody proliferation is dependent to a significant degree upon male sex hormone but is largely independent of thyroid or adrenal gland hormones; (2) hepatic microbody proliferation is independent of the hypolipidemic effect of CPIB; (3) displacement of thyroxine from serum protein may not be sufficient cause for stimulation of microbody formation.  相似文献   

20.
Glyoxysomes, a form of microbody, are present in castor bean endosperm during the first 8 days of seed germination. They have a “typical” microbody form and are shown histochemically to contain catalase. The catalase label is distributed throughout the microbody and is not an exclusive feature of the crystalline or amorphous core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号