首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosystem (PS) II membranes, obtained by the method of Berthold et al. (Berthold, D. A., Babcock, G. T., and Yocum, C. F. (1981) FEBS Lett. 134, 231-234), have been fractionated by a sucrose gradient ultracentrifugation method which allows the quantitative separation of the three major chlorophyll binding complexes in these membranes: the chlorophyll (chl) a binding PSII reaction center core, the major light-harvesting complex II, and the minor chl a/b proteins called CP26, CP29, and CP24. Each fraction has been analyzed for its subunit stoichiometry by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis methods. The results show that 12 mol of light-harvesting complex II and 1.5 mol of each of the minor chl a/b proteins are present per mol of the PSII reaction center complex in PSII membranes. These data suggest a dimeric organization of PSII, in agreement with a recent crystallographic study (Bassi, R., Ghiretti Magaldi, A., Tognon, G., Giacometti, G. M., and Miller, K. (1989) Eur. J. Cell Biol. 50, 84-93) and imply that such a dimeric complex is served by antenna chl a/b proteins whose minimal aggregation state includes three polypeptides. This was confirmed by covalent cross-linking of purified antenna complexes.  相似文献   

2.
Bean thylakoid membranes treated with various lipolytic enzymes (bean galactolipase, phospholipases A2, C, D) showed marked changes in their acyl lipid composition. As a consequence of acyl lipids hydrolysis, destruction of some chlorophyll a-protein complexes (CP1a, CP1, CPa) or monomerization of the oligomeric of light harvesting chlorophyll a/b protein complex (LHCP) was observed. It is concluded that galactolipids and phosphatidylcholine are responsible for the stability of CP1a, CP1 and CPa, respectively. Phosphatidylglycerol and to some extent monogalactosyldiacylglycerol are essential for the stabilization of oligomeric structures of light harvesting chlorophyll a/b protein complex.Abbreviations chl chlorophyll - CP1a, CP1 chl a-protein complexes, of PSI - CPa chl a-protein complex of PSII - DGDG diagalactosyldiacylglycerol - FC free chl - GL galactolipase - LHCP1–3 light harvesting chl a/b protein complex - MGDG monogalactosyldiacylglycerol - PAGE polyacrylamide gel electrophoresis - PC phosphatidylcholine - PG phosphatidylglycerol - PLA2 phospholipase A2 - PL phospholipase C - PLD phospholipase D - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - SQDG sulfoquinovosyl-diacylglycerol - TCA trichloroacetic acid - Tricine N-tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

3.
The core of photosystem II (PSII) of green plants contains the reaction center (RC) proteins D1D2-cytb559 and two core antennas CP43 and CP47. We have used time-resolved visible pump/midinfrared probe spectroscopy in the region between 1600 and 1800 cm(-1) to study the energy transfer and charge separation events within PSII cores. The absorption difference spectra in the region of the keto and ester chlorophyll modes show spectral evolution with time constants of 3 ps, 27 ps, 200 ps, and 2 ns. Comparison of infrared (IR) difference spectra obtained for the isolated antennas CP43 and CP47 and the D1D2-RC with those measured for the PSII core allowed us to identify the features specific for each of the PSII core components. From the presence of the CP43 and CP47 specific features in the spectra up to time delays of 20-30 ps, we conclude that the main part of the energy transfer from the antennas to the RC occurs on this timescale. Direct excitation of the pigments in the RC evolution associated difference spectra to radical pair formation of PD1+PheoD1- on the same timescale as multi-excitation annihilation and excited state equilibration within the antennas CP43 and CP47, which occur within approximately 1-3 ps. The formation of the earlier radical pair ChlD1+PheoD1-, as identified in isolated D1D2 complexes with time-resolved mid-IR spectroscopy is not observed in the current data, probably because of its relatively low concentration. Relaxation of the state PD1+PheoD1-, caused by a drop in free energy, occurs in 200 ps in closed cores. We conclude that the kinetic model proposed earlier for the energy and electron transfer dynamics within the D1D2-RC, plus two slowly energy-transferring antennas C43 and CP47 explain the complex excited state and charge separation dynamics in the PSII core very well. We further show that the time-resolved IR-difference spectrum of PD1+PheoD1- as observed in PSII cores is virtually identical to that observed in the isolated D1D2-RC complex of PSII, demonstrating that the local structure of the primary reactants has remained intact in the isolated D1D2 complex.  相似文献   

4.
The carboxyl terminus of the CP43 subunit of photosystem II (PSII) in the thermophilic cyanobacterium, Synechococcus elongatus, was genetically tagged with six consecutive histidine residues to create a metal binding site on the PSII supramolecular complex. The histidine-tagging enabled rapid isolation of an intact cyanobacterial PSII core complex from dodecyl maltoside-solubilized thylakoids by a simple one-step Ni(2+)-affinity column chromatography. The isolated core complex was in a dimeric form with a molecular mass of about 580 kDa, consisting of five major intrinsic membrane proteins (CP47, CP43, D1, D2 and cytochrome b-559), three extrinsic proteins (33 kDa, 12 kDa, and cytochrome c-550), and a few low molecular mass membrane proteins, and evolved oxygen at a rate as high as 3,400 mumol (mg Chl)-1 h-1 at 45 degrees C with ferricyanide as an electron acceptor. The core complex emitted thermoluminescence B2-, B1- and Q-bands arising from S2QB-, S3QB- and S2QA- charge recombinations at respective emission temperatures of 45, 38 and 20 degrees C, all of which were higher by about 15 degrees C as compared with those in mesophilic spinach BBY membranes. These results indicated that the isolated core complex well retained the intact properties of thermoluminescence of thermophilic cyanobacterial cells, the deeper stabilization of PSII charge pairs. The isolated complex was extremely stable in terms of both protein composition and function, exhibiting no release of extrinsic proteins, no proteolytic degradation in any of its subunits, accompanied by only a slight (less than 10%) loss in oxygen evolution, after dark-incubation at 20 degrees C for 8 d. These properties of the thermophilic PSII core complex are highly useful for various types of studies on PSII.  相似文献   

5.
Accumulation of monomer and dimer photosystem (PS) II reaction center core complexes has been analyzed by two-dimensional Blue-native/SDS-PAGE in Synechocystis PCC 6803 wild type and in mutant strains lacking genes psbA, psbB, psbC, psbDIC/DII, or the psbEFLJ operon. In vivo pulse-chase radiolabeling experiments revealed that mutant cells assembled PSII precomplexes only. In DeltapsbC and DeltapsbB, assembly of reaction center cores lacking CP43 and reaction center complexes was detected, respectively. In DeltapsbA, protein subunits CP43, CP47, D2, and cytochrome b559 were synthesized, but proteins did not assemble. Similarly, in DeltapsbD/C lacking D2, and CP43, the de novo synthesized proteins D1, CP47, and cytochrome b559 did not form any mutual complexes, indicating that assembly of the reaction center complex is a prerequisite for assembly with core subunits CP47 and CP43. Finally, although CP43 and CP47 accumulated in DeltapsbEFLJ, D2 was neither expressed nor accumulated. We, furthermore, show that the amount of D2 is high in the strain lacking D1, whereas the amount of D1 is low in the strain lacking D2. We conclude that expression of the psbEFLJ operon is a prerequisite for D2 accumulation that is the key regulatory step for D1 accumulation and consecutive assembly of the PSII reaction center complex.  相似文献   

6.
We review our recent low-temperature absorption, circular dichroism (CD), magnetic CD (MCD), fluorescence and laser-selective measurements of oxygen-evolving Photosystem II (PSII) core complexes and their constituent CP 4 3, CP 47 and D1/D2/cytb(559) sub-assemblies. Quantitative comparisons reveal that neither absorption nor fluorescence spectra of core complexes are simple additive combinations of the spectra of the sub-assemblies. The absorption spectrum of the D1/D2/cytb(559) component embedded within the core complex appears significantly better structured and red-shifted compared to that of the isolated sub-assembly. A characteristic MCD reduction or 'deficit' is a useful signature for the central chlorins in the reaction centre. We note a congruence of the MCD deficit spectra of the isolated D1/D2/cytb(559) sub-assemblies to their laser-induced transient bleaches associated with P 680. A comparison of spectra of core complexes prepared from different organisms helps distinguish features due to inner light-harvesting assemblies and the central reaction-centre chlorins. Electrochromic spectral shifts in core complexes that occur following low-temperature illumination of active core complexes arise from efficient charge separation and subsequent plastoquinone anion (Q(A)(-)) formation. Such measurements allow determinations of both charge-separation efficiencies and spectral characteristics of the primary acceptor, Pheo(D1). Efficient charge separation occurs with excitation wavelengths as long as 700 nm despite the illuminations being performed at 1.7 K and with an extremely low level of incident power density. A weak, homogeneously broadened, charge-separating state of PSII lies obscured beneath the CP 47 state centered at 690 nm. We present new data in the 690-760 nm region, clearly identifying a band extending to 730 nm. Active core complexes show remarkably strong persistent spectral hole-burning activity in spectral regions attributable to CP 43 and CP 47. Measurements of homogeneous hole-widths have established that, at low temperatures, excitation transfer from these inner light-harvesting assemblies to the reaction centre occurs with approximately 70-270 ps(-1) rates, when the quinone acceptor is reduced. The rate is slower for lower-energy sub-populations of an inhomogeneously broadened antenna (trap) pigment. The complex low-temperature fluorescence behaviour seen in PSII is explicable in terms of slow excitation transfer from traps to the weak low-energy charge-separating state and transfer to the more intense reaction-centre excitations near 685 nm. The nature and origin of the charge-separating state in oxygen-evolving PSII preparations is briefly discussed.  相似文献   

7.
The reaction center core of photosystem II, a multiprotein membrane bound complex, is composed of a heterodimer of two proteins, D1 and D2. A random mutagenesis technique was used to isolate a photosystem II deficient mutant, CP6t16, of the unicellular cyanobacterium, Synechocystis sp. PCC 6803. Nucleotide sequence analysis showed that the primary lesion in CP6t16 is an ochre mutation introducing a translational stop codon in the psbE gene, encoding the alpha-subunit of cytochrome b559, an integral component of the PSII complex. Analysis of the protein composition of CP6t16 thylakoid membranes isolated in the presence of serine protease inhibitors revealed that, in the absence of cytochrome b559, the D2 protein is also absent. However, the D1 protein is stably incorporated in these membranes, suggesting that the synthesis and integration of D1 are independent of those of D2 and cytochrome b559.  相似文献   

8.
Photosystem II (PSII) is a multiprotein complex that functions as a light-driven water:plastoquinone oxidoreductase in photosynthesis. Assembly of PSII proceeds through a number of distinct intermediate states and requires auxiliary proteins. The photosynthesis affected mutant 68 (pam68) of Arabidopsis thaliana displays drastically altered chlorophyll fluorescence and abnormally low levels of the PSII core subunits D1, D2, CP43, and CP47. We show that these phenotypes result from a specific decrease in the stability and maturation of D1. This is associated with a marked increase in the synthesis of RC (the PSII reaction center-like assembly complex) at the expense of PSII dimers and supercomplexes. PAM68 is a conserved integral membrane protein found in cyanobacterial and eukaryotic thylakoids and interacts in split-ubiquitin assays with several PSII core proteins and known PSII assembly factors. Biochemical analyses of thylakoids from Arabidopsis and Synechocystis sp PCC 6803 suggest that, during PSII assembly, PAM68 proteins associate with an early intermediate complex that might contain D1 and the assembly factor LPA1. Inactivation of cyanobacterial PAM68 destabilizes RC but does not affect larger PSII assembly complexes. Our data imply that PAM68 proteins promote early steps in PSII biogenesis in cyanobacteria and plants, but their inactivation is differently compensated for in the two classes of organisms.  相似文献   

9.
Biochemical characterization of intermediates involved in the assembly of the oxygen-evolving Photosystem II (PSII) complex is hampered by their low abundance in the membrane. Using the cyanobacterium Synechocystis sp. PCC 6803, we describe here the isolation of the CP47 and CP43 subunits, which, during biogenesis, attach to a reaction center assembly complex containing D1, D2, and cytochrome b(559), with CP47 binding first. Our experimental approach involved a combination of His tagging, the use of a D1 deletion mutant that blocks PSII assembly at an early stage, and, in the case of CP47, the additional inactivation of the FtsH2 protease involved in degrading unassembled PSII proteins. Absorption spectroscopy and pigment analyses revealed that both CP47-His and CP43-His bind chlorophyll a and β-carotene. A comparison of the low temperature absorption and fluorescence spectra in the Q(Y) region for CP47-His and CP43-His with those for CP47 and CP43 isolated by fragmentation of spinach PSII core complexes confirmed that the spectroscopic properties are similar but not identical. The measured fluorescence quantum yield was generally lower for the proteins isolated from Synechocystis sp. PCC 6803, and a 1-3-nm blue shift and a 2-nm red shift of the 77 K emission maximum could be observed for CP47-His and CP43-His, respectively. Immunoblotting and mass spectrometry revealed the co-purification of PsbH, PsbL, and PsbT with CP47-His and of PsbK and Psb30/Ycf12 with CP43-His. Overall, our data support the view that CP47 and CP43 form preassembled pigment-protein complexes in vivo before their incorporation into the PSII complex.  相似文献   

10.
PsbK is encoded by the chloroplast psbK gene and is one of the small polypeptides of photosystem II (PSII). This polypeptide is required for accumulation of the PSII complex. In the present study, we generated an antibody against recombinant mature PsbK of Chlamydomonas and used it in Western blots to localize PsbK in the PSII core complex. PsbK was found in the thylakoid membranes, and purification of the PSII core complex from detergent-solubilized thylakoid membranes showed that PsbK is tightly associated with the PSII core complex. We used potassium thiocyanate to separate PSII into subcore complexes, including the D1/D2/cytochrome b559 reaction center complex, CP47, and CP43, and we found that PsbK co-purifies with one of the core antenna complexes, CP43, during ion exchange chromatography. Subsequent gel filtration chromatography of the purified CP43 confirmed that PsbK is tightly associated with CP43. Steady-state levels of PsbK were also determined in Chlamydomonas mutants expressing various levels of PSII. Quantitative Western blotting revealed that the levels of PsbK in these mutants are approximately equal to those of CP43, suggesting that PsbK is stable only when associated with CP43 in the chloroplast. Together, our results indicate that PsbK is an integral part of the PSII complex and may participate in the assembly and stability of the PSII complex.  相似文献   

11.
The PsbH protein, a small subunit of the photosystem II complex (PSII), was identified as a 6-kDa protein band in the PSII core and subcore (CP47-D1-D2-cyt b-559) from the wild-type strain of the cyanobacterium Synechocystis PCC 6803. The protein was missing in the D1-D2-cytochrome b-559 complex and also in all PSII complexes isolated from IC7, a mutant lacking the psbH gene. The following properties of PSII in the mutant contrasted with those in wild-type: (a) CP47 was released during nondenaturing electrophoresis of the PSII core isolated from IC7; (b) depletion of CO2 resulted in a reversible decrease of the QA- reoxidation rate in the IC7 cells; (c) light-induced decrease in PSII activity, measured as 2,5-dimethyl-benzoquinone-supported Hill reaction, was strongly dependent on the HCO3- concentration in the IC7 cells; and (d) illumination of the IC7 cells lead to an extensive oxidation, fragmentation and cross-linking of the D1 protein. We did not find any evidence for phosphorylation of the PsbH protein in the wild-type strain. The results showed that in the PSII complex of Synechocystis attachment of CP47 to the D1-D2 heterodimer appears weakened and binding of bicarbonate on the PSII acceptor side is destabilized in the absence of the PsbH protein.  相似文献   

12.
Cytochrome (cyt) b559, an integral membrane protein, is an essential component of the photosystem II (PSII) complex in the thylakoid membranes of oxygenic photosynthetic organisms. Cyt b559 has two subunits, alpha and beta, each with one predicted membrane spanning alpha-helical domain. The heme cofactor of this cytochrome is coordinated between two histidine residues. Each of the two subunit polypeptides of cyt b559 has one His residue. To investigate the influence of these His residues on the structure of cyt b559 and the PSII complex, we used a site directed mutagenesis approach to replace each His residue with a Leu residue. Introduction of these missense mutations in the transformable unicellular cyanobacterium, Synechocystis 6803, resulted in complete loss of PSII activity. Northern blot analysis showed that these mutations did not affect the stability of the polycistronic mRNA that encompasses both the psbE and the psbF genes, encoding the alpha and the beta subunits, respectively. Moreover, both of the single His mutants showed the presence of the alpha subunit which was 1.5 kd smaller than the same polypeptide in wild type cells. A secondary effect of such a structural change was that D1 and D2, two proteins that form the catalytic core (reaction center) of PSII, were also destabilized. Our results demonstrate that proper axial coordination of the heme cofactor in cyt b559 is important for the structural integrity of the reaction center of PSII.  相似文献   

13.
Chlorophyll a/b light-harvesting complexes (chl a/b LHC) and photosystem II (PSII) cores were isolated from an octyl glucoside-containing sucrose gradient after solubilization of barley thylakoid membranes with Triton X-100 and octyl glucoside. No cation precipitation step was necessary to collect the chl a/b LHC. PAGE under mildly denaturing and fully denaturing conditions showed that the chl a/b LHC fraction contained chlorophyll-protein complexes CP27, CP29, and CP64. The PSII core material contained CP43 and CP47, and little contamination by other nonpigmented polypeptides. Freeze-fracture electron microscopy of the chl a/b LHC after reconstitution into digalactosyldiglyceride (DG) or phosphatidylcholine (PC) vesicles showed that the protein particles (approximately 7.5 +/- 1.6 nm) were approximately 99 and 90% randomly dispersed, respectively, in the liposomes. Addition of Mg++ produced particle aggregation and membrane adhesion in chl a/b LHC-DG liposomes in a manner analogous to that described for LHC-PC liposomes. Reconstitution of PSII cores into DG vesicles also produced proteoliposomes with randomly dispersed particles (approximately 7.5 +/- 1.6 nm). In contrast, PSII-PC mixtures formed convoluted networks of tubular membranes that exhibited very few fracture faces. Most of the protein particles (approximately 7.0 +/- 1.5 nm) were seen trapped between, rather than embedded in, the membranes. The interaction between the zwitterionic head group of the phosphatidyl choline and the negatively charged PSII core may be responsible for the unusual membrane structures observed.  相似文献   

14.
Thylakoid membranes retaining high oxygen-evolving activity (about 250 micromol O(2)/mg Chl/h) were prepared from a marine centric diatom, Chaetoceros gracilis, after disruption of the cells by freeze-thawing. We also succeeded in purification of Photosystem II (PSII) particles by differential centrifugation of the thylakoid membranes after treatment with 1% Triton X-100. The diatom PSII particles showed an oxygen-evolving activity of 850 and 1045 micromol O(2)/mg Chl/h in the absence and presence of CaCl(2), respectively. The PSII particles contained fucoxanthin chlorophyll a/c-binding proteins in addition to main intrinsic proteins of CP47, CP43, D2, D1, cytochrome b559, and the antenna size was estimated to be 229 Chl a per 2 molecules of pheophytin. Five extrinsic proteins were stoichiometrically released from the diatom PSII particles by alkaline Tris-treatment. Among these five extrinsic proteins, four proteins were red algal-type extrinsic proteins, namely, PsbO, PsbQ', PsbV and PsbU, whereas the other one was a novel, hypothetical protein. This is the first report on isolation and characterization of diatom PSII particles that are highly active in oxygen evolution and retain the full set of extrinsic proteins including an unknown protein.  相似文献   

15.
Shen JR  Kamiya N 《Biochemistry》2000,39(48):14739-14744
A photosystem II (PSII) complex highly active in oxygen evolution was purified and crystallized from a thermophilic cyanobacterium, Synechococcus vulcanus. The PSII complex in the crystals contained the D1/D2 reaction center subunits, CP47 and CP43 (two chlorophyll-binding core antenna proteins of photosystem II), cytochrome b-559 alpha- and beta-subunits, several low molecular weight subunits, and three extrinsic proteins, that is, 33 and 12 kDa proteins and cytochrome c-550. The PSII complex also retained a high rate of oxygen evolution. The apparent molecular mass of the PSII in the crystals was determined to be 580 kDa by gel filtration chromatography, indicating that the PSII crystallized is a dimer. The crystals diffracted to a maximum resolution of 3.5 A at a cryogenic temperature using X-rays from a synchrotron radiation source, SPring-8. The crystals belonged to an orthorhombic system, and the space group was P2(1)2(1)2(1) with unit cell dimensions of a = 129.7 A, b = 226.5 A, and c = 307.8 A. Each asymmetric unit contained one PSII dimer, which gave rise to a specific volume (V(M)) of 3.6 A(3)/Da based on the calculated molecular mass of 310 kDa for a PSII monomer and an estimated solvent content of 66%. Multiple data sets of native crystals have been collected and processed to 4.0 A, indicating that our crystals are suitable for structure analysis at this resolution.  相似文献   

16.
The involvement of the PsbI protein in the assembly and repair of the photosystem II (PSII) complex has been studied in the cyanobacterium Synechocystis sp. PCC 6803. Analysis of PSII complexes in the wild-type strain showed that the PsbI protein was present in dimeric and monomeric core complexes, core complexes lacking CP43, and in reaction center complexes containing D1, D2, and cytochrome b-559. In addition, immunoprecipitation experiments and the use of a histidine-tagged derivative of PsbI have revealed the presence in the thylakoid membrane of assembly complexes containing PsbI and either the precursor or mature forms of D1. Analysis of PSII assembly in the psbI deletion mutant and in strains lacking PsbI together with other PSII subunits showed that PsbI was not required for formation of PSII reaction center complexes or core complexes, although levels of unassembled D1 were reduced in its absence. However, loss of PsbI led to a dramatic destabilization of CP43 binding within monomeric and dimeric PSII core complexes. Despite the close structural relationship between D1 and PsbI in the PSII complex, PsbI turned over much slower than D1, whereas high light-induced turnover of D1 was accelerated in the absence of PsbI. Overall, our results suggest that PsbI is an early assembly partner for D1 and that it plays a functional role in stabilizing the binding of CP43 in the PSII holoenzyme.  相似文献   

17.
The determination of the structure of PSII at high resolution is required in order to fully understand its reaction mechanisms. Two-dimensional crystals of purified highly active Synechococcus elongatus PSII dimers were obtained by in vitro reconstitution. Images of these crystals were recorded by electron cryo-microscopy, and their analysis revealed they belong to the two-sided plane group p22(1)2(1), with unit cell parameters a = 121 A, b = 333 A, and alpha = 90 degrees. From these crystals, a projection map was calculated to a resolution of approximately 16 A. The reliability of this projection map is confirmed by its close agreement with the recently presented three-dimensional model of the same complex obtained by X-ray crystallography. Comparison of the projection map of the Synechococcus elongatus PSII complex with data obtained by electron crystallography of the spinach PSII core dimer reveals a similar organization of the main transmembrane subunits. However, some differences in density distribution between the cyanobacterial and higher plant PSII complexes exist, especially in the outer region of the complex between CP43 and cytochrome b(559) and adjacent to the B-helix of the D1 protein. These differences are discussed in terms of the number and organization of some of the PSII low molecular weight subunits.  相似文献   

18.
Cyanobacteria contain several genes coding for small one-helix proteins called SCPs or HLIPs with significant sequence similarity to chlorophyll a/b-binding proteins. To localize one of these proteins, ScpD, in the cells of the cyanobacterium Synechocystis sp. PCC 6803, we constructed several mutants in which ScpD was expressed as a His-tagged protein (ScpDHis). Using two-dimensional native-SDS electrophoresis of thylakoid membranes or isolated Photosystem II (PSII), we determined that after high-light treatment most of the ScpDHis protein in a cell is associated with PSII. The ScpDHis protein was present in both monomeric and dimeric PSII core complexes and also in the core subcomplex lacking CP43. However, the association with PSII was abolished in the mutant lacking the PSII subunit PsbH. In a PSII mutant lacking cytochrome b(559), which does not accumulate PSII, ScpDHis is associated with CP47. The interaction of ScpDHis with PsbH and CP47 was further confirmed by electron microscopy of PSII labeled with Ni-NTA Nanogold. Single particle image analysis identified the location of the labeled ScpDHis at the periphery of the PSII core complex in the vicinity of the PsbH and CP47. Because of the fact that ScpDHis did not form any large structures bound to PSII and because of its accumulation in PSII subcomplexes containing CP47 and PsbH we suggest that ScpD is involved in a process of PSII assembly/repair during the turnover of pigment-binding proteins, particularly CP47.  相似文献   

19.
The illumination of oxygen-evolving PSII core complexes at very low temperatures in spectral regions not expected to excite P680 leads to charge separation in a majority of centers. The fraction of centers photoconverted as a function of the number of absorbed photons per PSII core is determined by quantification of electrochromic shifts on Pheo(D1). These shifts arise from the formation of metastable plastoquinone anion (Q(A)(-)) configurations. Spectra of concentrated samples identify absorption in the 700-730 nm range. This is well beyond absorption attributable to CP47. Spectra in the 690-730 nm region can be described by the 'trap' CP47 absorption at 689 nm, with dipole strength of approximately 1 chlorophyll a (chl a), partially overlapping a broader feature near 705 nm with a dipole strength of approximately 0.15 chl a. This absorption strength in the 700-730 nm region falls by 40% in the photoconverted configuration. Quantum efficiencies of photoconversion following illumination in the 690-700 nm region are similar to those obtained with green illumination but fall significantly in the 700-730 nm range. Two possible assignments of the long-wavelength absorption are considered. Firstly, as a low intensity component of strongly exciton-coupled reaction center chlorin excitations and secondly as a nominally 'dark' charge-transfer excitation of the 'special pair' P(D1)-P(D2). The opportunities offered by these observations towards the understanding of the nature of P680 and PSII fluorescence are discussed.  相似文献   

20.
Cyanobacterium Anacystis nidulans R2, Synechocystis sp. PCC 6803 (wild-type strain and mutants Delta2 and Delta3 lacking PSII and PSI, respectively), and Synechocystis sp. BO 9201 synthesize the pigment--protein complex CP36 (CPIV-4, CP43') under iron deficiency in the medium. Accumulation of CP36 is accompanied by structural reorganizations in the photosynthetic membranes. Integrating mean times of excitation relaxation (quenching) are 2.2 nsec (CP36), 1 nsec (PSI), and 420 psec (PSII in Fm state). The energy migration between CP36 and the photosystems can be described by a model of a one-layer ring of CP36 around core-complexes. The excitation from CP36 to PSI is transferred within <10 psec. The energy transfer from CP36 to PSII occurs during 170 psec. Cells with low content of CP36 probably contain only a latent fraction of unbound to phycobilisomes PSII which is the analog of PSIIbeta of higher plants. In PSI there are four binding sites for CP36 monomers per RC. PSII can bind up to 32 molecules of CP36 per RC. Cells with a large amount of CP36 contain monomer form of PSII core-complex which can bind eight tetramers of CP36 (8 binding sites). In conditions of iron deficiency only one monomer of a dimer PSII core-complex is destroyed and released chlorophyll is accumulated in CP36. Accumulation of CP36 in A. nidulans cells can be accompanied by membrane stacking which is similar to the stacking in chlorophyll b-containing organisms. The stacking can occur in the region of localization of PSII latent fraction bound to CP36. The membrane stacking shields PSII stromal surfaces from the aqueous phase for activation of electron transfer on the acceptor side of PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号