首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Male Sprague Dawley rats were fed a butter-enriched diet (50% fat) for 2 weeks and then supplemented orally with either 90 mg of ethyl arachidonate or ethyl linoleate daily for 2 weeks. For comparative reasons, one group of animals was fed standard laboratory rat chow for 4 weeks. Aortic prostacyclin (PGI2) production, platelet aggregation and thromboxane A2 (TXA2) production and plasma and aortic phospholipid (PL) fatty acids were measured. When compared to butter-fed rats, aortic PGI2 production, collagen-induced platelet aggregation and TXA2 production were significantly increased in rats supplemented with ethyl arachidonate to levels similar to those seen in chow-fed rats. Ethyl linoleate supplementation also tended to increase aortic PGI2 production, collagen-induced platelet aggregation and TXA2, but not to the same extent. These changes were accompanied by increases in the level of arachidonic acid and linoleic acid in aortic and plasma PL and a decrease in the level of eicosapentaenoic acid (EPA) and docsahexaenoic acid (DHA). These data indicate that supplementation with small doses of preformed arachidonic acid was more effective than supplementation with its precursor, linoleic acid, in reversing the effects on prostanoid production and phospholipid fatty acid composition in rats fed diets enriched with butter.  相似文献   

2.
The effects of dietary iols on gastric, duodenal mucosa and liver were investigated ina rat model. Unsaturated fatty acid profles and in vitro prostaglandin (PG) synthesis (PGE2, PGF, 6-oxo-PGF and thromboxane B2). were measured after 14 days of dietary oil supplements.There were no significant differences in prostanoid synthesis between rats fed coconut oil (high saturated fat content) and standard diet. After fish oil supplement, tissue eicosapentaenoic acid and docosahexaenoic acid levels were higher, arachidonic acid levels were lower, and prostanoid synthesis was reduced in both stomach and duodenum. After corn oil and evening primrose oil, linoleic acid levels were variaby increased, bt there were no significant differences in arachidonic acid or prostanoid synthesis. Dihomogamma-linolenic acid levels were slightly increased after evening primrose oil.Dietary incorporation of fatty acids into gastroduodenal tissue is not uniform. When incorporated, fatty acids can modify prostaglandin synthesis.  相似文献   

3.
Spray-dried milk enriched with n-3 fatty acids from linseed oil (LSO) or fish oil (FO) were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant enzyme activities, serum prostaglandins and platelet aggregation. Significant level of α linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats fed n-3 fatty acid enriched formulation. The linseed oil and fish oil enriched formulation fed group had 44 and 112% higher level of lipid peroxides in liver homogenate compared to control rats fed groundnut oil enriched formulation. Catalase activity in liver homogenate was increased by 37 and 183% respectively in linseed oil and fish oil formulation fed rats. The glutathione peroxidase activity decreased to an extent of 25–36% and glutathione transferase activity increased to an extent of 34–39% in rats fed n-3 fatty acids enriched formulation. Feeding n-3 fatty acid enriched formulation significantly elevated the n-3 fatty acids in platelets and increased the lipid peroxide level to an extent of 4.2 to 4.5-fold compared to control. The serum thromboxane B2 level was decreased by 35 and 42% respectively in linseed oil and fish oil enriched formulation fed rats, whereas 6-keto-prostaglandin F1α level was decreased by 17 and 23% respectively in linseed oil and fish oil enriched formulation fed rats. The extent and rate of platelet aggregation was decreased significantly in n-3 fatty acids enriched formulation fed rats. This indicated that n-3 fatty acids enriched formulation beneficially reduces platelet aggregation and also enhances the activities of hepatic antioxidant enzymes such as catalase and glutathione transferase.  相似文献   

4.

Background

Patients with phenylketonuria (PKU) have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA). Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here.

Methodology/Principal Findings

12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6–C18) in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS). Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re-) absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6) a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B2 and thromboxane B3 release did not differ from that of healthy controls.

Conclusion/Significance

Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta-oxidation. No functional influence on unsaturated fatty acid metabolism and platelet aggregation in patients with PKU was detected.  相似文献   

5.
Dietary lipids containing different proportions of long-chain polyunsaturated fatty acids can affect platelet thromboxane A(2) formation and aggregation. In the present work, the effects of dietary lipid, from animal and vegetable sources, on collagen- and adenosine diphosphate (ADP)-induced thromboxane A(2) (measured as thromboxane B(2)) production and aggregation in washed rat platelets were studied. In addition, plasma thromboxane B(2) levels in rats fed different dietary lipids were measured. Animals were fed 10% fat by weight as lard (LRD), corn oil, soy bean oil, canola oil (CAN), or cod liver oil (CLO) for a period of 7 weeks. Circulating thromboxane B(2) levels detected in platelet-poor plasma of the CLO-fed animals were significantly lower than those of rats fed all other dietary lipids. The platelets of CLO-fed animals synthesized significantly less thromboxane A(2) compared with those from other dietary groups following ex vivo stimulation of platelets with agonists such as collagen and ADP, with the exception of platelets from the LRD-fed animals. Ex vivo stimulation of platelets obtained from this group with collagen resulted in the synthesis of significantly greater levels of thromboxane A(2) compared with all other groups. However, aggregation responses to collagen and ADP were not significantly affected by dietary treatment, although relatively the lowest responses to these agonists were apparent in the CLO-fed and CAN-fed groups, respectively.  相似文献   

6.
We have studied the effects of semisynthetic diets containing 5% by weight (12% of the energy) of either olive oil (70% oleic acid, OA) or corn oil (58% linoleic acid), or fish oil (Max EPA, containing about 30% eicosapentaenoic, EPA C 20:5 n-3, plus docosahexaenoic, DHA C 22:6 n-3, acids, and less than 2% linoleic acid), fed to male rabbits for a period of five weeks, on plasma and platelet fatty acids and platelet thromboxane formation. Aim of the study was to quantitate the absolute changes of n-6 and n-3 fatty acid levels in plasma and platelet lipid pools after dietary manipulations and to correlate the effects on eicosanoid-precursor fatty acids with those on platelet thromboxane formation. The major differences were found when comparing the group fed fish oil and depleted linoleic acid vs the other groups. The accumulation of n-3 fatty acids in various lipid classes was associated with modifications in the distribution of linoleic acid and arachidonic acid in different lipid pools. In platelets maximal incorporation of n-3 fatty acids occurred in phosphatidyl ethanolamine, which also participated in most of the total arachidonic acid reduction occurring in platelets, and linoleic acid, more than archidonic acid, was replaced by n-3 fatty acids in various phospholipids. The archidonic acid content of phosphatidyl choline was unaffected and that of phosphatidyl inositol only marginally reduced. Thromboxane formation by thrombin stimulated platelets did not differ among the three groups, and this may be related to the minimal changes of arachidonic acid in phosphatidyl choline and phosphatidyl inositol.  相似文献   

7.
Spray-dried milk enriched with n-3 fatty acids from linseed oil or fish oil were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant enzyme activities, serum prostaglandins and platelet aggregation. Significant level of α linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats fed n-3 fatty acid enriched formulation. The linseed oil and fish oil enriched formulation fed group had 44 and 112% higher level of lipid peroxides in liver homogenate compared to control rats fed groundnut oil enriched formulation. Catalase activity in liver homogenate was increased by 37 and 183% respectively in linseed oil and fish oil formulation fed rats. The glutathione peroxidase activity decreased to an extent of 25–36% and glutathione transferase activity increased to an extent of 34–39% in rats fed n-3 fatty acids enriched formulation. Feeding n-3 fatty acid enriched formulation significantly elevated the n-3 fatty acids in platelets and increased the lipid peroxide level to an extent of 4.2–4.5 fold compared to control. The serum thromboxane B2 level was decreased by 35 and 42% respectively in linseed oil and fish oil enriched formulation fed rats, whereas, 6-keto- prostaglandin F1α level was decreased by 17 and 23% respectively in linseed oil and fish oil enriched formulation fed rats. The extent and rate of platelet aggregation was decreased significantly in n-3 fatty acids enriched formulation fed rats. This indicated that n-3 fatty acids enriched formulation beneficially reduces platelet aggregation and also enhances the activities of hepatic antioxidant enzymes such as catalase and glutathione transferase. (Mol Cell Biochem xxx: 9–16, 2005)  相似文献   

8.
Dexamethasone at a dose of 6 mg?kg?1 given to rabbits for three days prior to challenge with sodium arachidonate (2 mg?kg?1) intravenously, improved survival from 0% to 90% (p<0.01). Dexamethasone, given for shorter periods prior to arachidonate injection resulted in survival rates from 17% to 40%. In dexamethasone (3 days) treated rabbits, plasma thromboxane B2 concentrations were only increased by 30% compared with increases of 950% in untreated rabbits (p<0.001). Dexamethasone treated rabbits did not exhibit pulmonary thrombosis as did untreated rabbits given arachidonate. However, platelet rich plasma from both control and treated rabbits was aggregated by 0.2 mM arachidonate in vitro. The mechanism of the protective effect of dexamethasone appears to be related to induction of enzymes or stimulation of clearance of injected arachidonic acid, since steroid treated rabbits cleared labeled arachidonic acid more rapidly than untreated rabbits.  相似文献   

9.
Two selective thromboxane A2 synthetase inhibitors, imidazole and 9,11-azoprosta-5,13-dienoic acid (azo analog I) were compared to determine their effects on the quantitative formation of thromboxane B2 and prostaglandin E2 accompanying human platelet aggregation. Azo analog I was at least 200 times more potent, on a molar basis, than imidazole in suppressing thromboxane B2 formation in either platelet-rich plasma or washed platelet suspensions aggregated with arachidonic acid or prostaglandin H2. The inhibitors differed in their effect on the aggregation response itself. Azo analog I selectively suppressed thromboxane A2 formation with an accompanying, parallel, suppression of the platelet aggregation.Imidazole selectively suppressed thromboxane A2 formation, but only suppressed the accompanying aggregation in platelet rich plasma, and not washed platelet suspensions. The results indicate that azo analog I functions by competitive inhibition of prostaglandin H2 on the thromboxane synthetase, and that imidazole, while it suppresses thromboxane A2 formation, may have an associated agonist activity that enhances platelet aggregation. The data presented support this hypothesis, and they emphasize the importance of thromboxane A2 in arachidonate mediated platelet aggregation.  相似文献   

10.
The regulation of hepatic and intestinal 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and acyl-CoA; cholesterol acyltransferase (ACAT) activities by dietary fish oil was examined in the rabbit. Rabbits were fed 10% menhaden oil or menhaden oil plus 1% cholesterol for 14 days. They were compared with animals fed a control diet or one enriched with long-chain saturated fats consisting of 10% cocoa butter oil or cocoa butter oil plus 1% cholesterol. Plasma cholesterol was increased in rabbits fed the fish oil and the two cholesterol-containing diets. In the liver, ACAT activity was increased and HMG-CoA reductase activity was decreased in rabbits ingesting the fish oil. The same was true for animals ingesting both cholesterol-containing diets. In the intestine, ACAT activity was not affected by the ingestion of the fish oil compared to control rabbits; however, it was significantly higher in animals fed the fish oil compared to animals ingesting the cocoa butter. HMG-CoA reductase activity was decreased in the distal two-thirds of the intestine in animals fed the menhaden oil compared to activities observed in controls. In animals ingesting the cholesterol diets, intestinal reductase was significantly decreased, whereas intestinal ACAT activity was increased in rabbits ingesting the cocoa butter and cholesterol diet when compared to their controls. Lipid analysis of hepatic and intestinal microsomes demonstrated an enrichment of n-3 polyunsaturated fatty acids in membranes from rabbits ingesting the menhaden oil.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Young male rats of the Long-Evans strain were fed 10% lard or corn oil diets for 4 weeks. Analysis of plasma cholesterol showed a decrease of 22%; a decrease of the same order of magnitude as also observed in the lipoproteins, particularly in the VLDL fraction, with the unsaturated diet. Plasma triglycerides were reduced by 50%; their fatty acids were found to contain a higher proportion of linoleate and arachidonate. Cholesterol ester of the HDL fraction contained mostly arachidonate which increased significantly with the substitution of corn oil to lard. Analysis of the lipoproteins indicated a reduction in VLDL and an increase in HDL with the unsaturated diet, whereas LDL remained unchanged.  相似文献   

12.
Diets that are enriched with fish oil have been shown to alter arachidonic acid metabolism via the cyclooxygenase pathway. Recently it has been shown that one of the major component fatty acids of fish oil, eicosapentaenoate (EPA), is a substrate for the leukotriene B (LTB) pathway when added exogenously to human neutrophils . We fed a diet that contained 8–10 gm/day of EPA to four human subjects for three weeks and compared the arachidonate metabolism of their neutrophils to the same functions while the subjects were on their usual diet. The fish oil-supplementation increased neutrophil EPA content from undetectable levels to 7.4 ± 2.4% (p<0.01, expressed as % of total fatty acid), and decreased arachidonate from 15.4 ± 2.3% to 12.8 ± 2.3% (p<0.05). Leukotriene B5 was identified as a metabolite during the fish oil-diet by its chromatographic profile and mass spectrum. During the experimental diet LTB4 decreased from 160 ± 37 ng/107 neutrophils to 120 ± 12 (p<0.05), and LTB5 increased from 0 to 39 ± 9 ng/107 neutrophils (p<0.005). The diet had no effect on neutrophil aggregation or adherence to nylon fibers.  相似文献   

13.
Addition of the one-, two- or three- series endoperoxide to human platelet-rich plasma tend to supress aggregation, through the action of their respective non-enzymatic breakdown products PGE1, PGD2, or PGD3 all of which elevate cyclic AMP levels. On the other hand, these stable primary products do not arise in appreciable amounts from intrinsic endoperoxides generated from either endogenous or exogenous free fatty acids. 5,8,11,14,17-Eicosapentaenoic acid (EPA) suppresses arachidonic acid (5,8,11,14-eicosatetraenoic acid) conversion by cycloogygenase (as well as lipoxygenase) to aggregatory metabolites in platelets. Exogenously added EPA was capable of inhibiting PRP aggregation induced either by exogenous or endogenous (released by ADP or collagen) arachidonate. The hypothetical combination of an EPA-rich diet and a thromboxane synthetase inhibitor might abolish production of the pro-aggregatory species, thromboxane A2, and enhance formation of the anti-aggregatory metabolite, prostacyclin.Whereas EPA is not detectably metabolized by platelets, dihomo-γ-linolenic acid (8,11,14,-eicosatrienoic acid) is primariley converted by cyclooxygenase and thromboxane synthetase into the inactive metabolite, 12-hydroxyheptadecadienoic (HHD) acid. Pretreatment of human platelet suspensions with the thromboxane synthetase inhibitor imidazole unmasks the aggregatory property of PGH1 and DLL which was partially compromised by the PGE1 formed. The combination of the thromboxane synthetase inhibitor and an adenylate cyclase inhibitor unmasks a complete irreversible aggregation by DLL or PGH1. The basis of a dietary strategy that replaces AA with DLL must rely on the production by the platelet of an inactive metabolite (HHD) rather than thromboxane A2.  相似文献   

14.
Clausine-D inhibited concentration-dependently the aggregation and release of washed rabbit platelets induced by arachidonic acid and collagen, without affecting those induced by U46619, PAF and thrombin. The IC50 values of clausine-D on arachidonic acid-and collagen-induced platelet aggregation were calculated to be 9.0±1.1 and 58.9±0.9 μM, respectively. Thromboxane B2 and prostaglandin D2 formation in platelets caused by arachidonic acid were also suppressed. Clausine-D inhibited increased intracellular concentration of calcium in platelets caused by arachidonic acid and collagen, and also abolished the generation of inositol monophosphate caused by arachidonic acid, but not that by collagen U46619, PAF and thrombin. In human citrated platelet-rich plasma, clausine-D inhibited the secondary phase, but not the primary phase, of aggregation induced by epinephrine and ADP. These results indicate that the antiplatelet effect of clausine-D is due to inhibition of the formation of thromboxane A2.  相似文献   

15.
cis- and trans-unsaturated fatty acids with 18 carbon atoms (oleic, linoleic, elaidic and linolelaidic acid) inhibited aggregation of washed rabbit platelets stimulated with collagen, arachidonic acid and U46619 when in the same concentration ranges. Thrombin-induced aggregation was not affected by any of them. Saturated fatty acid (stearic acid) had no effect on this response. The inhibition is independent of the induced change in membrane fluidity, since trans-isomers could not induce the change in fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. Unsaturated fatty acids, except linoleic acid, did not interfere with the formation of thromboxane B2 from exogenously added arachidonic acid. All the unsaturated fatty acids only slightly inhibited the arachidonic acid liberation by phospholipase A2 in platelet lysate. This indicates that the unsaturated fatty acids may block a process after formation of thromboxane A2 in response to collagen and arachidonic acid. The increase in phosphatidic acid formation stimulated with U46619 was inhibited dose dependently by each of the unsaturated fatty acids but that stimulated with thrombin was not affected by any of them. Phospholipase C activity measured by diacylglycerol formation in unstimulated platelet lysate was not inhibited by the fatty acids. The elevation of cytosolic free Ca2+ induced by arachidonic acid or U46619 and Ca2+ influx by collagen were inhibited almost completely at the same concentration as that which inhibited their aggregation. These data suggest that the unsaturated fatty acids were intercalated into the membrane and inhibited collagen- and arachidonic acid-induced platelet aggregation by causing a significant suppression of the thromboxane A2-mediated increase in cytosolic free Ca2+, probably due to interference with the receptor-operated Ca2+ channel.  相似文献   

16.
When rats were fed a corn oil versus a corn oil-fish oil diet the overall phospholipid content and composition as well as the subclass distribution of the choline- and ethanolamine-containing glycerophospholipids from neutrophils were not altered. The serine-containing glycerophospholipids were characterized by high levels of stearic and oleic acids. When fish oil was added to the diet it replaced some of the arachidonate in both the inositol- and the serine-containing glycerophospholipids. In the corn oil-fed animals, 25.2 and 33.6 mole %, respectively, of the molecular species of 1,2-diacyl- and 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine contained arachidonate. The values for 1,2-diacyl and 1-O-alk-1'-enyl-2-acyl-sn-glycero-3-phosphoethanolamine were, respectively, 41 and 55.8 mole %. When half of the 5% corn oil in the diet was replaced by fish oil, there was a 53, 38, 27, and 25% reduction, respectively, in the level of arachidonate in these four lipid subclasses. The amount of 5,8,11,14,17-eicosapentaenoic acid incorporated into these four subclasses was always less than the decline in arachidonic acid. This was due, in part, to the acylation of small amounts of 22-carbon (n-3) acids into these lipids. Molecular species analysis demonstrated that 5,8,11,14,17-eicosapentaenoic acid paired with the same components at the sn-1 position, and in the same ratio, as did arachidonic acid. The amounts of 16- and 18-carbon saturated and unsaturated fatty acid at the sn-2 position were not altered by dietary change. Collectively, these findings suggest that 5,8,11,14,17-eicosapentaenoic and arachidonic acids are metabolized in a similar way by neutrophils. These studies also support the concept that neutrophils contain two metabolic pools of phospholipids. One pool is altered by dietary fat change while the pool containing 16- and 18-carbon acids is resistant to change when fish oil is included in the diet.  相似文献   

17.
Sex differences in eicosanoid production in platelets and vessel walls have been studied in control and n-6 fatty acid supplemented rats. In platelet rich plasma (PRP) of control female rats, arachidonic acid (AA) levels in phospholipids (PL), thromboxane B2 (TxB2) formation following collagen stimulation and aggregatory responses to collagen were higher than in PRP of male rats. 6 keto PGF release from PRP-perfused isolated aortas were the same for both sexes, but the antiaggregatory activity of the wall was higher in males than in females, in association with a greater sensitivity of male platelets to prostacyclin.The administration of n-6 fatty acid supplements increased AA level in PL, TxB2 production and aggregation only in male platelets. Production of 6 keto PGF and the antiaggregatory activity of aortic walls were reduced after dietary treatment in males, but biochemical and functional parameters were not correlated in females.The results indicate complex sex-related differences in fatty acid metabolism and eicosanoid production, and in responses to n-6 dietary fatty acids in platelets and the vascular system in the rat.  相似文献   

18.
Platelet rich plasma transforms exogenous prostaglandin endoperoxide H2 into thromboxane A2 immediately prior to the initiation of irreversible aggregation. Selective thromboxane synthetase inhibitors block thromboxane A2 formation and aggregation. Thromboxane A2 formation appears to be essential during arachidonate mediated aggregation. The results presented reconcile the previously accepted paradoxical behavior of thromboxane synthetase in platelet rich plasma toward the prostaglandin endoperoxide H2 substrate.  相似文献   

19.
In the present study, we changed the fatty acid profile in blood and platelet membranes by dietary manipulation, and examined the effect on platelet aggregation in rats. Fifty-five rats were divided into five groups and fed for 56 days with 1% cholesterol and different types of fatty acid-rich diets: basal, lard, lard + fish oil, soybean oil, and soybean oil + fish oil. a decrease in serum arachidonic acid (20:4, omega-6, AA) and an increase in serum eicosapentaenoic acid (20:5, omega-3, EPA) were found in all experimental dietary groups fed with refined fish oil. Similar changes in the polyunsaturated fatty acids were also found in the platelet membrane phospholipids. Platelet aggregation, quantitated by the slope and height of the aggregation curve induced by different concentrations of ADP in a platelet aggregometer, was inhibited in all groups fed with refined fish oil. This inhibition of platelet aggregation may be related to an increase in the ratio of EPA and AA in the platelet membrane phospholipids after dietary manipulation. The differences in the platelet aggregation and thromboxane B2 (TXB2) concentration between the lard and the lard + fish oil groups were more profound than that between the soybean oil and the soybean oil + fish oil group. However, the malondialdehyde (MDA) concentration revealed no significant differences between the five groups.  相似文献   

20.
The hypocholesterolemic efficacy of various polyunsaturated fatty acids was compared in rats given cholesterol-enriched diets with (0.004%) or without indomethacin, the cyclooxygenase inhibitor. Evening primrose oil (EPO, linoleic+ γ-linolenic), safflower oil (SFO, linoleic) or soybean oil (SBO, linoleic + α-linolenic) were added to diets at the 10% level. The serum cholesterol level of the EPO group was consistently lower than the other groups and after 3 weeks, it was significantly different from the SFO group without indomethacin and the SBO group with indomethacin. In rats fed EPO, the aorta tended to produce more prostacyclin whereas the concentration of plasma thromboxane B2 was much lower than in rats fed SFO or SBO. The effects of indomethacin on these eicosanoids were less evident in rats fed EPO. Thus, in addition to the hypocholesterolemic action of β-linolenic acid (GLA) in preference to linoleic and possibly α-linolenic acid, GLA appears to cultivate an environment suitable for the prevention of carbiovascular disease even in the presence of excess cholesterol in the diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号