首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 661 毫秒
1.
叶辉  王军邦  黄玫  齐述华 《植物生态学报》2012,36(12):1237-1247
植被降水利用效率(precipitation use efficiency, PUE)是反映生态系统水、碳循环相互关系的重要指标。该文利用GLOPEM-CEVSA模型模拟了青藏高原2000-2008年植被净初级生产力(net primary production, NPP), 以97个野外草地样点实测地上净初级生产力(above-ground net primary productivity, ANPP)对模拟NPP进行验证, 模拟NPPANPP线性显著相关(R 2 = 0.49, p < 0.001)。利用降水量空间插值数据, 分析了近9年青藏高原植被PUE的空间分布、主要植被类型的PUE及其与降水量之间的变化关系。结果表明: 2000-2008年青藏高原地区植被年平均PUE沿东南向西北递减, 降水量和气温对植被PUE有着重要的影响; PUE在不同植被类型间差异较大, 其中农田PUE最高, 高寒草甸PUE高于高寒草原。在不同降水区域植被PUE与降水量的关系不同, 降水量低于90 mm的区域, 植被PUE值最低((0.026 ± 0.190) g C·m -2·mm -1, 平均值±标准偏差)、波动最大(变异系数CV = 721%), 与降水量和气温不相关(p = 0.38)。降水量为90-300 mm的地区, 植被PUE较低((0.029 ± 0.074) g C·m -2·mm -1, 平均值±标准偏差)、波动较大(CV = 252%), 与降水量和气温显著相关(p < 0.001), 降水量和气温能够解释PUE空间变化的43.4%, 其中降水量的影响是气温的1.7倍。降水量为300-650 mm的区域占整个研究区的45%, 主要植被类型为高寒草原, 植被PUE较高((0.123 ± 0.191) g C·m -2·mm -1, 平均值±标准偏差), CV为155%; 植被PUE的空间变化与降水量和气温极显著相关(p < 0.001), 降水量和气温能够解释植被PUE空间变化的97.8%, 但以气温影响为主导, 其影响是降水量的1.5倍。降水量为650 mm的区域, 植被PUE达到最高(0.26 g C·m -2·mm -1)。降水量为650-845 mm的区域主要是西藏林芝地区, 植被以常绿针叶林为主, PUE最高((0.210 ± 0.246) g C·m -2·mm -1, 平均值±标准偏差)、波动最小(CV = 117%); 降水量和气温可解释植被PUE空间变化的93.1% (p < 0.001), 降水量的影响是气温的3.5倍, 但其影响为负。  相似文献   

2.
在区域尺度上(25.14°-40.25° N, 99.87°-122.07° E), 采集20个栓皮栎(Quercus variabilis)种群的种子样品, 测定种宽、种长, 并计算宽长比形态指标, 探讨了区域尺度上种子形态变异特点及其与环境因子的关系。结果表明, 栓皮栎种子的宽度和长度变化幅度分别为1.21-2.18 cm和1.20-2.96 cm; 宽长比的变化幅度为0.57-1.10。栓皮栎的种宽与种长呈显著的正相关关系。单因素方差分析表明, 种宽、种长和宽长比在种群间差异显著(p < 0.001)。种长与等效纬度呈负线性(R2 = 0.18; p = 0.05), 与经度呈凸型的变异关系(R2 = 0.43; p = 0.009)。种宽和种长与最热月平均气温呈极显著正相关(R2 = 0.35; p = 0.006; R2 = 0.30; p = 0.012), 而与最湿季降水量呈显著负相关(R2 = 0.28, p = 0.019; R2 = 0.24, p = 0.017)。种子宽长比没有明显的变化趋势, 大致趋于恒定(0.88 ± 0.08)。  相似文献   

3.
随着全球变化对生物多样性的影响不断加剧, 生物多样性与生态系统功能之间相互关系(BEF)的研究显得极为重要。过去的20多年, BEF的研究大多集中在对物种多样性与单一或少数生态系统功能之间关系的探讨, 但生态系统最为重要的价值是同时维持多种服务和功能的能力, 基于此, 该文首次在国内引入近年来不断完善的生态系统多功能性(multifunctionality)的概念, 并对目前主流的评价方法进行了改进, 从而对内蒙古三种利用方式(刈割、围封、放牧)下的草地群落进行了多功能性评价, 并探讨了多功能性与物种多样性之间的关系。结果显示本研究改进的方法和目前主流方法评价得出的多功能性指数在样方和样地尺度上都有很高的相关性(R2 = 0.6956, p < 0.0001; R2 = 0.9231, p < 0.0001), 表明该文作者改进后的方法是可靠的。重度放牧的草地群落物种多样性水平最低, 绝大多数土壤功能指标较差, 表现出退化特征; 7年的围封和刈割群落均有较高的物种多样性水平和改善的土壤功能指标; 三者的多功能性指数为刈割(0.2178) >围封(0.0704) >放牧(-0.8031)。植被样方主要沿水肥梯度分布; 多样性指数中, 均匀度指数(Pielou index)和丰富度指数(Margelf index)对多功能性的影响作用最大, 均为样方尺度(R2 = 0.1871, p < 0.0001; R2 = 0.1601, p < 0.0001)小于样地尺度(R2 = 0.5921, p = 0.0093; R2 = 0.7499, p = 0.0007), 有尺度依赖性; 多功能性在样方和样地尺度上均与物种均匀度呈线性正相关关系, 而与物种丰富度呈单峰曲线关系。该文研究结果表明, 相对于重度放牧和围封, 刈割更有利于维持该地区生态系统的多功能性; 物种丰富度适中且物种分布均匀的生态系统可能有更好的多功能性。  相似文献   

4.
改变凋落物输入对杉木人工林土壤呼吸的短期影响   总被引:9,自引:0,他引:9       下载免费PDF全文
从2007年1月至12月, 在长沙天际岭国家森林公园, 通过改变杉木林凋落物输入, 研究杉木(Cunninghamia lanceolata)人工林群落去除凋落物、加倍凋落物土壤呼吸速率及5 cm土壤温、湿度的季节变化。结果表明: 去除和加倍凋落物对土壤温度和湿度产生的差异不显著(p>0.05), 对土壤呼吸全年产生的差异接近显著(Marginal significant)(p=0.058)。按植物生长期分别分析, 去除和加倍凋落物对土壤呼吸产生的差异, 在生长旺盛期差异显著(p=0.003), 在生长非旺盛期差异性不显著(p=0.098)。去除凋落物年均土壤呼吸速率为159.2 mg CO2·m-2·h-1, 比对照处理土壤呼吸速率(180.9 mg CO2·m-2·h-1)低15.0%, 加倍凋落物的土壤呼吸为216.8 mg CO2·m-2·h-1, 比对照处理高17.0%。去除和加倍凋落物土壤呼吸季节动态趋势与5 cm深度土壤温度相似, 它们之间呈显著指数相关, 模拟方程分别为: y=27.33e0.087 2t(R2=0.853, p<0.001), y=37.25e0.088 8t(R2=0.896, p<0.001)。去除和加倍凋落物的Q10值分别为2.39和2.43, 均比对照2.26大。去除和加倍凋落物土壤呼吸与土壤湿度之间关系不显著(p>0.05)。这一结果使我们能够在较短时间内观察到改变凋落物输入对土壤呼吸的影响, 证明凋落物是影响土壤CO2通量的重要因子之一。  相似文献   

5.
水分利用效率(WUE)是深入理解生态系统水碳循环及其耦合关系的重要指标。为了揭示气候变化背景下区域尺度不同植被类型的响应和适应特征, 对中国西南高山亚高山地区2000-2014年的9种植被类型的WUE时空特征及其影响因素进行探究。该研究基于MODIS总初级生产力(GPP)、蒸散发(ET)数据和气象数据, 估算西南高山亚高山区植被WUE, 采用趋势分析及相关分析等方法, 分析了研究区植被WUE与气温、降水及海拔的关系。主要结果: (1)西南高山亚高山区2000-2014年植被WUE多年均值为0.95 g·m-2·mm-1, 整体呈显著增加趋势, 增速为0.011 g·m-2·mm-1·a-1; 空间上WUE呈东南高西北低的分布, 85.84%区域的WUE呈增加趋势。(2)西南高山亚高山区各植被类型WUE多年均值表现为常绿针叶林>稀树草原>常绿阔叶林>有林草原>农田>落叶阔叶林>混交林>郁闭灌丛>草地; 时间上, 各植被类型WUE均呈上升趋势。(3)西南高山亚高山区89.56%区域的WUE与气温正相关, 92.54%区域的WUE与降水量负相关; 各植被类型中, 草地WUE与气温的相关性最高, 有林草原WUE与降水量的相关性最高。(4)西南高山亚高山区典型的地带性顶极植被常绿针叶林的WUE具有较强的海拔适应性及应对气候变化的能力。  相似文献   

6.
《植物生态学报》1958,44(6):628
水分利用效率(WUE)是深入理解生态系统水碳循环及其耦合关系的重要指标。为了揭示气候变化背景下区域尺度不同植被类型的响应和适应特征, 对中国西南高山亚高山地区2000-2014年的9种植被类型的WUE时空特征及其影响因素进行探究。该研究基于MODIS总初级生产力(GPP)、蒸散发(ET)数据和气象数据, 估算西南高山亚高山区植被WUE, 采用趋势分析及相关分析等方法, 分析了研究区植被WUE与气温、降水及海拔的关系。主要结果: (1)西南高山亚高山区2000-2014年植被WUE多年均值为0.95 g·m-2·mm-1, 整体呈显著增加趋势, 增速为0.011 g·m-2·mm-1·a-1; 空间上WUE呈东南高西北低的分布, 85.84%区域的WUE呈增加趋势。(2)西南高山亚高山区各植被类型WUE多年均值表现为常绿针叶林>稀树草原>常绿阔叶林>有林草原>农田>落叶阔叶林>混交林>郁闭灌丛>草地; 时间上, 各植被类型WUE均呈上升趋势。(3)西南高山亚高山区89.56%区域的WUE与气温正相关, 92.54%区域的WUE与降水量负相关; 各植被类型中, 草地WUE与气温的相关性最高, 有林草原WUE与降水量的相关性最高。(4)西南高山亚高山区典型的地带性顶极植被常绿针叶林的WUE具有较强的海拔适应性及应对气候变化的能力。  相似文献   

7.
青藏高原草地植被覆盖变化及其与气候因子的关系   总被引:74,自引:0,他引:74       下载免费PDF全文
为揭示气候变化对青藏高原草地生态系统的影响及其生态适应机制,利用1982~1999年间的NOAA/AVHRR NDVI数据和对应的气候资料,研究了近20年来青藏高原草地植被覆盖变化及其与气候因子的关系。结果表明,18年来研究区生长季NDVI显著增加(p=0.015),其增加率和增加量分别为0.41% a-1和0.001 0 a-1。生长季提前和生长季生长加速是青藏高原草地植被生长季NDVI增加的主要原因。春季为NDVI增加率和增加量最大的季节,其增加率和增加量分别为0.92% a-1和0.001 4 a-1;夏季NDVI的增加对生长季NDVI增加的贡献相对较小,其增加率和增加量分别为0.37% a-1和0.001 0 a-1。3种草地(高寒草甸、高寒草原、温性草原)春季NDVI均显著增加(p<0.01;p=0.001; p=0.002); 高寒草甸夏季NDVI显著增加(p=0.027),而高寒草原和温性草原夏季NDVI呈增加趋势,但都不显著(p=0.106; p=0.087);3种草地秋季NDVI则没有明显的变化趋势(p=0.585; p=0.461; p=0.143)。3种草地春季NDVI的增加是由春季温度上升所致。高寒草地(高寒草甸和高寒草原)夏季NDVI的增加是夏季温度和春季降水共同作用的结果。温性草原夏季NDVI变化与气候因子并没有表现出显著的相关关系。高寒草地植被生长对气候变化的响应存在滞后效应。  相似文献   

8.
为揭示海南热带雨林国家公园大型真菌多样性及不同植被类型对真菌群落的影响, 本研究于2020年和2021年湿季对海南热带雨林国家公园内7个管理局辖区开展了大型真菌多样性调查, 比较了不同植被类型(山地雨林、低地雨林、低地雨林次生林、人工林)的大型真菌生活型(共生型、腐生型)组成差异。从设置的58条1 km长的样带内采集到1,869份子实体标本, 根据子实体形态与ITS rDNA序列分析, 从中鉴定出562种真菌, 涉及17目64科174属, 其中80%以上的物种由伞菌目、牛肝菌目、红菇目、多孔菌目、鸡油菌目、锈革孔菌目和炭角菌目构成。大型真菌的营养型以腐生型(占48.2%物种)和共生型(44.8%)为主。每条样带的平均物种丰富度和多度以中海拔的山地雨林最高, 分别为28 ± 5种和33 ± 6个, 而人工林最低, 分别为11 ± 1种和11 ± 2个。植被类型主要影响共生型大型真菌物种丰富度(P = 0.026)和子实体多度(P = 0.019)及Shannon-Wiener多样性(P = 0.028), 但对腐生型大型真菌的影响并不显著。多响应置换过程(multiple response permutation procedure, MRPP)检验结果表明, 不同植被类型对共生型与腐生型大型真菌群落物种组成均有显著影响(腐生型: P = 0.004, 共生型: P = 0.041)。冗余分析(redundancy analysis, RDA)的结果表明, 植被类型对腐生型和共生型真菌群落物种组成差异的解释度均较低(共生型: R2 = 0.068, P = 0.004; 腐生型: R2 = 0.067, P = 0.004)。海拔仅对腐生型真菌群落物种组成产生微弱影响(R2 = 0.029, P = 0.001), 而对共生型真菌影响不显著(R2 = 0.024, P = 0.072)。在不同保护地之间, 共生型(R2 = 0.148, P = 0.001)与腐生型(R2 = 0.123, P = 0.002)真菌物种组成均具显著差异; 基于样带‒真菌矩阵的网络图显示, 海南热带雨林国家公园内尖峰岭、霸王岭、五指山等国家级自然保护区的山地雨林是共生型大型真菌多样性较高区域, 应作为共生型真菌与宿主的优先保护区域。  相似文献   

9.
植被净初级生产力(NPP)是草原湿地生态系统碳收支平衡和气候变化的核心内容之一。本研究基于植被指数、气象数据(降水和气温)、植被类型数据,利用CASA模型对若尔盖草原湿地1999—2015年NPP进行估算,分析了若尔盖草原湿地NPP时空格局特征及其与气候因子的关系。结果表明: NPP实测值与模拟值之间显著相关,R2为0.78,均方根误差为120.3 g C·m-2·a-1;研究区年均和生长季(4—9月)NPP分别为329.0、229.4 g C·m-2·a-1,年际间波动明显,以2.3、1.6 g C·m-2·a-1的微弱趋势下降,不同植被类型的年均及生长季NPP的年际波动与整个研究区的波动趋势基本一致;年均和生长季NPP的变化斜率分别为-21.3~18.7、-31.5~23.1 g C·m-2·a-1,显著增加的面积分别占研究区总面积的0.3%和0.7%,主要分布于森林覆盖区和湿地生态补偿区;显著下降的面积分别占研究区总面积的1.4%和6.4%,主要分布于人类活动集中的地区;研究区不同植被的固碳能力存在差异,其中,森林最强,草地次之,湿地最弱;降水是影响草原湿地植被NPP的主导气候因子。  相似文献   

10.
介绍了农田FACE(free-air CO2 enrichment)试验中的NO和NO2地气交换观测方法,即静态暗箱采样—NO和NO2化学发光分析法,并对观测结果进行了分析讨论.此观测方法简单、易于操作,并可获得可靠的NO和NO2净交换通量观测结果.在稻麦轮作农田的旱地阶段,无论FACE还是对照处理,NO主要表现为地面净排放,NO2主要表现为地面净吸收.逐日的NO净排放不依赖于土壤温度,但却与土壤含水量呈线性负相关(R2=0.82,P<0.001).NO2净吸收具有明显的季节变化特征,逐日的净吸收通量随土壤温度和土壤含水量的变化可分别用抛物线方程拟合(温度:R2=0.74,P<0.001;含水量:R2=0.69,P<0.001).大气CO2浓度升高200±40μmol·mol-1使NO净排放减弱19%(t检验P=0.096),NO2净吸收减弱10%(t检验P=0.26),这主要是植物生长受到促进的缘故.  相似文献   

11.
中国西北部草地植被降水利用效率的时空格局   总被引:3,自引:0,他引:3  
穆少杰  游永亮  朱超  周可新 《生态学报》2017,37(5):1458-1471
植被降水利用效率(PUE)是评价干旱、半干旱地区植被生产力对降水量时空动态响应特征的重要指标。利用光能利用率CASA(Carnegie-Ames-Stanford Approach)模型估算了2001—2010年中国西北七省草地植被净初级生产力(NPP),结合降水量的空间插值数据,分析了近十年草地植被PUE的空间分布、主要植被类型的PUE,及其时空格局的驱动因素。结果表明:(1)2001—2010年西北七省草地植被的平均PUE为0.68 g C m~(-2)mm~(-1)。在温带草地各类型中,PUE的大小顺序为草甸草原灌丛典型草原荒漠草原荒漠,各类型草地PUE之间差异显著;对于高寒草地而言,高寒草原的PUE显著高于高寒草甸;(2)温带草地PUE的空间分布与年降水量的关系呈抛物线形状(R~2=0.65,P0.001),PUE峰值出现在年降水量P=472.9 mm的地区;荒漠地区植被PUE的空间分布与年降水量的关系同样呈抛物线形状(R~2=0.63,P0.001),PUE峰值出现在年降水量P=263.2mm的地区;对于高寒草地而言,年降水量100 mm以下地区植被PUE变异较大,年降水量大于100 mm的地区植被PUE的空间分布随降水量的变化呈抛物线形状(R~2=0.47,P0.001),PUE峰值出现在P=559.2 mm的地区;(3)不同降水量区域,植被PUE的年际波动与气候因子的关系也有较大差别。在年降水量为200—1000 mm的地区,草地PUE的年际波动与年降水量的变化呈正相关;在年降水量高于1050 mm的地区,草地PUE的年际波动与年均温的相关性较强,相关系数最高可达到0.4。  相似文献   

12.
 森林净初级生产力(NPP)是衡量陆地碳源/汇的重要参数, 准确地估算森林生态系统的NPP, 同时通过引入干扰因子以期更加完整地描述生态学过程及其响应是目前森林生态系统碳循环研究的重点。因此, 该研究基于北方生态系统生产力(BEPS)模型, 结合遥感数据和气象数据等模拟2003年东北林区NPP; 将BEPS模型模拟的结果作为整合陆地生态系统碳收支(InTEC)模型的参考年数据, 模拟东北林区1901–2008年的NPP, 并在InTEC模型中加入林火干扰数据, 模拟大兴安岭地区1966–2008年的森林NPP。结果显示: 在1901年, 东北林区NPP平均值仅为278.8 g C·m–2·a–1, 到了1950年, NPP平均值增加到338.5 g C·m–2·a–1, 2008年NPP平均值进一步增加到378.4 g C·m–2·a–1。其中长白山地区的NPP平均值始终最高, 大兴安岭次之, 小兴安岭始终最低。到了2008年, 大、小兴安岭和长白山地区的NPP平均值都有较大涨幅, 其中涨幅最高的是长白山地区, 达到200–300 g C·m–2·a–1; 东北三省中, 黑龙江和吉林的NPP平均值和总量都比较高, 辽宁相对较低, 但相比于1901年的涨幅最高, 达到70%; 重大火灾(100–1000 hm2)对NPP的影响不是很大, 而特大火灾(>1 000 hm2)的影响比较大, 使NPP下降幅度达到10%左右, 其他火灾年份, NPP增长迅速并保持在较高水平; 对火灾面积在100 000 hm2以上的4个年份的NPP进行分析, 发现NPP平均值都大幅度下降, 其中1987年下降幅度最大, 为11%以上。  相似文献   

13.
The interannual net primary production variation and trends of a Picea schrenkiana forest were investigated in the context of historical changes in climate and increased atmospheric CO2 concentration at four sites in the Tianshan Mountain range, China. Historical changes in climate and atmospheric CO2 concentration were used as Biome–BGC model drivers to evaluate the spatial patterns and temporal trends of net primary production (NPP). The temporal dynamics of NPP of P. schrenkiana forests were different in the western, middle and eastern sites of Tianshan, which showed substantial interannual variation. Climate changes would result in increased NPP at all study sites, but only the change in NPP in the western forest (3.186 gC m−2 year−1, P < 0.05) was statistically significant. Our study also showed a higher increase in the air temperature, precipitation and NPP during 1987–2000 than 1961–1986. Statistical analysis indicates that changes in NPP are positively correlated with annual precipitation (R = 0.77–0.92) but that NPP was less sensitive to changes in air temperature. According to the simulation, increases in atmospheric CO2 increased NPP by improving the water use efficiency. The results of this study show that the Tianshan Mount boreal forest ecosystem is sensitive to historical changes in climate and increasing atmospheric CO2. The relative impacts of these variations on NPP interact in complex ways and are spatially variable, depending on local conditions and climate gradients. W. Sang and H. Su contributed equally to this paper, arranged in alphabetical order by surnames.  相似文献   

14.
该研究采用红外气体分析法(IRGA)于2013年3–12月原位测定了北京市东升八家郊野公园中2个主要阔叶树种(槐(Sophora japonica)、旱柳(Salix matsudana))3个高度上的枝干呼吸(Rw)日进程,旨在量化Rw的种间差异,探索种内Rw及其温度敏感系数(Q10)的时间动态和垂直分布格局。研究结果显示:(1)Rw在不同树种之间差异明显,相同月份(4月份除外)槐Rw是旱柳的1.12(7月)–1.79倍(5月)。两树种枝干表面CO2通量速率均表现出明显的单峰型季节变化,峰值分别出现在7月((5.13±0.24)μmol·m–2·s–1)和8月((3.85±0.17)μmol·m–2·s–1)。同一树种在生长月份内的平均呼吸水平显著高于非生长季,但其Q10值季节变化趋势与之相反。(2)RW随测量高度的增加而升高,并在3个高度上表现出不同的日变化规律:其中,树干基部及胸高位置为单峰格局,而一级分枝处的呼吸速率在一天内存在两个峰值,中间出现短暂的"午休"现象。温度是造成一天内呼吸变化的主要原因。此外,顶部Rw及其对温度的敏感程度明显高于基部。温度本身和Q10值差异可在一定程度上解释RW的垂直梯度变化。(3)在生长月份,单位体积木质组织的日累积呼吸速率(mmol·m–3·d–1)与受测部位直径倒数(D–1)呈极显著正相关关系。单位面积(μmol·m–2·s–1)可准确表达两树种在生长期间的RW水平,能合理有效地比较不同个体的呼吸差异及同一个体的时空变异。这些结果表明,采用局部通量法上推至树木整体呼吸时,应全面考虑Rw的时、空变异规律,并选择恰当的表达单位,以减小估测误差。  相似文献   

15.
南方丘陵山地带植被净第一性生产力时空动态特征   总被引:10,自引:7,他引:3  
王静  王克林  张明阳  章春华 《生态学报》2015,35(11):3722-3732
基于MODIS数据并结合气象资料和植被参数,利用修正过最大光能利用率的CASA(Carnegie-Ames-Stanford Approach)模型,对国家生态安全屏障区的"两屏三带"之一南方丘陵山地带2000—2010年的植被净第一性生产力(NPP)进行模拟,并对其时空分布格局进行了分析。研究结果表明:(1)研究区2000—2010年期间年NPP的变化范围为406.0—485.6 g C m-2a-1,年平均NPP为445.7 g C m-2a-1,高于全国平均水平;NPP年际上升趋势不显著(P=0.39),平均增加值为2.28 g C m-2a-1;(2)NPP空间分布特征与植被类型具有较好的一致性,单位面积NPP以混交林覆盖区最高(501.0 g C m-2a-1),草地覆盖区NPP最低(390.7 g C m-2a-1);(3)植被NPP的时空变化与气温、降雨和太阳辐射等自然因素的变化有直接关系,而社会、经济、政策等人为因素通过改变土地利用方式来间接影响。  相似文献   

16.
三江源区不同退化程度高寒草原土壤呼吸特征   总被引:5,自引:0,他引:5       下载免费PDF全文
为了研究高寒草原退化对土壤呼吸的影响, 对三江源区不同退化程度的高寒草原土壤呼吸进行了测定, 分析了土壤呼吸与生物量、土壤温度以及土壤湿度的相关性, 结果表明: 1)不同退化程度的高寒草原土壤呼吸均表现出一定的月动态, 这种月动态在不同退化程度间各有不同。2)高寒草原在退化演替序列上生长季平均土壤呼吸速率呈先增加后降低的变化趋势, 其中在中度退化程度下达到最高值((2.46 ± 0.27) μmol·m-2·s-1), 显著高于未退化((1.92 ± 0.11) μmol·m-2·s-1)和重度退化((1.30 ± 0.16) μmol·m-2·s-1)水平(p < 0.01), 与轻度退化((2.22 ± 0.19) μmol·m-2·s-1)无显著差异(p > 0.05), 重度退化程度下呼吸速率显著低于其他退化水平(p < 0.01)。3)地上生物量和土壤呼吸存在极显著线性正相关关系(p = 0.004), 而地下生物量与土壤呼吸的相关性不很显著(p = 0.056)。4)除重度退化外, 未退化、轻度退化和中度退化高寒草原土壤呼吸与土壤温度显著正相关; 土壤呼吸与土壤湿度的二项式拟合方程在轻度退化程度下达到显著水平(p < 0.05), 而在未退化、中度退化和重度退化程度下均达到极显著水平(p < 0.01)。  相似文献   

17.
Aim Our aims were to quantify climatic and soil controls on net primary productivity (NPP) and leaf area index (LAI) along subtropical to alpine gradients where the vegetation remains relatively undisturbed, and investigate whether NPP and LAI converge towards threshold‐like logistic patterns associated with climatic and soil variables that would help us to verify and parameterize process models for predicting future ecosystem behaviour under global environmental change. Location Field data were collected from 22 sites along the Tibetan Alpine Vegetation Transects (TAVT) during 1999–2000. The TAVT included the altitudinal transect on the eastern slope of the Gongga Mountains in the Eastern Tibetan Plateau, with altitudes from 1900 m to 3700 m, and the longitudinal‐latitudinal transect in the Central Tibetan Plateau, of approximately 1000 km length and 40 km width. Methods LAI was measured as the product of foliage biomass multiplied by the ratio of specific leaf area. NPP in forests and shrub communities was estimated as the sum of increases in standing crops of live vegetation using recent stem growth rate and leaf lifespan. NPP in grasslands was estimated from the above‐ground maximum live biomass. We measured the soil organic carbon (C) and total and available nitrogen (N) contents and their pool sizes by conventional methods. Mean temperatures for the year, January and July and annual precipitation were estimated from available meteorological stations by interpolation or simulation. The threshold‐like logistic function was used to model the relationships of LAI and NPP with climatic and soil variables. Results Geographically, NPP and LAI both significantly decreased with increasing latitude (P < 0.02), but increased with increasing longitude (P < 0.01). Altitudinal trends in NPP and LAI showed different patterns. NPP generally decreased with increasing altitude in a linear relationship (r2 = 0.73, P < 0.001), whereas LAI showed a negative quadratic relationship with altitude (r2 = 0.58, P < 0.001). Temperature and precipitation, singly or in combination, explained 60–68% of the NPP variation with logistic relationships, while the soil organic C and total N variables explained only 21–46% of the variation with simple linear regressions of log‐transformed data. LAI showed significant logistic relationships with both climatic and soil variables, but the data from alpine spruce‐fir sites diverged greatly from the modelled patterns associated with temperature and precipitation. Soil organic C storage had the strongest correlation with LAI (r2 = 0.68, P < 0.001). Main conclusions In response to climatic gradients along the TAVT, LAI and NPP across diverse vegetation types converged towards threshold‐like logistic patterns consistent with the general distribution patterns of live biomass both above‐ground and below‐ground found in our earlier studies. Our analysis further revealed that climatic factors strongly limited the NPP variations along the TAVT because the precipitation gradient characterized not only the vegetation distribution but also the soil N conditions of the natural ecosystems. LAI generally increased with increasing precipitation and was well correlated with soil organic C and total N variables. The interaction between LAI growth and soil N availability would appear to have important implications for ecosystem structure and function of alpine spruce‐fir forests. Convergence towards logistic patterns in dry matter production of plants in the TAVT suggests that alpine plant growth would increase in a nonlinear response to global warming.  相似文献   

18.
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.  相似文献   

19.
氮是除水分之外影响干旱区生态系统生物活性的关键因子。生物土壤结皮是干旱半干旱荒漠地表景观的重要组成部分, 也是荒漠生态系统氮素的主要贡献者。通过野外调查采样, 利用开顶式生长室, 模拟不同降水梯度, 采用乙炔还原法连续测定了沙坡头地区典型生物土壤结皮(藻类结皮、地衣结皮和藓类结皮)在其主要固氮活跃期(6-10月, 湿润期)的固氮活性, 及其对水热因子的响应特征。结果表明, 试验期三类生物土壤结皮的固氮活性介于2.5 × 103-6.2 × 104 nmol C2H4·m-2·h-1之间, 其中藻类结皮的最高(平均达2.8 × 104 nmol C2H4·m-2·h-1), 地衣结皮的次之(2.4 × 104 nmol C2H4 ·m-2·h-1), 藓类结皮的最低(1.4 × 104 nmol C2H4·m-2·h-1), 差异显著(p < 0.001)。在模拟降水3 mm时, 三类结皮均可达到最大固氮速率, 当发生> 3 mm的降水事件时, 它们的固氮速率无显著增加; 不同结皮的固氮活性与温度均呈显著的负相关关系(r藻类结皮 = -0.711, r地衣结皮 = -0.732, r藓类结皮 = -0.755, p < 0.001), 藻类和藓类结皮的固氮活性的最适温度区间为25-30 ℃, 地衣结皮为20-30 ℃。三类结皮之间的这种固氮差异主要归因于结皮组成生物体即隐花植物的差异, 藻类结皮主要成分为大量的蓝细菌和一些绿藻, 地衣结皮也由大量的固氮藻和真菌共生形成, 而藓类结皮的主要组成部分苔藓植物并不具有固氮作用, 其微弱的固氮量是结皮中混生的少量蓝细菌或地衣所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号