首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Insects have evolved a large variety of specialized feeding strategies, with a corresponding variability in mouthpart morphology. We have, however, little understanding of the developmental mechanisms that underlie this diversity. Until recently it was difficult to perform any analysis of gene function outside of the genetic model insects Drosophila melanogaster and Tribolium castaneum. In this paper, we report the use of dsRNA-mediated interference (RNAi) to dissect gene function in the development of the milkweed bug Oncopeltus fasciatus, which has specialized suctorial mouthparts. The Hox genes Deformed (Dfd), proboscipedia (pb) and Sex combs reduced (Scr) have previously been shown to be expressed in the gnathal appendages of this species. Strikingly, the milkweed bug was found to have an unusual expression pattern of pb. Here, by analyzing single and combination RNAi depletions, we find that Dfd, pb and Scr are used in the milkweed bug to specify the identity of the mouthparts. The exact roles of the genes, however, are different from what is known in the two genetic model insects. The maxillary appendages in the bug are determined by the activities of the genes Dfd and Scr, rather than Dfd and pb as in the fly and beetle. The mandibular appendages are specified by Dfd, but their unique morphology in Oncopeltus suggests that Dfd's target genes are different. As in flies and beetles, the labium is specified by the combined activities of pb and Scr, but again, the function of pb appears to be different. Additionally, the regulatory control of pb by the other two genes seems to be different in the bug than in either of the other species. These novelties in Hox function, expression pattern and regulatory relationships may have been important for the evolution of the unique Hemipteran head.  相似文献   

3.
Regulation of proboscipedia in Drosophila by homeotic selector genes   总被引:1,自引:0,他引:1  
Rusch DB  Kaufman TC 《Genetics》2000,156(1):183-194
The gene proboscipedia (pb) is a member of the Antennapedia complex in Drosophila and is required for the proper specification of the adult mouthparts. In the embryo, pb expression serves no known function despite having an accumulation pattern in the mouthpart anlagen that is conserved across several insect orders. We have identified several of the genes necessary to generate this embryonic pattern of expression. These genes can be roughly split into three categories based on their time of action during development. First, prior to the expression of pb, the gap genes are required to specify the domains where pb may be expressed. Second, the initial expression pattern of pb is controlled by the combined action of the genes Deformed (Dfd), Sex combs reduced (Scr), cap'n'collar (cnc), and teashirt (tsh). Lastly, maintenance of this expression pattern later in development is dependent on the action of a subset of the Polycomb group genes. These interactions are mediated in part through a 500-bp regulatory element in the second intron of pb. We further show that Dfd protein binds in vitro to sequences found in this fragment. This is the first clear demonstration of autonomous positive cross-regulation of one Hox gene by another in Drosophila melanogaster and the binding of Dfd to a cis-acting regulatory element indicates that this control might be direct.  相似文献   

4.
The Drosophila embryonic peripheral nervous system (PNS) contains segment-specific spatial patterns of sensory organs which derive from the ectoderm. Many studies have established that the homeotic genes of Drosophila control segment specific characteristics of the epidermis, and more recently these genes have also been shown to control gut morphogenesis through their expression in the visceral mesoderm (Tremml, G. and Bienz, M. (1989), EMBO J. 8, 2677-2685). We report here the roles of homeotic genes in establishing the spatial patterns of sensory organs in the embryonic PNS. The PNS was examined in embryos homozygous for mutations in the homeotic genes Sex combs reduced (Scr), Antennapedia (Antp), Ultrabithorax (Ubx), abdominal-A (abd-A) and Abdominal-B (Abd-B) with antibodies that label specific subsets of sensory organs. Our results suggest that the homeotic genes have specific roles in establishing the correct spatial patterns of sensory organs in their normal domains of expression. In addition, we also report the effects of ectopic expression of the homeotic genes labial (lab), Deformed (Dfd), Scr, Antp or Ubx on the normal development of sensory organs in the embryonic PNS. Interestingly, while previous studies have concluded that ectopic expression of the homeotic genes Dfd, Scr and Antp has no effect on the segmental identity of the abdominal segments, our results demonstrate that this is not true. We show that ectopic expression of these genes does result in the disruption of the developing PNS in the abdomen. Our results are suggestive of a role for the homeotic gene products in regulating genes which are necessary for generating sensory progenitor cells in the developing PNS.  相似文献   

5.
Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda) that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera). We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx) from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.  相似文献   

6.
Like other members of the Polycomb group, the extra sex combs gene (esc) is required for the correct repression of loci in the major homeotic gene complexes. We show here that embryos lacking both maternal and zygotic esc+ function display transient, general derepression of both the Ultrabithorax (Ubx) and Antennapedia (Antp) genes during germ band shortening, but Sex combs reduced (Scr) expression is almost normal in the epidermis and lacking in the central nervous system (CNS). In addition, embryos that are maternally esc- but receive two paternal copies of esc+ often are characterized by ectopic expression of the three homeotic genes, especially Ubx and Antp in the CNS. Imaginal discs from these paternally rescued embryos may show discrete patches of expression of Ubx and Scr in inappropriate locations. Thus, lack of esc+ function during a brief period in early embryogenesis results in a heritable change in determined state, even in a genetically wild type animal. Within these ectopic patches, homeotic gene expression may be regulated by the disc positional fields and by cross-regulatory interactions between homeotic genes.  相似文献   

7.
Prior developmental genetic analyses have shown that labial (lab) and Deformed (Dfd) are homeotic genes that function in the development of the embryonic (larval) and adult head. Using antibody probes to reveal the spatial distribution of the lab and Dfd proteins in embryonic and imaginal tissues, we have assessed the respective roles of these genes through an analysis of the correspondence of their expression patterns with their mutant phenotypes. With regard to imaginal development, lab and Dfd occupy adjacent non-overlapping expression domains in the peripodial cell layer of the eye-antennal disc, in patterns that are consistent with their adult mutant phenotypes and published fate maps. During embryogenesis, lab and Dfd exhibit limited overlapping expression in areas that are of no obvious significance to the development of larval head structures, but also in areas that may have consequences for imaginal development. The head of Drosophila and other cyclorrhaphous Dipterans is characterized by an extreme morphological difference between the larval and adult stages. Given this unique ontogenetic and phylogenetic history and the observation that homeotic transformations produced by the lab, Dfd, and proboscipedia (pb) loci are manifested only in the adult, we suggest that distinct regulatory paradigms evolved for homeotic gene function in the development of the larval versus adult head. Finally, a detailed examination of the engrailed (en) expression pattern in the embryonic head strengthens the view of insect morphologists that the clypeolabrum evolved from the fusion of paired labral appendages.  相似文献   

8.
9.
Orthologs of the Hox genes Sex combs reduced ( Scr) and proboscipedia ( pd) are active in the developing labial appendages of all insect species tested. The remarkable variation among insect gnathal structures, particularly in the distal podomeres, suggests two Hox genes may enhance the adaptive potential of gnathal appendage morphology. Functional studies in the fruitfly Drosophila melanogaster, the flour beetle Tribolium castaneum and the milkweed bug Oncopeltus fasciatus show that cooperation between Scr and pb has been generally conserved, but specific mechanisms have been altered during evolution. Cross-regulation of pb by Scr is evident in Drosophila and Tribolium, the more closely related of the three species, but not in Oncopeltus. In all three species, pb function is restricted to the distal podomeres, but details are only known for Drosophila and Oncopeltus, two species exhibiting specialized stylate-haustellate mouthparts. Drosophila pb is required for distal Scr expression, and to repress the appendage patterning genes dachshund and Distal-less ( Dll). Oncopeltus pb has the novel capacity to specify leg fates. Little is known about distal functions of Tribolium pb. Hypomorphic mutations of the Tribolium pb ortholog maxillopedia can be arranged in a graded phenotypic series of palp to leg transformations along both the proximodistal and dorsoventral axes. Mid-embryonic expression profiles of Tribolium pb, Scr, wingless ( wg) and Dll genes were examined in maxillopedia hypomorphic and null mutant backgrounds. Levels of pb and Scr are significantly reduced in the distal appendage field. Tribolium pb therefore positively regulates distal Scr expression, a role that it has in common with Drosophila pb. Tribolium wg is normally down-regulated in the distal domain of the embryonic gnathal appendage buds. It becomes activated distally in maxillopedia hypomorphs. Repression of wg by pb has not been reported in the labial imaginal discs of Drosophila. Alterations of Tribolium Scr and wg expression occur in Dll-expressing cells, however, unlike in Drosophila labial imaginal discs, Dll expression appears unaffected in pb hypomorphic backgrounds. We conclude that the Hox genes Sex combs reduced and proboscipedia control an appendage organizer and cell autonomous fate determination during embryonic labial palp development in Tribolium.  相似文献   

10.
11.
Chelicerate Hox genes and the homology of arthropod segments   总被引:3,自引:0,他引:3  
Genes of the homeotic complex (HOM-C) in insects and vertebrates are required for the specification of segments along the antero-posterior axis. Multiple paralogues of the Hox genes in the horseshoe crab Limulus poliphemus have been used as evidence for HOM-C duplications in the Chelicerata. We addressed this possibility through a limited PCR survey to sample the homeoboxes of two spider species, Steatoda triangulosa and Achaearanea tepidariorum. The survey did not provide evidence for multiple Hox clusters although we have found apparent duplicate copies of proboscipedia ( pb ) and Deformed ( Dfd   ). In addition, we have cloned larger cDNA fragments of pb, zerknullt ( zen / Hox3 ) and Dfd. These fragments allowed the determination of mRNA distribution by in situ hybridization. Our results are similar to the previously published expression patterns of Hox genes from another spider and an oribatid mite. Previous studies compared spider/mite Hox gene expression patterns with those of insects and argued for a pattern of segmental homology based on the assumption that the co-linear anterior boundaries of the Hox domains can be used as markers. To test this assumption we performed a comparative analysis of the expression patterns for UBX/ABD-A in chelicerates, myriapods, crustaceans, and insects. We conclude that the anterior boundary can be and is changed considerably during arthropod evolution and, therefore, Hox expression patterns should not be used as the sole criterion for identifying homology in different classes of arthropods.  相似文献   

12.
Understanding why metazoan Hox/HOM-C genes are expressed in spatiotemporal sequences showing colinearity with their genomic sequence is a central challenge in developmental biology. Here, we studied the consequences of ectopically expressing Hox genes to investigate whether Hox-Hox interactions might help to order gene expression during very early vertebrate embryogenesis. Our study revealed conserved autoregulatory loops for the Hox4 and Hox7 paralogue groups, detected following ectopic expression Hoxb-4 or HOXD4, and Hoxa-7, respectively. We also detected specific induction of 5' posterior Hox genes; Hoxb-5 to Hoxb-9, following ectopic expression of Hoxb-4/HOXD4; Hoxb-8 and Hoxb-9 following ectopic expression of Hoxa-7. Additionally, we observed specific repression of 3' anterior genes, following ectopic expression of Hox4 and Hox7 paralogues. We found that induction of Hoxb-4 and Hoxb-5 by Hoxb-4 can be direct, whereas induction of Hoxb-7 is indirect, suggesting the possibility of an activating cascade. Finally, we found that activation of Hoxb-4 itself and of posterior Hox genes by Hoxb-4 can be both non-cell-autonomous, as well as direct. We believe that our findings could be important for understanding how a highly ordered Hox expression sequence is set up in the early vertebrate embryo.  相似文献   

13.
To understand better both the development and evolution of insect mouthparts, we have compared the expression pattern of several developmentally important genes in insects with either mandibulate or stylate-haustellate mouthparts. Specifically, we examined the expression of the proboscipedia (pb) and Distal-less (Dll) gene products as well as three regulators of pb, Sex combs reduced (Scr), Deformed (Dfd), and cap 'n' collar (cnc). These genes are known to control the identity of cells in the gnathal segments of Drosophila melanogaster and would appear to have similar conserved functions in other insects. Together we have made an atlas of gene expression in the heads of three insects: Thermobia domestica and Acheta domestica, which likely exemplify the mandibulate mouthparts present in the common insect ancestor, and Oncopeltus fasciatus, which has piercing-sucking mouth parts that are typical of the Hemiptera. At the earliest stages of embryogenesis, only the expression of pb was found to differ dramatically between Oncopeltus and the other insects examined, although significant differences were observed later in development. This difference in pb expression reflects an apparent divergence in the specification of gnathal identity between mandibulate and stylate-haustellate mouthparts, which may result from a "phylogenetic homeosis" that occurred during the evolution of the Hemiptera.  相似文献   

14.
15.
16.
17.
Molecular developmental studies of fly and mouse embryos have shown that the identity of individual body segments is controlled by a suite of homeobox-containing genes called the Hox cluster. To examine the conservation of this patterning mechanism in other segmented phyla, we here describe four Hox gene homologs isolated from glossiphoniid leeches of the genusHelobdella.Based on sequence similarity and phylogenetic analysis, the leech genesLox7, Lox6, Lox20,andLox5are deemed to be orthologs of theDrosophilageneslab, Dfd, Scr,andAntp,respectively. Sequence similarities betweenLox5andAntpoutside the homeodomain and phylogenetic reconstructions suggest that the Antennapedia family of Hox genes (as defined by Bürglin, 1994) had already expanded to include at least two discreteAntpandUbx/abdAprecursors prior to the annelid/arthropod divergence.In situhybridization reveals that the fourLoxgenes described in this study are all expressed at high levels within the segmented portion of the central nervous system (CNS), with variable levels of expression in the segmental mesoderm. Little or no expression was seen in peripheral ectoderm or endoderm, or in the unsegmented head region (prostomium). EachLoxgene has a distinct anterior expression boundary within one of the four rostral segments, and the anterior-posterior (AP) order of these expression boundaries is identical to that reported for the orthologous Hox gene products in fly and mouse. This finding supports the idea that the process of AP axis differentiation is conserved among the higher metazoan phyla with respect to the regional expression of individual Hox genes along that axis. One unusual feature of leech Hox genes is the observation that some genes are only expressed during later development -- beginning at the time of terminal cell differentiation -- whereas others begin expression at a much earlier stage, and their RNA ceases to be detectable shortly after the onset of expression of the ‘late’ Hox genes. The functional significance of this temporal disparity is unknown, but it is noteworthy that only the two ‘early’ Hox genes display high levels of mesodermal expression.  相似文献   

18.
The distributions of the products of the homeotic genes Sex combs reduced (Scr) and Ultrabithorax (Ubx) and of the segmentation genes, fushi tarazu (ftz), even skipped (eve) and engrailed (en) have been monitored in polyhomeotic (ph) mutant embryos. None of the genes monitored show abnormal expression at the blastoderm stage in the absence of zygotic ph expression. Both Scr and Ubx are ectopically expressed in the epidermis of ph embryos, confirming the earlier proposal, based on genetic analysis, that ph+ acts as a negative regulator of Antennapedia (ANT-C) and bithorax (BX-C) complex genes. At the shortened germ band stage, en is also ectopically expressed, mainly in the anterior region of each segment. In contrast to these effects in the epidermis, the expression of en, Ubx, Scr and ftz is largely or completely suppressed in the central nervous system, whereas eve becomes ectopically expressed in most neurones.  相似文献   

19.
The functional replacement of one gene product by another one is a powerful method to study specificity in development and evolution. In Drosophila, the Gal4/UAS method has been used to analyze in vivo such functional substitutions. To this aim, Gal4 lines that inactivate a gene and reproduce its expression pattern are required, and they can be frequently obtained by replacing pre-existing P-lacZ lines with such characteristics. We have devised a new method to quickly identify replacements of P-lacZ lines by P-Gal4 lines, and applied it successfully to obtain Gal4 insertions in the Ultrabithorax and Abdominal-B Hox genes. We have used these lines to study the functional replacement of a Hox gene by another one. Our experiments confirm that the abdominal-A gene can replace Ultrabithorax in haltere development but that it cannot substitute for Abdominal-B in the formation of the genitalia.  相似文献   

20.
SUMMARY The segmented leeches are members of the phylum Annelida within the Lophotrochozoa. Here, we describe the isolation of a new Hox gene, Lox18 , in the leech Helobdella triserialis. Phylogenetic analysis indicates that Lox18 is a Deformed ( Dfd   ) ortholog. H. triserialis has at least two Dfd orthologs, Lox18 and the previously described Lox6 ( Kourakis et al. 1997 ; Wong and Macagno 1998 ), indicating that these genes duplicated after the last common ancestor of annelids and arthropods. Although the temporal appearance of Lox18 message is similar to that of Lox6 , the spatial pattern is different. Lox18 does not have a sharply defined anterior border of expression in the second neuromere of the subesophageal ganglion of the central nervous system (CNS) as does Lox6 , but is expressed uniformly in a small subset of cells in the longitudinal connectives and lateral roots in every segment of the CNS along the entire anterior-posterior (AP) axis. Even though Lox18 shares greater sequence similarity within the homeodomain and flanking regions to Drosophila Dfd than to the previously isolated Lox6 , its expression pattern suggests that its function has diverged from the ancestral Hox function. Previous sampling has indicated that the last common ancestor of protostomes and deuterostomes had as many as 10 clustered Hox genes representing distinct paralogy groups ( Irvine et al. 1997 ; de Rosa et al. 1999 ); leech Hox genes may have undergone subsequent and independent cluster or genome-wide duplication. These results point to the need for total genome level understanding for key members of the Lophotrochozoa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号