首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A halotolerant bacterium Bacillus acquimaris VITP4 was used for the production of extracellular protease. Fractional precipitation using ammonium chloride was used to obtain the enzyme. The protease exhibited optimum activity at pH 8.0 and 40 degrees C and retained 50% of its optimal proteolytic activity even in the presence of 4 M NaCl, suggesting that it is halotolerant. The molecular mass of protease, as revealed by SDS-PAGE was found to be 34 kDa and the homogeneity of the enzyme was confirmed by gelatin zymography and reverse-phase HPLC. Upon purification, the specific activity of th enzyme increased from 533 U/mg to 1719 U/mg. Protease inhibitors like phenyl methane sulphonyl fluoride and 2-mercaptoethanol did not affect the activity of the enzyme, but EDTA inhibited the activity, indicating the requirement of metal ions for activity. Cu2, Ni2+ and Mn2+ enhanced the enzyme activity, but Zn2+, Hg2+ and Fe2+ decreased the activity, while Mg2+, Ca2+ and K+ had no effect on the enzyme activity. The protease was quite stable in the presence of cationic (CTAB), anionic (SDS) and neutral detergents (Triton X-100 and Tween-20) and exhibited antimicrobial activity against selected bacterial and fungal strains. The stability characteristics and broad spectrum antimicrobial activity indicated the potential use of this protease in industrial applications.  相似文献   

2.
An extracellular thermostable alkaline protease isolated from Bacillus laterosporus-AK1 was purified by sephadex G-200 gel filtration and DEAE cellulose ion-exchange chromatography techniques. The purified protease showed a maximum relative activity of 100% on casein substrate and appeared as a single band on SDS-PAGE with the molecular mass of 86.29 kDa. The protease was purified to 11.1-folds with a yield of 34.3%. Gelatin zymogram also revealed a clear hydrolytic zone due to proteolytic activity, which corresponded to the band obtained with SDS-PAGE. The protease enzyme had on optimum pH of 9.0 and exhibited highest activity at 75°C. The enzyme activity was highly susceptible to the specific serine protease inhibitor PMSF, suggesting the presence of serine residues at the active sites. Enzyme activity strongly enhanced by the metal ions Ca2+ and Mg2+ and this enzyme compatible with aril detergent stability retained 75% even 1-h incubation. The purified protease remove bloodstain completely when used with Wheel detergent.  相似文献   

3.
A protease-producing bacterium, strain TKU010, was isolated from infant vomited milk and identified as Lactobacillus paracasei subsp. paracasei. A surfactant-stable protease, purified 64-fold from the third day culture supernatant to homogeneity in an overall yield of 11%, has a molecular weight of about 49,000. The enzyme degraded casein and gelatin, but did not degrade albumin, fibrin, and elastin. The enzyme activity was increased about 1.5-fold by the addition of 5 mM Ba2+. However, Fe2+ and Cu2+ ions strongly inhibited the enzyme. The enzyme was maximally active at pH 10 and 60 °C and retained 94% and 71% activity in the presence of Tween 20 (2% w/v) and SDS (2 mM), respectively. The result of identification of TKU010 protease showed that nine tryptic peptides were identical to Serratia protease (serralysin) (GenBank accession number gi999638) with 35% sequence coverage. In comparison with the tryptic peptides of L. paracasei subsp. paracasei TKU012 protease, TKU010 protease possessed two additional peptides with sequences of AATTGYDAVDDLLHYHER and QTFTHEIGHALGLSHPGDYNAGEGNPTYR. The fourth day culture supernatant of TKU010 showed maximal activity of about 5-fold growth enhancing effect on lettuce weight, which was not shown with L. paracasei subsp paracasei TKU012.  相似文献   

4.
Casein kinase II from a virally-transformed macrophage cell line (RAW264) was purified by a sequential DEAE, Procion Red, phosvitin-Sepharose and heparin-Sepharose chromatography. With [tau-32P]GTP as a phosphate donor and casein as a substrate, the kinase was stimulated by polyamines and inhibited by heparin. The purified kinase had a specific activity of 1137 nmol/min/mg protein and exhibited three major protein bands of 40 K, 35 K, and 25 K. Under non-denaturing conditions in 50 mM Tris-50 mM NaCl the enzyme was eluted as a single peak with molecular weight of 110 K. Incubation of kinase in the presence of [tau-32P]GTP and Mg2+ resulted in phosphorylation of the 25 K protein band of the enzyme. In the presence of [tau-32P]GTP and Mg2+ the kinase was able to phosphorylate 55 K protein band in purified ornithine decarboxylase preparation from RAW264 cells and the rat-type II regulatory subunit of the cyclic AMP-dependent protein kinase.  相似文献   

5.
An intracellular serine protease produced by Thermoplasma (Tp.) volcanium was purified using a combination of ammonium sulfate fractionation, ion exchange, and alpha-casein agarose affinity chromatography. This enzyme exhibited the highest activity and stability at pH 7.0, and at 50 degrees C. The purifed enzyme hydrolyzed synthetic peptides preferentially at the carboxy terminus of phenylalanine or leucine and was almost completely inhibited by PMSF, TPCK, and chymostatin, similarly to a chymotrypsin-like serine protease. Kinetic analysis of the Tp. volcanium protease reaction performed using N-succinyl-L-phenylalanine-p-nitroanilide as substrate revealed a Km value of 2.2 mM and a Vmax value of 0.045 micromol(-1) ml(-1) min(-1). Peptide hydrolyzing activity was enhanced by >2-fold in the presence of Ca2+ and Mg2+ at 2-12 mM concentration. The serine protease is a monomer with a molecular weight of 42 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram activity staining.  相似文献   

6.
Bovine kidney mitochondrial extracts contain an inactive protamine kinase and an inactive casein kinase. The protamine kinase was activated by chromatography on poly(L-lysine)-agarose. Two forms of this soluble mitochondrial protamine kinase were separated by chromatography on protamine-agarose. Both forms were purified about 80,000-fold to apparent homogeneity. Both forms of the protamine kinase consist of a single polypeptide chain with an apparent Mr approximately 45,000. Both enzyme forms underwent autophosphorylation without significant effect on activity, and both forms exhibited identical substrate specificities. The protamine kinase showed little activity toward branched-chain alpha-keto acid dehydrogenase (less than 3%), and it was essentially inactive (less than 0.1%) with pyruvate dehydrogenase, casein, and ovalbumin. The enzyme was active with histone H1 and with bovine serum albumin. Protamine kinase activity was unaffected by heparin (up to 100 micrograms/ml), by the protein inhibitor of cyclic AMP-dependent protein kinase, by Ca2+ and calmodulin, and by monoclonal antibody to the catalytic domain of protein kinase C from rat brain. The casein kinase was activated in the presence of spermine or by chromatography of the extract on DEAE-cellulose or poly(L-lysine)-agarose. The enzyme was purified about 80,000-fold to apparent homogeneity. It exhibited an apparent Mr 130,000 as determined by gel-permeation chromatography on Sephacryl S-300 in the presence of 0.5 M NaCl. Two subunits, with apparent Mr's 36,000 (alpha) and 28,000 (beta) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The kinase underwent autophosphorylation of its beta-subunit, without significant effect on activity. Casein kinase activity was inhibited 50% by 1.5 micrograms/ml of heparin. Spermine (1.0 mM) stimulated activity of the purified kinase two- to three-fold at 1.5 mM Mg2+. Half-maximal stimulation occurred at 0.1 mM spermine. The kinase utilized both ATP and GTP as substrates. The casein kinase showed little activity (less than 1%) toward pyruvate dehydrogenase and branched-chain alpha-keto acid dehydrogenase from kidney mitochondria, and the kinase was essentially inactive with glycogen synthase a. The properties of this soluble mitochondrial kinase indicate that it is a type II casein kinase.  相似文献   

7.
Proteolytic activity of 0-12 day old eggs, miracidium and adult worm of Fasciola gigantica was assessed and proteases were partially purified by DEAE-Sepharose and CM-cellulose columns. Four forms of protease were separated, PIa, PIb, PIc and PII. Purifications were completed for PIc and PII using Sephacryl S-200 chromatography. A number of natural and synthetic proteins were tested as substrates for F. gigantica PIc and PII. The two proteases had moderate activity levels toward azoalbumin and casein compared to azocasein, while gelatin, hemoglobin, albumin and fibrin had very low affinity toward the two enzymes. Amidolytic substrates are more specific to protease activity. PIc had higher affinity toward BAPNA-HCl (N-benzoyl-arginine-p-nitroanilide-HCl) and BTPNA-HCl (N-benzoyl-tyrosine-p-nitroanilide-HCl) at pH 8.0 indicating that the enzyme was a serine protease. However, PII had higher affinity toward BAPNA at pH 6.5 in the presence of sulfhydryl groups (beta-mercaptoethanol) indicating that the enzyme was a cysteine protease. The effect of specific protease inhibitors on these enzymes was studied. The results confirmed that proteases PIc and PII could be serine and cysteine proteases, respectively. The molecular weights of F. gigantica PIc and PII were 60,000 and 25,000, respectively. F. gigantica PIc and PII had pH optima at 7.5 and 5.5 and K(M) of 2 and 5 mg azocasein/mL, respectively. For amidolytic substrates, PIc had K(M) of 0.3 mM BAPNA/mL and 0.5 mM BTPNA/mL at pH 8.0 and PII had K(M) of 0.6 mM BAPNA/mL at pH 6.5 with reducing agent. F. gigantica PIc and PII had the same optimum temperature at 50 degrees C and were stable up to 40 degrees C. All examined metal cations tested had inhibitory effects toward the two enzymes. From substrate specificity and protease inhibitor studies, PIc and PII could be designated as serine PIc and cysteine PII, respectively.  相似文献   

8.
An ammonium sulfate precipitation of fermentation broth produced by Bacillus subtilis FBL-1 resulted in 2.9-fold increase of specific protease activity. An eluted protein fraction from the column chromatographies using DEAE-Cellulose and Sephadex G-75 had 94.2- and 94.9-fold higher specific protease activity, respectively. An SDS-PAGE revealed a band of purified protease at approximately 37.6 kDa. Although purified protease showed the highest activity at 45°C and pH 9.0, the activity remained stable in temperature range from 30 to 50°C and pH range from 7.0 to 9.0. Protease activity was activated by metal ions such as Ca2+, Mg2+, Mn2+, Fe2+, Ca2+ and K+, but 10 mM Fe3+ significantly inhibited enzyme activity (53%). Protease activity was inhibited by 2 mM EDTA as a metalloprotease inhibitor, but it showed good stability against surfactants and organic solvents. The preferred substrates for protease activity were found to be casein (100%) and soybean flour (71.6%).  相似文献   

9.
10.
Calcium-dependent protease activity was found associated with a neurofilament-enriched cytoskeleton isolated from the bovine spinal cord. The protease was extracted from the cytoskeleton by 0.6 M KCl, and purified to apparent homogeneity (3300-fold) by chromatography on organomercurial-Sepharose 4B, casein-Sepharose 4B, and Sepharose CL-6B. A cytosolic calcium-dependent protease was similarly purified from the bovine spinal cord, after the cytosol was fractionated on DEAE-cellulose. Both cytoskeleton-bound and cytosolic enzymes had an apparent molecular mass of 100 kDa as judged by gel filtration, and consisted of two subunits (79 kDa and 20 kDa) upon sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Both enzymes exhibited caseinolytic activity with 0.5 mM Ca2+ and above, and the activity was strongly inhibited by various thiol protease inhibitors. In the presence of 0.1-0.2 mM Ca2+, the 68-kDa and 160-kDa components, and to a lesser extent the 200-kDa component, of the neurofilament triplet polypeptides were degraded by the cytosolic protease, whereas the cytoskeleton-bound protease needed two-fold higher concentration of Ca2+ to degrade the neurofilaments. Nevertheless, the cytoskeleton-bound protease in situ, i.e. before its extraction form the cytoskeleton by 0.6 M KCl, preferentially degraded the 160-kDa component in the presence of 0.1-0.2 mM Ca2+, suggesting that a proper locational relation of this enzyme to the neurofilament structure is a prerequisite to its preference for the 160-kDa component. It appears that a factor or factors involved in such an interaction between the protease and the neurofilament were eliminated during the course of enzyme purification. The glial fibrillary acidic protein was almost insensitive to the proteases purified in the present study.  相似文献   

11.
An 18-kDa ribonuclease (RNase) with a novel N-terminal sequence was purified from fresh fruiting bodies of the mushroom Hypsizigus marmoreus. The purification protocol comprised ion exchange chromatography on DEAE cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on CM-cellulose and Q-Sepharose and gel filtration by fast protein liquid chromatography on Superdex 75. The starting buffer was 10 mM Tris-HCl buffer (pH 7.2), 10 mM Tris-HCl buffer (pH 7.2), 10 mM NH(4)OAc buffer (pH 5), 10 mM NH(4)HCO(3) buffer (pH 9.4) and 200 mM NH(4)HCO(3) (pH 8.5), respectively. Absorbed proteins were desorbed using NaCl added to the starting buffer. A 42-fold purification of the enzyme was achieved. The RNase was unadsorbed on DEAE cellulose, Affi-gel blue gel and CM-cellulose but adsorbed on Q-Sepharose. It exhibited maximal RNase activity at pH 5 and 70 degrees C. Some RNase activity was detectable at 100 degrees C. It demonstrated the highest ribonucleolytic activity (196 U/mg) toward poly C, the next highest activity (126 U/mg) toward poly A, and much weaker activity toward poly U (48 U/mg) and poly G (41 U/mg). The RNase inhibited [(3)H-methyl]-thymidine uptake by leukemia L1210 cells with an IC(50) of 60 microM.  相似文献   

12.
The extracellular alkaline protease in the supernatant of cell culture of the marine yeast Aureobasidium pullulans 10 was purified to homogeneity with a 2.1-fold increase in specific protease activity as compared to that in the supernatant by ammonium sulfate fractionation, gel filtration chromatography (Sephadex™ G-75), and anion-exchange chromatography (DEAE Sepharose Fast Flow). According to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis data, the molecular mass of the purified enzyme was estimated to be 32.0 kDa. The optimal pH and temperature of the purified enzyme were 9.0 and 45°C, respectively. The enzyme was activated by Cu2+ (at a concentration of 1.0 mM) and Mn2+ and inhibited by Hg2+, Fe2+, Fe3+, Zn2+, and Co2+. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, but weakly inhibited by EDTA, 1–10-phenanthroline, and iodoacetic acid. The K m and V max values of the purified enzyme for casein were 0.25 mg/ml and 0.0286 μmol/min/mg of protein, respectively. After digestion of shrimp protein, spirulina (Arthospira platensis) protein, proteins of marine yeast strains N3C (Yarrowia lipolytica) and YA03a (Hanseniaspora uvarum), milk protein, and casein with the purified alkaline protease, angiotensin I converting enzyme (ACE) inhibitory activities of the resulting peptides reached 85.3%, 12.1%, 29.8%, 22.8%, 14.1%, and 15.5%, respectively, while the antioxidant activities of these were 52.1%. 54.6%, 25.1%, 35%, 12.5%, and 24.2%, respectively, indicating that ACE inhibitory activity of the resulting peptides from the shrimp protein and antioxidant activity of those produced from the spirulina protein were the highest, respectively. These results suggest that the bioactive peptides produced by digestion of the shrimp protein with the purified alkaline protease have potential applications in the food and pharmaceutical industries.  相似文献   

13.
Recently we have identified a mitogen-activated S6 kinase from Swiss 3T3 cells (Jen?, P., Ballou, L. M., Novak-Hofer, I., and Thomas, G. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 406-410). Here we describe the detailed purification of this enzyme from high-speed supernatants (400,000 x g) of vanadate-treated cell extracts. The enzyme is purified through six sequential steps including cation- and anion-exchange, sizing, and affinity chromatography. At each step, the enzyme behaves as one entity and, on the final step of purification, is revealed on silver-stained sodium dodecyl sulfate-polyacrylamide gels as a single protein of Mr 70,000. As reported earlier, the overall purification factor is 3,000-fold, and the specific activity of the homogeneously purified enzyme is 0.6 mumol/min/mg of protein. However, recovery of total activity is only 0.2%. This large loss of activity appears to be due to freeze-thawing the enzyme between each step of purification. The purified kinase does not phosphorylate casein, histones 2A and 3S, or phosvitin. It has a Km for ATP of 28 microM and a broad optimum for Mg2+ between 5 and 20 mM. Mn2+ does not affect the basal level of kinase activity, and at concentrations as low as 1 mM, it completely suppresses the effect of 20 mM Mg2+ on kinase activity. The relationship of this enzyme to two other purified S6 kinases is discussed.  相似文献   

14.
The photosynthetic bacterium, Rhodospirillum rubrum S1, when grown under anaerobic conditions, generated three different types of catalases. In this study, we purified and characterized the highest molecular weight catalase from the three catalases. The total specific catalase activity of the crude cell extracts was 88 U/mg. After the completion of the final purification step, the specific activity of the purified catalase was 1,256 U/mg. The purified catalase evidenced an estimated molecular mass of 318 kDa, consisting of four identical subunits, each of 79 kDa. The purified enzyme exhibited an apparent Km value of 30.4 mM and a Vmax of 2,564 U against hydrogen peroxide. The enzyme also exhibited a broad optimal pH (5.0-9.0), and remained stable over a broad temperature range (20 degrees C-60 degrees C). It maintained 90% activity against organic solvents (ethanol/chloroform) known hydroperoxidase inhibitors, and exhibited no detectable peroxidase activity. The catalase activity of the purified enzyme was reduced to 19% of full activity as the result of the administration of 10 mM 3-amino-1,2,4-triazole, a heme-containing catalase inhibitor. Sodium cyanide, sodium azide, and hydroxylamine, all of which are known heme protein inhibitors, inhibited catalase activity by 50% at concentrations of 11.5 microM, 0.52 microM, and 0.11 microM, respectively. In accordance with these findings, the enzyme was identified as a type of monofunctional catalase.  相似文献   

15.
枯草芽孢杆菌ZC-7中性蛋白酶的分离纯化及酶学性质研究   总被引:2,自引:0,他引:2  
枯草芽孢杆菌ZC-7的发酵液,经离心分离得到粗酶液,再经硫酸铵盐析、中空纤维膜除盐浓缩、DEAE-Sepharose Fast Flow离子交换层析、Sephadex G-75柱层析等步骤获得电泳纯的中性蛋白酶。SDS-PAGE测得其分子量大约为42KDa。以酪蛋白为底物时,该酶的Km为5×10-3,Vmax为2.5×104ug/min,酶的最适作用pH为7.0,最适反应温度为55℃,在pH6.5~8.0, 40℃以下较稳定,对1mol/L H2O2具有一定的耐受性。EDTA、异丙醇和乙醇对该酶有抑制作用,Ca2+、Mg2+和Li+离子对其具有保护作用。  相似文献   

16.
Thirty-six proteolytic bacteria were isolated from the Jakhau coast, Kutch, India, amongst which isolate P15 identified as Bacillus tequilensis (JQ904626) was found to produce an extracellular solvent-- and detergent-tolerant protease (116.69?±?0.48 U/ml) and was selected for further investigation. Deoiled Jatropha seedcake (JSC) was found to be a suitable substrate for protease production under submerged condition. Upon optimization of process parameters following one-factor-at-a-time approach, an overall 6.4-fold (860.27?±?18.48 U/ml) increase in protease production was achieved. The maximum protease yield was obtained using a medium containing 2 % (w/v) deoiled JSC as substrate (pH of 8.0) upon 36 h of fermentation at 30 °C. The optimum temperature and pH for activity of B. tequilensis P15 protease was found to be 50 °C and 8.0, respectively. The enzyme exhibited a half-life of 190 min at 50 °C, which was enhanced to 270 min in presence of 5 mM Ca2+. The enzyme exhibited significant stability in almost all the solvents tested in the range of log P ow varying from 8.8 to ?0.76. The enzyme activity was strongly inhibited by PMSF at 5 mM concentration, whereas the presence of EDTA (5 mM) and pCMB (5 mM) enhanced enzyme activity by 20.9 and 13.7 %, respectively. The enzyme was also found to be stable in the presence of surfactants, commercial detergents and bleach-oxidant (H2O2). This protease was demonstrated to be effective in removal of blood stains from fabrics, dehairing of hide, and stripping off the gelatin from used photographic films.  相似文献   

17.
An alkaline protease was isolated from culture filtrate of B. subtilis NCIM 2713 by ammonium sulphate precipitation and was purified by gel filtration. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 8.0 and temperature 70 degrees C. The purified protease had molecular weight 20 kDa, Isoelectric point 5.2 and km 2.5 mg ml(-1). The enzyme was stable over the pH range 6.5-9.0 at 37 degrees C for 3 hr. During chromatographic separation this protease was found to be susceptible to autolytic degradation in the absence of Ca2+. Ca2+ was not only required for the enzyme activity but also for the stability of the enzyme above 50 degrees C. About 62% activity was retained after 60 min at pH 8.0 and 55 degrees C. DFP and PMSF completely inhibited the activity of this enzyme, while in the presence of EDTA only 33% activity remained. However, it was not affected either by sulfhydryl reagent, or by divalent metal cations, except SDS and Hg2+. The results indicated that this is a serine protease.  相似文献   

18.
19.
A novel haloalkaliphilic, thermostable serine protease was purified from the extreme halophilic archaeon, Halogeometricum borinquense strain TSS101. The protease was isolated from a stationary phase culture, purified 116-fold with 18% yield and characterized biochemically. The molecular mass of the purified enzyme was estimated to be 86 kDa. The enzyme showed the highest activity at 60 degrees C and pH 10.0 in 20% NaCl. The enzyme had high activity over the pH range from 6.0 to 10.0. Enzymatic activity was strongly inhibited by 1 mM phenyl methylsulfonyl fluoride, but activity was increased 59% by 0.1% cetyltrimethylammonium bromide. The enzyme exhibited relatively high thermal stability, retaining 80% of its activity after 1 h at 90 degrees C. Thermostability increased in the presence of Ca2+. The stability of the enzyme was maintained in 10% sucrose and in the absence of NaCl.  相似文献   

20.
The gene encoding Staphylococcus simulans lysostaphin has been cloned into two Escherichia coli expression systems: pET23b+ (Novagen, UK) and pBAD/Thio-TOPO (Invitrogen, USA), which allow the overexpression of a target protein as a fusion protein. The enzyme produced in the pET system contains a cluster of six histidines at the C-terminus, and the protein produced in the pBAD system contains 133 additional amino acid residues at the N-terminus, including thioredoxin, a cluster of six histidines and a recognition site for endoprotease Factor Xa. The recombinant enzymes were purified by metal-affinity chromatography on a Co2+-Sepharose column. Approximately 20 mg of purified recombinant enzyme were obtained in the pET expression system and 39 mg in the pBAD system, from a 1-L culture. The obtained fusion protein from the pET system revealed specific activity that was approximately 10 times higher than that of the fusion protein from the pBAD system (970 U/mg versus 83 U/mg). The purified enzymes displayed maximum activity at close to 45 degrees C and pH 8.0 or 7.5 for the enzyme obtained from pET and pBAD system, respectively. The lysostaphin activity was strongly inhibited by Zn2+ or Cu2+ (2 mM) with a 70-80% decrease. The Ni2+ (2 mM) also inhibited the enzyme with a 60 and 20% activity decrease for enzyme from the pET and pBAD system, respectively. The Co2+ had no impact on enzymatic activity at the 2 mM concentration; however, 30 and 20% activity decreases were observed at the 10mM concentration for the enzyme obtained from the pET and pBAD expression systems, respectively. EDTA, known as a strong inhibitor of the native lysostaphin, had no impact on the antistaphylococcal activity of either recombinant enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号