首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Echmatocrinus from the Middle Cambrian Burgess Shale of British Columbia was originally described as the earliest crinoid(?) known from the fossil record. Recently, Conway Morris and Ausich & Babcock have questioned whether Echmatocrinus is in fact an echinoderm, comparing it instead to cnidarians with a polyp-like body and pinnate tentacles, and other authors are beginning to use this reinterpretation. We studied the well-preserved holotype of Echmatocrinus brachiatus, two paratypes, and 18 new specimens recovered from different levels in the Burgess Shale sequence at three localities. All are preserved as pyrite films in dark shale with relatively little relief, suggesting a lightly skeletized body. Complete specimens have a long, slightly tapering, large-plated attachment stalk, a conical cup or calyx with numerous small to medium-sized irregular plates, and 7–10 short arms with heavier plating and (in the holotype) soft appendages alternating from opposite sides of several arms. Several morphologic features indicate that Echmatocrinus is an echinoderm and has crinoid affinities: (1) Sutured plates, shown by darker depressed sutures, slightly raised plate centers, and oriented plate ornament, cover all major parts of the body; (2) reticulate surface ornament in the pyrite film on the plates of all specimens matches the ornament in the Burgess Shale edrioasteroid Walcottidiscus, an undoubted echinoderm, but not the pyritized surfaces of other metazoans in the fauna; (3) this distinctive ornament may represent the surface expression of microporous stereom; (4) possible ligament or muscle pads are present between the arm ossicles to fold and unfurl the more heavily plated arms. Within the echinoderms, only crinoids commonly have a calyx attached by a stalk or stem to the substrate and bear erect, moveable, uniserial arms for feeding. Although Echmatocrinus shows some resemblance to octocorals in overall body shape as an attached suspension feeder, almost all the details are different, indicating that Echmatocrinus is most likely unrelated to this group. All complete specimens of Echmatocrinus are attached to hard substrates, either another fossil or skeletal debris. The new specimens indicate that Echmatocrinus was twice as common (about 0.02%) in the Burgess Shale fauna as previously recorded and represents one of the earliest attached, medium-level, skeletized, suspension feeders or microcarnivores in the fossil record.  相似文献   

2.
The morphology of two new bivalved arthropods, Loricicaris spinocaudatus gen. et sp. nov. and Nereocaris briggsi sp. nov. from the middle Cambrian (Series 3, Stage 5) Burgess Shale Formation (Collins Quarry locality on Mount Stephen, Yoho National Park, British Columbia, Canada), is described. The material was originally assigned to the genus Branchiocaris, but exhibits distinctive character combinations meriting its assignment to other taxa. Loricicaris spinocaudatus possesses an elongate and spinose abdomen comparable to the contemporaneous Perspicaris and Canadaspis, as well as chelate second head appendages and subtriangular exopods, comparable to Branchiocaris. Nereocaris briggsi possesses a laterally compressed carapace, elongate and delicate appendages and a medial eye located between a pair of lateral eyes on a rhomboidal eye stalk. Although undoubtedly congeneric with Nereocaris exilis from a slightly younger horizon of the Burgess Shale Formation, N. briggsi differs in overall proportions and segment number, warranting assignment to a new species. The newly described taxa were coded into an extensive cladistic analysis of 755 characters, and 312 extinct and extant panarthropods, including a variety of Cambrian bivalved arthropods from both the Burgess Shale and the Chengjiang Lagerstätten. Cambrian bivalved arthropods consistently resolved as a paraphyletic assemblage at the base of Arthropoda. Important innovations in arthropod history such as the specialization of the deutocerebral head appendages and a shift from a nekton‐benthic deposit feeding habit to a benthic scavenging/predatory habit, the symplesiomorphic feeding condition of Euarthropoda (crown‐group arthropods), were found to have occurred among basal bivalved arthropods.  相似文献   

3.
Banffia constricta is an enigmatic Burgess Shale animal originally described by Charles Walcott in 1911 as an annelid, and more recently as a stem‐group deuterostome. Interpreted, on the basis of anatomy, to have been bottom‐feeders, there are few other data from which to draw interpretations of Banffia's life habit. A slab of Burgess Shale with a dense aggregation of B. constricta may indicate a gregarious habit for the animal, as taphonomic and stratigraphical data indicate an in situ origin for the assemblage. Clustering of individuals, high density of the individuals and non‐random within‐cluster orientation support the hypothesis that detritus‐feeding B. constricta congregated to feed on a local, rich food source. Presumed opportunistic feeding aggregations have been documented in at least one other Burgess Shale taxon and have been described for other fossil benthic marine invertebrates. Extant benthic marine invertebrates such as holothurians and echinoids exhibit mass feeding behaviour and may serve as modern analogs for the behaviour represented by the B. constricta assemblage.  相似文献   

4.
Amiskwia sagittiformis Walcott is redescribed on the basis of the five available specimens. The dorsoventrally compressed body consists of a head bearing a pair of prominent tentacles and a trunk with lateral and caudal fins. A gut with subterminal openings, cerebral ganglia, nerve cords, blood vessels and muscles have been identified with varying degrees of confidence. An active pelagic mode of life is considered probable. The rejection by earlier workers of this worm from the arrow-worms (Chaetognatha) is confirmed, but their identification of it as a nemertean (Nemertea) cannot be supported owing to the absence of critical data. The systematic position ofA. sagittiformis remains unresolved.  相似文献   

5.
O'Brien LJ  Caron JB 《PloS one》2012,7(1):e29233
Burgess Shale-type deposits provide invaluable insights into the early evolution of body plans and the ecological structure of Cambrian communities, but a number of species, continue to defy phylogenetic interpretations. Here we extend this list to include a new soft-bodied animal, Siphusauctum gregarium n. gen. and n. sp., from the Tulip Beds (Campsite Cliff Shale Member, Burgess Shale Formation) of Mount Stephen (Yoho National Park, British Columbia). With 1,133 specimens collected, S. gregarium is clearly the most abundant animal from this locality.This stalked animal (reaching at least 20 cm in length), has a large ovoid calyx connected to a narrow bilayered stem and a small flattened or bulb-like holdfast. The calyx is enclosed by a flexible sheath with six small openings at the base, and a central terminal anus near the top encircled by indistinct openings. A prominent organ, represented by six radially symmetrical segments with comb-like elements, surrounds an internal body cavity with a large stomach, conical median gut and straight intestine. Siphusauctum gregarium was probably an active filter-feeder, with water passing through the calyx openings, capturing food particles with its comb-like elements. It often occurs in large assemblages on single bedding planes suggesting a gregarious lifestyle, with the animal living in high tier clusters. These were probably buried en masse more or less in-situ by rapid mud flow events.Siphusauctum gregarium resembles Dinomischus, another Cambrian enigmatic stalked animal. Principal points of comparison include a long stem with a calyx containing a visceral mass and bract-like elements, and a similar lifestyle albeit occupying different tiering levels. The presence in both animals of a digestive tract with a potential stomach and anus suggest a grade of organization within bilaterians, but relationships with extant phyla are not straightforward. Thus, the broader affinities of S. gregarium remain largely unconstrained.  相似文献   

6.
Sediments of the Middle Cambrian Burgess Shale, Canada   总被引:1,自引:0,他引:1  
The Phyllopod Bed of the Burgess Shale, in which Walcott found the famous soft bodied fossils, consists of thin graded beds of calcareous siltstone and mud-stone, which are probably turbidites. The Burgess Shale was deposited on a reef front submarine fan, and the preservation of the fossils is probably due to rapid burial.  相似文献   

7.
A slab of Burgess Shale (Middle Cambrian), displaying an incomplete exoskeleton of the large arthropod Sidneyia inexpectans and encompassed by nine specimens of the priapulid worm Ottoia prolifica, is interpreted as a death assemblage, with the worms once living off or feeding around a carcass or freshly moulted instar of Sidneyia. Death is thought to have been caused by an obrution event that preserved the organisms in situ.  相似文献   

8.
Opabinia regalis has long been regarded as a curious animal, with its five eyes, its long flexible anterior process, and gill lamellae carried on the outside of overlapping lateral lobes. More recently, Opabinia has been reconstructed with lobopod limbs lying adaxial but separate from the lateral lobes. This version of Opabinia represented a lobopod–arthropod transition and prompted a hypothesis for the origin of the biramous limb that involved uniting the lobopod limb with a lateral lobe. New evidence of elemental maps is consistent with previous interpretations of the triangular structures in Opabinia as lateral extensions of the gut; there is no convincing evidence for the presence of lobopod limbs. Re-examination of critical specimens reveals that the gill lamellae are not on the outside of the lateral lobes. The limbs of Opabinia resemble the phyllopodous exopod of arthropods; the posterior margin is fringed with blades. Opabinia remains on the stem of euarthropods but not as a part of a paraphyletic Lobopodia. The Lobopodia is a clade of Cambrian armoured lobopods and onychophorans. A new hypothesis for the origin of the arthropod biramous limb from an exopod like that in Opabinia is presented, which involves an endite-bearing phyllopodous limb as an intermediate stage.  相似文献   

9.
A new genus and species of a Middle Cambrian stem group brachiopod, Acanthotretella spinosa n. gen. and n. sp., is described from the Burgess Shale Formation. Most of the 42 specimens studied came from the Greater Phyllopod bed (Walcott Quarry) and were collected from five bed assemblages, each representing a single obrution event. Specimens are probably preserved within their original habitat. In contrast to all brachiopods known from the Burgess Shale, the shells of the new stem group brachiopod are often deformed and do not show signs of brittle breakage, which suggests that the valves were originally either entirely organic in composition or, more likely, had just a minor mineral component. Acanthotretella spinosa differs from all the other described Cambrian brachiopods in that it is covered by long, slender and possibly partly mineralized spines that are posteriorly inclined at an oblique angle away from the anterior margin. The spines penetrate the shell and are mainly comparable with the thorn‐like organic objects that have been inferred from early siphonotretoid brachiopods. The pedicle was slender and was composed of a central coelomic region and emerged from an apical foramen at the end of an internal pedicle tube. The finding of a pedicle attached to the macrobenthic algae Dictyophycus and other epibenthos implies that A. spinosa did not have an infaunal mode of life. The visceral region and interior characters are poorly preserved.  相似文献   

10.
Pettersson Stolk, S., Holmer, L. E. and Caron, J ‐B. 2010. First record of the brachiopod Lingulella waptaensis with pedicle from the Middle Cambrian Burgess Shale. —Acta Zoologica (Stockholm) 91 : 150–162 The organophosphatic shells of linguloid brachiopods are a common component of normal Cambrian–Ordovician shelly assemblages. Preservation of linguloid soft‐part anatomy, however, is extremely rare, and restricted to a few species in Lower Cambrian Konservat Lagerstätten. Such remarkable occurrences provide unique insights into the biology and ecology of early linguloids that are not available from the study of shells alone. Based on its shells, Lingulella waptaensis Walcott, was originally described in 1924 from the Middle Cambrian Burgess Shale but despite the widespread occurrence of soft‐part preservation associated with fossils from the same levels, no preserved soft parts have been reported. Lingulella waptaensis is restudied herein based on 396 specimens collected by Royal Ontario Museum field parties from the Greater Phyllopod Bed (Walcott Quarry Shale Member, British Columbia). The new specimens, including three with exceptional preservation of the pedicle, were collected in situ in discrete obrution beds. Census counts show that L. waptaensis is rare but recurrent in the Greater Phyllopod Bed, suggesting that this species might have been generalist. The wrinkled pedicle protruded posteriorly between the valves, was composed of a central coelomic space, and was slender and flexible enough to be tightly folded, suggesting a thin chitinous cuticle and underlying muscular layers. The nearly circular shell and the long, slender and highly flexible pedicle suggest that L. waptaensis lived epifaunally, probably attached to the substrate. Vertical cross‐sections of the shells show that L. waptaensis possessed a virgose secondary layer, which has previously only been known from Devonian to Recent members of the Family Lingulidae.  相似文献   

11.
12.
13.
Exceptional fossil specimens with preserved soft parts from the Maotianshan Shale (ca 520 Myr ago) and the Burgess Shale (505 Myr ago) biotas indicate that the worldwide distributed bivalved arthropod Isoxys was probably a non-benthic visual predator. New lines of evidence come from the functional morphology of its powerful prehensile frontal appendages that, combined with large spherical eyes, are thought to have played a key role in the recognition and capture of swimming or epibenthic prey. The swimming and steering of this arthropod was achieved by the beating of multiple setose exopods and a flap-like telson. The appendage morphology of Isoxys indicates possible phylogenetical relationships with the megacheirans, a widespread group of assumed predator arthropods characterized by a pre-oral ‘great appendage’. Evidence from functional morphology and taphonomy suggests that Isoxys was able to migrate through the water column and was possibly exploiting hyperbenthic niches for food. Although certainly not unique, the case of Isoxys supports the idea that off-bottom animal interactions such as predation, associated with complex feeding strategies and behaviours (e.g. vertical migration and hunting) were established by the Early Cambrian. It also suggests that a prototype of a pelagic food chain had already started to build-up at least in the lower levels of the water column.  相似文献   

14.
15.
Palaeoscolecid worms are a ubiquitous group of Early Palaeozoic ecdysozoans that are curiously lacking in the archetypal Cambrian Lagerstätten, the Burgess Shale. Here I describe Scathascolex minor gen. et sp. nov, the first unequivocal palaeoscolecid from this site. Scathascolex is armoured with simple Hadimopanella‐like plates, but lacks smaller platelets, pointing to a close affinity with the Palaeoscolecida sensu stricto. Neither preservational nor environmental factors account for the scarcity of palaeoscolecids in the Burgess Shale, which presumably represents an ecological phenomenon.  相似文献   

16.
Burgess Shale-type deposits are renowned for their exquisite preservation of soft-bodied organisms, representing a range of animal body plans that evolved during the Cambrian ‘explosion’. However, the rarity of these fossil deposits makes it difficult to reconstruct the broader-scale distributions of their constituent organisms. By contrast, microscopic skeletal elements represent an extensive chronicle of early animal evolution—but are difficult to interpret in the absence of corresponding whole-body fossils. Here, we provide new observations on the dorsal spines of the Cambrian lobopodian (panarthropod) worm Hallucigenia sparsa from the Burgess Shale (Cambrian Series 3, Stage 5). These exhibit a distinctive scaly microstructure and layered (cone-in-cone) construction that together identify a hitherto enigmatic suite of carbonaceous and phosphatic Cambrian microfossils—including material attributed to Mongolitubulus, Rushtonites and Rhombocorniculum—as spines of Hallucigenia-type lobopodians. Hallucigeniids are thus revealed as an important and widespread component of disparate Cambrian communities from late in the Terreneuvian (Cambrian Stage 2) through the ‘middle’ Cambrian (Series 3); their apparent decline in the latest Cambrian may be partly taphonomic. The cone-in-cone construction of hallucigeniid sclerites is shared with the sclerotized cuticular structures (jaws and claws) in modern onychophorans. More generally, our results emphasize the reciprocal importance and complementary roles of Burgess Shale-type fossils and isolated microfossils in documenting early animal evolution.  相似文献   

17.
Diffraction gratings are reported from external surfaces of the hard, protective parts of Wiwaxia corrugata, Canadia spinosa and Marrella splendens from the Burgess Shale (Middle Cambrian (515 million years), British Columbia). As a consequence, these animals would have displayed iridescence in their natural environment: Cambrian animals have previously been accurately reconstructed in black and white only. A diversity of extant marine animals inhabiting a similar depth to the Burgess Shale fauna possess functional diffraction gratings. The Cambrian is a unique period in the history of animal life where predatory lifestyles and eyes capable of producing visual images were evolving rapidly. The discovery of colour in Cambrian animals prompts a new hypothesis on the initiation of the ''Big Bang'' in animal evolution which occurred during the Cambrian: light was introduced into the behavioural systems of metazoan animals for the first time. This introduction, of what was to become generally the most powerful stimulus in metazoan behavioural systems, would have triggered turbulence in metazoan evolution.  相似文献   

18.
19.
To better understand temporal variations in species diversity and composition, ecological attributes, and environmental influences for the Middle Cambrian Burgess Shale community, we studied 50,900 fossil specimens belonging to 158 genera (mostly monospecific and non-biomineralized) representing 17 major taxonomic groups and 17 ecological categories. Fossils were collected in situ from within 26 massive siliciclastic mudstone beds of the Greater Phyllopod Bed (Walcott Quarry — Fossil Ridge). Previous taphonomic studies have demonstrated that each bed represents a single obrution event capturing a predominantly benthic community represented by census- and time-averaged assemblages, preserved within habitat. The Greater Phyllopod Bed (GPB) corresponds to an estimated depositional interval of 10 to 100 KA and thus potentially preserves community patterns in ecological and short-term evolutionary time.The community is dominated by epibenthic vagile deposit feeders and sessile suspension feeders, represented primarily by arthropods and sponges. Most species are characterized by low abundance and short stratigraphic range and usually do not recur through the section. It is likely that these are stenotopic forms (i.e., tolerant of a narrow range of habitats, or having a narrow geographical distribution). The few recurrent species tend to be numerically abundant and may represent eurytopic organisms (i.e., tolerant of a wide range of habitats, or having a wide geographical distribution). Rarefaction curves demonstrate variation in species richness through the GPB and suggest that more stenotopic species could still be discovered with additional sampling. Comparisons between richness and evenness trends suggest that the community is relatively stable overall, despite gradual species turnover through time, especially in assemblages from younger beds. Less diverse assemblages with low species evenness possibly represent the onset of less favourable environmental conditions.Fossil occurrences in individual beds were analysed using a range of statistical techniques (Correspondence Analysis, Canonical Correspondence Analysis, Minimum Spanning Tree, Indicator Species Analysis, Mantel Test) to extract community patterns. Results suggest the presence of four fossil assemblages based on distinct species associations. The different assemblages presumably reflect variations in environmental and ecological conditions, some acting through time, leading to species turnover. “Disturbances” (e.g., changes in paleo-redox conditions), differences in substrate firmness, and limited taphonomic biases are probably the main factors contributing to community structure. The influence of ecological factors, however, is also predicted from non-random patterns of species recurrences in successive events. Preliminary comparisons with Lower Cambrian Chengjiang-type assemblages of southern China suggest that the overall structure and ecology of Cambrian communities remained relatively stable until at least the Middle Cambrian in subtidal siliciclastic soft substrate environments.Comparisons with modern marine benthic ecosystems further suggest the Burgess Shale community was probably highly dependent on immigration from a regional pool of species after each burial event. This could support the view that species availability, habitat characteristics, and recolonisation processes were more important in structuring the community in the long-term than species interactions or environmental variations at a local scale.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号