首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence comparison of Drosophila melanogaster glucose dehydrogenase, Escherichia coli choline dehydrogenase, Aspergillus niger glucose oxidase and Hansenula polymorpha methanol oxidase indicates that these four diverse flavoproteins are homologous, defining a new family of proteins named the GMC oxidoreductases. These enzymes contain a canonical ADP-binding beta alpha beta-fold close to their amino termini as found in other flavoenzymes. This domain is encoded by a single exon of the D. melanogaster glucose dehydrogenase gene.  相似文献   

2.
Procedures for the histochemical demonstration of DPN and TPN diaphorases have been presented by other workers. These techniques rely on the coenzyme-dependent dehydrogenases present in the tissue slice to generate the substrate required by the diaphorases. In vitro studies were carried out on kidney and adrenal tissue of the rat, using NT (neotetrazolium) and INT (2-p-iodophenyl-3-p-nitrophenyl-5-phenyl tetrazolium chloride) with various substrates of DPN-dependent dehydrogenases. The solutions used for study contained alcohol and alcohol dehydrogenase, glutamate and malate, malate, glutamate, beta-hydroxybutyrate, or DPNH. It has been possible to demonstrate (1) that histological distribution of dehydrogenases may differ from that of the flavoprotein oxidizing reduced coenzyme I; (2) characteristic patterns of distribution of particular dehydrogenases in the tissue proper; (3) different levels of dehydrogenase in kidney and adrenal; and (4) differences in dehydrogenase distribution in the kidneys of man and rat. The evidence presented clearly indicates the limitations inherent in the accepted procedures for the demonstration of DPN and TPN diaphorases. The possible application of the tetrazolium salts to the study of particular coenzyme-dependent dehydrogenases and the pitfalls which might occur are also discussed.  相似文献   

3.
Triethyloxonium tetrafluoroborate was used to O-alkylate nylon-tube thus producing the imidate salt of the nylon which was further made to react with 1,6-diaminohexane. 2. Hexokinase (EC 2.7.1.1) and glucose 6-phosphate dehydrogenase (EC 1.1.1.49) were immobilized on the amino-substituted nylon tube through glutaraldeyde and bisimidates. 3. The effect of varying the conditions of O-alkylation and the amount of enzyme immobilized on the activity of nylon tube-hexokinase derivatives was determined. 4. The effect of varying the amount of enzyme immobilized on the activity of nylon-tube-glucose 6-phosphate dehydrogenase derivatives was determined. 5. The thermal stability of nylon-tube-hexokinase and nylon-tube-glucose 6-phosphate dehydrogenase derivatives was studied. 6. Different ratios of hexokinase and glucose 6-phosphate dehydrogenase were co-immobilized on nylon tube, and the rate of conversion of glucose into 6-phosphogluconolactone was compared with the individual activities of the immobilized enzymes. 7. Hexokinase and glucose 6-phosphate dehydrogenase co-immobilized on nylon tube were used in the automated analysis of glucose.  相似文献   

4.
Procedures for the histochemical demonstration of DPN and TPN diaphorases have been presented by other workers. These techniques rely on the coenzyme-dependent dehydrogenases present in the tissue slice to generate the substrate required by the diaphorases. In vitro studies were carried out on kidney and adrenal tissue of the rat, using NT (neotetrazolium) and INT (2-p-iodophenyl-3-p-nitrophenyl-5-phenyl tetrazolium chloride) with various substrates of DPN-dependent dehydrogenases. The solutions used for study contained alcohol and alcohol dehydrogenase, glutamate and malate, malate, glutamate, β-hydroxybutyrate, or DPNH. It has been possible to demonstrate (1) that histological distribution of dehydrogenases may differ from that of the flavoprotein oxidizing reduced coenzyme I; (2) characteristic patterns of distribution of particular dehydrogenases in the tissue proper; (3) different levels of dehydrogenase in kidney and adrenal; and (4) differences in dehydrogenase distribution in the kidneys of man and rat. The evidence presented clearly indicates the limitations inherent in the accepted procedures for the demonstration of DPN and TPN diaphorases. The possible application of the tetrazolium salts to the study of particular coenzyme-dependent dehydrogenases and the pitfalls which might occur are also discussed.  相似文献   

5.
A new family of 2-hydroxyacid dehydrogenases   总被引:5,自引:0,他引:5  
The NADH-dependent hydroxypyruvate reductase from cucumber and the pdxB gene product of E. coli display significant homology to E. coli D-3-phosphoglycerate dehydrogenase. In contrast, these proteins do not display much similarity with other oxidoreductases or with other 2-hydroxyacid dehydrogenases in particular. On the basis of their relatedness and the structure of their substrates, these three enzymes constitute a new family of 2-hydroxyacid dehydrogenases distinct from malate and lactate dehydrogenase.  相似文献   

6.
Corticotropin and hydrocortisone were studied for their effect on dehydrogenase activity of microbial E. coli cells in the medium with the tricarboxylic acid cycle substrates, glucose and beta-oxybutyric acid. Corticotropin, as distinct from hydrocortisone, is shown to increase the dehydrogenase activity of microbial cells when pyruvate, isocitrate, oxaloacetate, alpha-ketoglutarate, succinate, furmarate, glucose and beta-oxybutyrate are used as substrates. Hydrocortisone induced a rise of the dehydrogenase activity of microbial cells only in the medium with isocitrate, alpha-ketoglutarate and fumarate, however to a less extent than corticotropin; it lowered this activity in the medium with pyruvate and glucose and did not change it with oxaloacetate, succinate and beta-oxybutyrate. The corticotropin effect is supposed to be extra-adrenal because microbial cells are also subjected to its action.  相似文献   

7.
Summary A novel application of immobilized enzymes is presented. Cofactor dependent immobilized enzymes can be used as affinity chromatography supports to bind their substrates without alteration in absence of the cofactor. The procedure has been demonstrated using β-galactose dehydrogenase to retain D-galactose selectively in the absence of NAD. The uses of the technique are discussed from the down-stream processing and mechanistic points of view.  相似文献   

8.
E Jablonski  M DeLuca 《Biochemistry》1978,17(4):672-678
Highly purified NADH and NADPH:FMN oxidoreductases from Beneckea harveyi have been characterized with regard to kinetic parameters, association with luciferase, activity with artificial electron acceptors, and the effects of inhibitors. The NADH:FMN oxidoreductase exhibits single displacement kinetics while the NADPH:FMN oxidoreductase exhibits double displacement or ping-pong kinetics. This is consistent with the formation of a reduced enzyme as an intermediate in the reaction of catalyzed by the NADPH:FMN oxidoreductase. Coupling of either of the oxidoreductases to the luciferase reaction decreases the apparent Kms for NADH, NADPH, and FMN, supporting the suggestion of a complex between the oxidoreductases and luciferase. The soluble oxidoreductases are more efficient in producing light with luciferase than is a NADH dehydrogenase preparation obtained from the membranes of these bacteria. The soluble enzymes use either FMN or FAD as substrates for the oxidation of reduced pyridine nucleotides while the membrane NADH dehydrogenase is much more active with artificial electron acceptors such as ferricyanide and methylene blue. FMN and FAD are very poor acceptors. The evidence indicates that neither of the soluble oxidoreductases is derived from the membranes. Both enzymes are constitutive and do not depend on the synthesis of luciferase.  相似文献   

9.
Horse liver alcohol dehydrogenase, which catalyzes oxidoreductions for a broad spectrum of substrates of organic chemical interest, was immobilized on CNBr-activated Sepharose and on decylamine-substituted agarose. The specific activities of the immobilized enzyme preparations were compared with the free enzyme, and the apparent K(m) values of the preparations were determined for a selection of substrates. At pH 9 and 60 degrees C, soluble liver alcohol dehydrogenase was rapidly inactivated, while the enzyme immobilized on CNBr-activated Sepharose was more stable. Adenosine monophosphate (AMP), adenosine diphosphate, and adenosine diphosphoribose protected the free and immobilized alcohol dehydrogenase against heat inactivation. On storage under a variety of conditions, AMP effectively stabilized free horse liver alcohol dehydrogenase and the immobilized preparations.  相似文献   

10.
The quaternary protein structure of two methanol:N,N'-dimethyl-4-nitrosoaniline (NDMA) oxidoreductases purified from Amycolatopsis methanolica and Mycobacterium gastri MB19 was analyzed by electron microscopy and image processing. The enzymes are decameric proteins (displaying fivefold symmetry) with estimated molecular masses of 490 to 500 kDa based on their subunit molecular masses of 49 to 50 kDa. Both methanol:NDMA oxidoreductases possess a tightly but noncovalently bound NADP(H) cofactor at an NADPH-to-subunit molar ratio of 0.7. These cofactors are redox active toward alcohol and aldehyde substrates. Both enzymes contain significant amounts of Zn2+ and Mg2+ ions. The primary amino acid sequences of the A. methanolica and M. gastri MB19 methanol:NDMA oxidoreductases share a high degree of identity, as indicated by N-terminal sequence analysis (63% identity among the first 27 N-terminal amino acids), internal peptide sequence analysis, and overall amino acid composition. The amino acid sequence analysis also revealed significant similarity to a decameric methanol dehydrogenase of Bacillus methanolicus C1.  相似文献   

11.
Hexose-6-phosphate dehydrogenase (refers to hexose-6-phosphate dehydrogenase from any species in general) has been purified to apparent homogeneity from the teleost fish Fundulus heteroclitus. The enzyme was characterized for native (210 kDa) and subunit molecular mass (54 kDa), isoelectric point (6.65), amino acid composition, substrate specificity, and metal dependence. Glucose 6-phosphate, galactose 6-phosphate, 2-deoxyglucose 6-phosphate, glucose 6-sulfate, glucosamine 6-phosphate, and glucose were found to be substrates in the reaction with NADP+, but only glucose was a substrate when NAD+ was used as coenzyme. A unique reaction mechanism for the forward direction was found for this enzyme when glucose 6-phosphate and NADP+ were used as substrates; ordered with glucose 6-phosphate binding first. NAD+ was found to be a competitive inhibitor toward NADP+ and an uncompetitive inhibitor with regard to glucose 6-phosphate in this reaction; Vmax = 7.56 mumol/min/mg, Km(NADP+) = 1.62 microM, Km(glucose 6-phosphate) = 7.29 microM, Kia(glucose 6-phosphate) = 8.66 microM, and Ki(NAD+) = 0.49 microM. The use of alternative substrates confirmed this result. This type of reaction mechanism has not been previously reported for a dehydrogenase.  相似文献   

12.
Glucose dehydrogenase (E.C. 1.1.1.47) from B. megaterium M 1286 was immobilized together with mutarotase (E.C. 5.1.3.3) on several organic carriers and by different methods. The storage stability of the enzyme at pH-values > 6 is slightly improved by immobilization and the pH-optimum is shifted from 8.3 to 8.0. Kinetic constants of the immobilized enzyme are: KM(NAD+) = 5.36 × 10?4 mol/l KM(glucose) = 3.76 · 10?2 mol/l and Vmax = 5.54 · 10?5 mol/(l min g carrier) for the most active preparation (2.16 mg enzyme/g carrier). In reactor experiments the immobilized glucose dehydrogenase was used with glucose to regenerate NADPH in NADPH-dependent iron-III-protoporphyrin-IX-imidazole catalyzed hydroxylation and demethylation of model substrates of cytochrome P-450. The advantages of the coupling of both reactions with cofactor recycling are shown and discussed.  相似文献   

13.
Extracellular fungal flavocytochrome cellobiose dehydrogenase (CDH) is a promising enzyme for both bioelectronics and lignocellulose bioconversion. A selective high-throughput screening assay for CDH in the presence of various fungal oxidoreductases was developed. It is based on Prussian Blue (PB) in situ formation in the presence of cellobiose (<0.25 mM), ferric acetate, and ferricyanide. CDH induces PB formation via both reduction of ferricyanide to ferrocyanide reacting with an excess of Fe3? (pathway 1) and reduction of ferric ions to Fe2? reacting with the excess of ferricyanide (pathway 2). Basidiomycetous and ascomycetous CDH formed PB optimally at pH 3.5 and 4.5, respectively. In contrast to the holoenzyme CDH, its FAD-containing dehydrogenase domain lacking the cytochrome domain formed PB only via pathway 1 and was less active than the parent enzyme. The assay can be applied on active growing cultures on agar plates or on fungal culture supernatants in 96-well plates under aerobic conditions. Neither other carbohydrate oxidoreductases (pyranose dehydrogenase, FAD-dependent glucose dehydrogenase, glucose oxidase) nor laccase interfered with CDH activity in this assay. Applicability of the developed assay for the selection of new ascomycetous CDH producers as well as possibility of the controlled synthesis of new PB nanocomposites by CDH are discussed.  相似文献   

14.
1. Glucose oxidase (EC 1.1.3.4) and urease (EC 3.5.1.5) were covalently attached through glutaraldehyde to low-molecular-weight nylon powder. 2. Immobilized derivatives of glucose oxidase and urease were prepared by cross-linking the respective enzymes within the matrix of a nylon membrane. 3. An improved process is described for the immobilization of glucose oxidase and urease on the inside surface of partially hydrolysed nylon tube. 4. Automated analytical procedures are described for the determination of glucose with each of the three immobilized glucose oxidase derivatives and for the determination of urea with each of the three immobilized urease derivatives. 5. The efficiencies of the three immobilized enzyme structures as reagents for the automated determination of their substrates were compared.  相似文献   

15.
Hexavalent chromium is a serious and widespread environmental pollutant. Although many bacteria have been identified that can transform highly water-soluble and toxic Cr(VI) to insoluble and relatively non-toxic Cr(III), bacterial bioremediation of Cr(VI) pollution is limited by a number of issues, in particular chromium toxicity to the remediating cells. To address this we sought to develop an immobilized enzymatic system for Cr(VI) remediation. To identify novel Cr(VI) reductase enzymes we first screened cell extracts from an Escherichia coli library of soluble oxidoreductases derived from a range of bacteria, but found that a number of these enzymes can reduce Cr(VI) indirectly, via redox intermediates present in the crude extracts. Instead, activity assays for 15 candidate enzymes purified as His6-tagged proteins identified E. coli NemA as a highly efficient Cr(VI) reductase (kcat/KM  = 1.1×105 M−1s−1 with NADH as cofactor). Fusion of nemA to the polyhydroxyalkanoate synthase gene phaC from Ralstonia eutropha enabled high-level biosynthesis of functionalized polyhydroxyalkanoate granules displaying stable and active NemA on their surface. When these granules were combined with either Bacillus subtilis glucose dehydrogenase or Candida boidinii formate dehydrogenase as a cofactor regenerating partner, high levels of chromate transformation were observed with only low initial concentrations of expensive NADH cofactor being required, the overall reaction being powered by consumption of the cheap sacrificial substrates glucose or formic acid, respectively. This system therefore offers promise as an economic solution for ex situ Cr(VI) remediation.  相似文献   

16.
Numerous attempts have recently been made to ascribe a preeminent role to RNA enzymes in primitive life systems. A model is proposed in which coenzyme-dependent RNA enzymes were initially organized in multienzyme complexes featuring (1) the continuous attachment of substrates to CoA-like carriers, as in fatty acid synthesis; and (2) the ordering of RNA enzymes via mRNA-like instructional strands. In this format, RNA enzymes would not have been required to recognized and specifically bind soluble substrates. The enzymes in this case may have required far less complexity than contemporary protein enzymes and thus less genetic information for their synthesis. An analogy is made between the proposed scheme and the protein translation mechanism, for which it may have been an evolutionary precursor.  相似文献   

17.
The effect of several factors on the activity and stability of alcohol dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and 20beta-hydroxysteroid dehydrogenase, both free and immobilized on CNBr-activated Sepharose 4B, was investigated. Enzymes were im- mobilized under different conditions including various degrees of matrix activation, variable amounts of protein, in the presence, or in the absence of, additives (coenzymes, dithioth- reitol, salts). Activity recovery was in general satisfactorily high with 20beta-hydroxysteroid dehydrogenase, low with glyceraldehyde-3-phosphatedehydrogenase, and markedly linked to the concentration of immobilized protein with alcohol dehydrogenase. In the latter case the advantageous stabilizing effect of high enzyme concentrations was notably diminished by the parallel decrease of the effectiveness factor. The effect of high concentrations of anions of the Hofmeister series was examined. It was found that 1M phosphate and 0.5M sulfate dramatically stabilize both free and immobilized enzymes against inactivation by temperature and urea. K(m), values of apolar substrates were considerably lowered by the two anions while K(m) values of polar substrates were not affected. In some cases V(max) values also were influenced by high concentrations of these anions. The present results appear of interest particularly in view of enzyme utilization for analytical as well as for preparative purposes.  相似文献   

18.
Rhodococcus erythropolis N9T-4 shows extremely oligotrophic growth requiring atmospheric CO? without any additional carbon or energy source. We performed a gene expression analysis of the oxidoreductases, which are involved in methanol metabolism, under various growth and induction conditions in N9T-4. A real-time PCR analysis revealed that the genes encoding NAD-dependent formaldehyde dehydrogenase (nFADH) and N,N'-dimethyl-4-nitrosoaniline-dependent methanol dehydrogenase (MDH) were strongly expressed under the oligotrophic conditions at levels of 20-100 fold those under heterotrophic conditions, in which n-tetradecane was used as the sole carbon source, while glucose did not affect the gene expression pattern in a minimum medium. The genes encoding mycothiol-dependent formaldehyde dehydrogenase (mFADH) and formate dehydrogenase were not induced under oligotrophic conditions, although mFADH expression was observed when formaldehyde was added to the induction medium. These results suggest that N9T-4 had three distinct formaldehyde oxidation systems, and that MDH and nFADH were the key enzymes in its oligotrophic growth.  相似文献   

19.
Three foldases--the apical domain of GroEL (mini-chaperone) and two oxidoreductases (DsbA and DsbC) from Escherichia coli--were studied in refolding a protein with immunoglobulin fold (immunoglobulin-folded protein) that had been produced as inclusion bodies in E.coli. The foldases promoted the refolding of single-chain antibody fragments from denaturant-solubilized and reduced inclusion bodies in vitro, and also effectively functioned as alternatives for labilizing agent and oxidizing reagent in the stepwise dialysis system. Immobilization of the oxidoreductases enhanced refolding and recovery of functional single-chain antibody in the dialysis system, suggesting that immobilized oxidoreductases can be used as an effective additive for refolding immunoglobulin-folded proteins in vitro.  相似文献   

20.
Lipogenesis in rat and guinea-pig isolated epididymal fat-cells   总被引:14,自引:13,他引:1       下载免费PDF全文
Fat-cells were prepared from rat and guinea-pig epididymal adipose tissue and compared on the basis of the intracellular distributions and activities of enzymes and with respect to their utilization of various U-(14)C-labelled substrates for lipogenesis. 1. Compared with the rat, guinea-pig extramitochondrial enzyme activities differed in that aconitate hydratase, alanine aminotransferase, ATP-citrate lyase, lactate dehydrogenase, NAD-malate dehydrogenase, NADP-malate dehydrogenase and phosphoenolpyruvate carboxykinase activities were appreciably lower, whereas aspartate aminotransferase, glucose 6-phosphate dehydrogenase, NADP-isocitrate dehydrogenase and 6-phosphogluconate dehydrogenase activities were appreciably higher. Mitochondrial activities of citrate synthase, NADP-isocitrate dehydrogenase and pyruvate carboxylase were appreciably lower, whereas mitochondrial activities of aspartate aminotransferase, glutamate dehydrogenase, NAD-malate dehydrogenase and phosphoenolpyruvate carboxykinase were higher in the guinea pig compared with the rat. 2. In general guinea-pig fat-cells incorporated acetate and lactate into fatty acids more readily than rat fat-cells, whereas rat fat-cells incorporated glucose and pyruvate more readily than guinea-pig fat-cells. 3. Acetate stimulated the incorporation of glucose into fatty acids in rat fat-cells, but had no appreciable effect upon this process in guinea-pig fat-cells. Acetate greatly decreased the incorporation of lactate into fatty acids in cells from both species. 4. Lactate/pyruvate ratios produced by incubation of guinea-pig cells with glucose+insulin were very low compared with those found with rat cells under the same conditions. 5. With glucose (+insulin) or with glucose+acetate (+insulin) as substrates guinea-pig cells produced enough NADPH by the hexose monophosphate pathway to satisfy the NADPH requirements of lipogenesis. In rat fat-cells under the same conditions, hexose monophosphate-pathway NADPH provision was not sufficient to meet the requirements of lipogenesis. 6. These results are discussed, particularly in relationship to the disposition of cytosolic reducing equivalents in the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号