首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
Peroxisome ghosts are aberrant peroxisomal structures found in cultured skin fibroblasts from patients affected by Zellweger Syndrome (ZS), a genetic disorder of peroxisomal assembly. They contain peroxisomal integral membrane proteins (PxIMPs) and they lack most of the matrix enzymes that should be inside the organelle (Santos et al., Science 239 (1988) 1536-1538). Considerable evidence indicates that these ghosts result from genetic defects in the cellular machinery for importing newly-synthesized peroxisomal proteins into the organelle. In contrast to these observations, (Heikoop et al., Eur. J. Cell Biol. 57 (1992) 165-171) report that in Zellweger Syndrome, peroxisomal membranes are located within lysosomes and/or contain lysosomal enzymes. We have undertaken a more detailed and systematic investigation of this matter, employing confocal laser scanning microscopy (CLSM). In fibroblasts derived from ZS patients belonging to different complementation groups, peroxisomes were labeled with antibodies against PxIMPs and lysosomes were labeled with an antibody against a lysosome associated membrane protein (LAMP-2) or with LysoTracker. The results unambiguously demonstrated no appreciable colocalization of PxIMPs and LAMPs (or LysoTracker), indicating that peroxisomal ghosts are distinct subcellular structures, occupying separate subcellular locations.  相似文献   

2.
Peroxisomal integral membrane proteins in control and Zellweger fibroblasts   总被引:23,自引:0,他引:23  
An entire organelle, the peroxisome, appears to be missing in Zellweger syndrome, causing profound neurological problems and neonatal death. One hypothesis for the molecular cause of this defect is a failure in the assembly of the peroxisomal membrane. An alternative is that the peroxisomal membrane is assembled, but the post-translational import of the matrix proteins is defective. We have investigated these possibilities by analytical cell fractionation, immunoblotting, and immunoelectron microscopy of fibroblasts. We identified four integral membrane proteins that can serve as markers for the human peroxisomal membrane. In Zellweger fibroblasts, peroxisomal membranes were found but they were abnormal; they had an equilibrium density of 1.10 g/cm3 instead of the normal density of 1.17 g/cm3, their diameters were generally 2-4 times greater than normal, and they lacked most content. The existence of these peroxisomal ghosts in Zellweger syndrome fibroblasts supports the hypothesis that the defect in this disease is in the protein import machinery.  相似文献   

3.
《The Journal of cell biology》1993,123(5):1133-1147
The goal of this research is to identify and characterize the protein machinery that functions in the intracellular translocation and assembly of peroxisomal proteins in Saccharomyces cerevisiae. Several genes encoding proteins that are essential for this process have been identified previously by Kunau and collaborators, but the mutant collection was incomplete. We have devised a positive selection procedure that identifies new mutants lacking peroxisomes or peroxisomal function. Immunofluorescence procedures for yeast were simplified so that these mutants could be rapidly and efficiently screened for those in which peroxisome biogenesis is impaired. With these tools, we have identified four complementation groups of peroxisome biogenesis mutants, and one group that appears to express reduced amounts of peroxisomal proteins. Two of our mutants lack recognizable peroxisomes, although they might contain peroxisomal membrane ghosts like those found in Zellweger syndrome. Two are selectively defective in packaging peroxisomal proteins and moreover show striking intracellular clustering of the peroxisomes. The distribution of mutants among complementation groups implies that the collection of peroxisome biogenesis mutants is still incomplete. With the procedures described, it should prove straightforward to isolate mutants from additional complementation groups.  相似文献   

4.
Two peroxisome targeting signals (PTSs) for matrix proteins have been well defined to date. PTS1 comprises a COOH-terminal tripeptide, SKL, and has been found in several matrix proteins, whereas PTS2 has been found only in peroxisomal thiolase and is contained within an NH2- terminal cleavable presequence. We have investigated the functional integrity of the import routes for PTS1 and PTS2 in fibroblasts from patients suffering from peroxisome assembly disorders. Three of the five complementation groups tested showed a general loss of PTS1 and PTS2 import. Two complementation groups showed a differential loss of peroxisomal protein import: group I cells were able to import a PTS1- but not a PTS2- containing reporter protein into their peroxisomes, and group IV cells were able to import the PTS2 but not the PTS1 reporter into aberrant, peroxisomal ghostlike structures. The observation that the PTS2 import pathway is intact only in group IV cells is supported by the protection of endogenous thiolase from protease degradation in group IV cells and its sensitivity in the remaining complementation groups, including the partialized disorder of group I. The functionality of the PTS2 import pathway and colocalization of endogenous thiolase with the peroxisomal membranes in group IV cells was substantiated further using immunofluorescence, subcellular fractionation, and immunoelectron microscopy. The phenotypes of group I and IV cells provide the first evidence for differential import deficiencies in higher eukaryotes. These phenotypes are analogous to those found in Saccharomyces cerevisiae peroxisome assembly mutants.  相似文献   

5.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS). Gene defects of peroxins required for both membrane assembly and matrix protein import are identified: ten mammalian pathogenic peroxins for ten complementation groups of PBDs, are required for matrix protein import; three, Pex3p, Pex16p and Pex19p, are shown to be essential for peroxisome membrane assembly and responsible for the most severe ZS in PBDs of three complementation groups 12, 9, and 14, respectively. Patients with severe ZS with defects of PEX3, PEX16, and PEX19 tend to carry severe mutation such as nonsense mutations, frameshifts and deletions. With respect to the function of these three peroxins in membrane biogenesis, two distinct pathways have been proposed for the import of peroxisomal membrane proteins in mammalian cells: a Pex19p- and Pex3p-dependent class I pathway and a Pex19p- and Pex16p-dependent class II pathway. In class II pathway, Pex19p also forms a soluble complex with newly synthesized Pex3p as the chaperone for Pex3p in the cytosol and directly translocates it to peroxisomes. Pex16p functions as the peroxisomal membrane receptor that is specific to the Pex3p-Pex19p complexes. A model for the import of peroxisomal membrane proteins is suggested, providing new insights into the molecular mechanisms underlying the biogenesis of peroxisomes and its regulation involving Pex3p, Pex19p, and Pex16p. Another model suggests that in Saccharomyces cerevisiae peroxisomes likely emerge from the endoplasmic reticulum. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.  相似文献   

6.
We have previously reported the isolation of Chinese hamster ovary (CHO) cell mutants that are defective in the biosynthesis of plasmalogens, deficient in at least two peroxisomal enzymes (dihydroxyacetonephosphate (DHAP) acyltransferase and alkyl-DHAP synthase), and in which catalase is not found within peroxisomes (Zoeller, R. A., and Raetz, C. R. H. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5170). We now provide further evidence that three such strains are more generally defective in peroxisome biogenesis. Electron microscopic cytochemistry revealed that the mutants did not contain recognizable peroxisomes. However, immunofluorescence microscopy using an antibody directed against peroxisomal integral membrane proteins revealed the presence of peroxisomal membrane ghosts resembling those seen in cells of patients suffering from one of the human peroxisomal disorders, Zellweger syndrome. Immunoblot analyses, using antibodies specific for peroxisomal matrix proteins, demonstrated deficiencies of peroxisomal proteins in the mutant CHO cells that were similar to those in Zellweger syndrome. Fusion of a CHO mutant with fibroblasts obtained from Zellweger patients resulted in restoration of peroxisomal dihydroxyacetonephosphate acyltransferase and peroxisomal acyl-coenzyme A oxidation activities. The hybrid cells also regained the ability to synthesize plasmenylethanolamine. Moreover, normal peroxisomes were seen by immunofluorescence in the hybrid cells. These results indicate that the hybrid cells have recovered the ability to assemble peroxisomes and that, although the mutant CHO cells are biochemically and morphologically very similar to cells from patients with Zellweger syndrome, the genetic lesions are distinct. Our somatic cell mutants should be useful in identifying factors and genes involved in peroxisome biogenesis and may aid the genetic categorization of the various peroxisomal disorders.  相似文献   

7.
The biogenesis and maintenance of cellular organelles is of fundamental importance in all eukaryotic cells. One such organelle is the peroxisome. The establishment of a genetic system to study peroxisome biogenesis in the methylotrophic yeast Pichia pastoris has yielded many different complementation groups of peroxisomal assembly (pas) or peroxisome-deficient (per) mutants. Each appears to be deficient in functional peroxisomes. One of these mutants, pas5, has been characterized, complemented, and the gene sequenced. Ultrastructural studies show that normal peroxisomes are not present in pas5, but aberrant peroxisomal structures resembling "membranous ghosts" are frequently observed. The "peroxisome ghosts" appear to be induced and segregated to daughter cells normally. Biochemical fractionation analysis of organelles of the pas5 mutant reveals that peroxisomal matrix enzymes are induced normally but are found mostly in the cytosol. However, purification of peroxisome ghosts from the mutant shows that small amounts (< 5%) of matrix enzymes are imported. The PAS5 gene was cloned and found to encode a 127-kD protein, which contains a 200-amino acid-long region of homology with PAS1, NEM- sensitive factor (NSF), and other related ATPases. Weak homology to a yeast myosin was also observed. The gene is not essential for growth on glucose but is essential for growth on oleic acid and methanol. The role of PAS5 in peroxisome biogenesis is discussed.  相似文献   

8.
Peroxisome-biogenesis disorders (PBD) are genetically heterogeneous and can be classified into at least ten complementation groups. We recently isolated the cDNA for rat peroxisome assembly factor-2 (PAF-2) by functional complementation using the peroxisome-deficient Chinese-hamster-ovary cell mutant, ZP92. To clarify the novel pathogenic gene of PBD, we cloned the full-length human PAF-2 cDNA that morphologically and biochemically restores peroxisomes of group C Zellweger fibroblasts (the same as group 4 in the Kennedy-Krieger Institute) and identified two pathogenic mutations in the PAF-2 gene in two patients with group C Zellweger syndrome. The 2,940-bp open reading frame of the human PAF-2 cDNA encodes a 980-amino-acid protein that shows 87.1% identity with rat PAF-2 and also restored the peroxisome assembly after gene transfer to fibroblasts of group C patients. Direct sequencing of the PAF-2 gene revealed a homozygous 1-bp insertion at nucleotide 511 (511 insT) in one patient with group C Zellweger syndrome (ZS), which introduces a premature termination codon in the PAF-2 gene, and, in the second patient, revealed a splice-site mutation in intron 3 (IVS3+1G-->A), which skipped exon 3, an event that leads to peroxisome deficiency. Chromosome mapping utilizing FISH indicates that PAF-2 is located on chromosome 6p21.1. These results confirm that human PAF-2 cDNA restores peroxisome of group C cells and that defects in the PAF-2 produce peroxisome deficiency of group C PBD.  相似文献   

9.
Zellweger cerebro-hepato-renal syndrome is a severe congenital disorder associated with defective peroxisomal biogenesis. At least 23 PEX genes have been reported to be essential for peroxisome biogenesis in various species, indicating the complexity of peroxisomal assembly. Cells from patients with peroxisomal biogenesis disorders have previously been shown to segregate into >/=12 complementation groups. Two patients assigned to complementation group G who had not been linked previously to a specific gene defect were confirmed as displaying a cellular phenotype characterized by a lack of even residual peroxisomal membrane structures. Here we demonstrate that this complementation group is associated with mutations in the PEX3 gene, encoding an integral peroxisomal membrane protein. Homozygous PEX3 mutations, each leading to C-terminal truncation of PEX3, were identified in the two patients, who both suffered from a severe Zellweger syndrome phenotype. One of the mutations involved a single-nucleotide insertion in exon 7, whereas the other was a single-nucleotide substitution eight nucleotides from the normal splice site in the 3' acceptor site of intron 10. Expression of wild-type PEX3 in the mutant cell lines restored peroxisomal biogenesis, whereas transfection of mutated PEX3 cDNA did not. This confirmed that the causative gene had been identified. The observation of peroxisomal formation in the absence of morphologically recognizable peroxisomal membranes challenges the theory that peroxisomes arise exclusively by growth and division from preexisting peroxisomes and establishes PEX3 as a key factor in early human peroxisome synthesis.  相似文献   

10.
Most mammalian cell strains genetically deficient in peroxisome biogenesis have abnormal membrane structures called ghosts, containing integral peroxisomal membrane protein, PMP70, but lacking the peroxisomal matrix proteins. Upon genetic complementation, these mutants regain the ability of peroxisome biogenesis. It is postulated that, in this process, the ghosts act as the precursors of peroxisomes, but there has been no evidence to support this. In the present study, we investigated this issue by protein microinjection to a mutant Chinese hamster ovary cell line defective of PEX5, encoding a peroxisome-targeting signal receptor. When recombinant Pex5p and green fluorescent protein (GFP) carrying a peroxisome-targeting signal were co-injected into the mutant cells, the GFP fluorescence gathered over time to particulate structures where PMP70 was co-localized. This process was dependent on both Pex5p and the targeting signal, and, most importantly, occurred even in the presence of cycloheximide, a protein synthesis inhibitor. These findings suggest that the ghosts act as acceptors of matrix proteins in the peroxisome recovery process at least in the PEX5 mutant, and support the view that peroxisomes can grow by incorporating newly synthesized matrix proteins.  相似文献   

11.
Protein import into the peroxisome matrix is mediated by peroxisome-targeting signals (PTSs). We have developed a novel, quantitative, in vitro assay for measuring peroxisomal import of PTS1-containing proteins. This enzyme-linked immunosorbent assay-based system utilizes semi-intact human A431 cells or fibroblasts and a biotinylated version of the PTS1-containing import substrate, luciferase. We show that biotinylated luciferase accumulated in peroxisomes in a time- and temperature-dependent fashion, in a reaction stimulated by exogenously added ATP, cytosol, and zinc. No import was detected in fibroblasts from a human patient belonging to complementation group 2, who suffered from the fatal peroxisomal disorder Zellweger syndrome and lacked a functional PTS1 receptor, Pex5p. Also, the reaction was significantly inhibited by antibodies to the zinc-finger protein, Pex2p. Several lines of evidence demonstrate that biotinylated luciferase was imported into the lumen of bona fide peroxisomes. (a) Biochemical fractionation of cells after the import reaction showed a time-dependent accumulation of the import substrate within intracellular organelles. (b) Confocal fluorescence microscopy indicated that imported biotinylated luciferase colocalized with the peroxisomal protein PMP70. (c) Visualization of the imported biotinylated luciferase by indirect fluorescence or indirect immunofluorescence required disruption of the peroxisomal membrane, indicating true import rather than binding to the outside of the organelle.  相似文献   

12.
Pex6p belongs to the AAA family of ATPases. Its CHO mutant, ZP92, lacks normal peroxisomes but contains peroxisomal membrane remnants, so called peroxisomal ghosts, which are detected with anti-70-kDa peroxisomal membrane protein (PMP70) antibody. No peroxisomal matrix proteins were detected inside the ghosts, but exogenously expressed green fluorescent protein (GFP) fused to peroxisome targeting signal-1 (PTS-1) accumulated in the areas adjacent to the ghosts. Electron microscopic examination revealed that PMP70-positive ghosts in ZP92 were complex membrane structures, rather than peroxisomes with reduced matrix protein import ability. In a typical case, a set of one central spherical body and two layers of double-membraned loops were observed, with endoplasmic reticulum present alongside the outer loop. In the early stage of complementation by PEX6 cDNA, catalase and acyl-CoA oxidase accumulated in the lumen of the double-membraned loops. Biochemical analysis revealed that almost all the peroxisomal ghosts were converted into peroxisomes upon complementation. Our results indicate that 1) Peroxisomal ghosts are complex membrane structures; and 2) The complex membrane structures become import competent and are converted into peroxisomes upon complementation with PEX6.  相似文献   

13.
Peroxisome assembly in mammals requires more than 14 genes. So far, we have isolated seven complementation groups (CGs) of peroxisome biogenesis-defective Chinese hamster ovary (CHO) cell mutants, Z65, Z24/ZP107, ZP92, ZP105/ZP139, ZP109, ZP110, ZP114. Two peroxin cDNAs, PEX2 and PEX6, were first cloned by genetic phenotype-complementation assay using Z65 and ZP92, respectively, and were shown to be responsible for peroxisome biogenesis disorders (PBD) such as Zellweger syndrome, of CG-F (the same as CG-X in U.S.A.) and CG-C (the same as CG-IV), respectively. Pex2p is a RING zinc finger membrane protein of peroxisomes and Pex6p is a member of the AAA ATPase family. We likewise isolated PEX12 encoding a peroxisomal integral membrane protein in the RING family, by functional complementation of ZP109, demonstrating PEX12 to be responsible for CG-III PBD. We also cloned PEX1 by screening of human liver cDNA library, using ZP107. PEX1 mutation was delineated to be the genetic cause of PBD in the most highest incidence group, CG-E (the same a CG-I). Moreover, we recently found that Pex5p, using PEX5-defective ZP105 and ZP139. Thus, CHO cell mutants defective in peroxisome biogenesis are indeed shown to be very useful for the studies of peroxisome assembly and delineating pathogenic genes in PBD. Furthermore, we have isolated novel CGs of CHO mutants, ZP119 and ZP126.  相似文献   

14.
We have isolated a collection of peroxisome degradation-deficient (Pdd-) mutants of the yeast Hansenula polymorpha which are impaired in the selective autophagy of alcohol oxidase-containing peroxisomes. Two genes, designated PDD1 and PDD2, have been identified by complementation and linkage analyses. In both mutant strains, the glucose-induced proteolytic turnover of peroxisomes is fully prevented. The pdd1 and pdd2 mutant phenotypes were caused by recessive monogenic mutations. Mutations mapped in the PDD1 gene appeared to affect the initial step of peroxisome degradation, namely, sequestration of the organelle to be degraded by membrane multilayers. Thus, Pdd1p may be involved in the initial signalling events which determine which peroxisome will be degraded. The product of the PDD2 gene appeared to be essential for mediating the second step in selective peroxisome degradation, namely, fusion and subsequent uptake of the sequestered organelles into the vacuole. pdd1 and pdd2 mutations showed genetic interactions which suggested that the corresponding gene products may physically or functionally interact with each other.  相似文献   

15.
The human disorders of peroxisome biogenesis (PBDs) are subdivided into 12 complementation groups (CGs). CG8 is one of the more common of these and is associated with varying phenotypes, ranging from the most severe, Zellweger syndrome (ZS), to the milder neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD). PEX26, encoding the 305-amino-acid membrane peroxin, has been shown to be deficient in CG8. We studied the PEX26 genotype in fibroblasts of eight CG8 patients--four with the ZS phenotype, two with NALD, and two with IRD. Catalase was mostly cytosolic in all these cell lines, but import of the proteins that contained PTS1, the SKL peroxisome targeting sequence, was normal. Expression of PEX26 reestablished peroxisomes in all eight cell lines, confirming that PEX26 defects are pathogenic in CG8 patients. When cells were cultured at 30 degrees C, catalase import was restored in the cell lines from patients with the NALD and IRD phenotypes, but to a much lesser extent in those with the ZS phenotype, indicating that temperature sensitivity varied inversely with the severity of the clinical phenotype. Several types of mutations were identified, including homozygous G89R mutations in two patients with ZS. Expression of these PEX26 mutations in pex26 Chinese hamster ovary cells resulted in cell phenotypes similar to those in the human cell lines. These findings confirm that the degree of temperature sensitivity in pex26 cell lines is predictive of the clinical phenotype in patients with PEX26 deficiency.  相似文献   

16.
The collection of vacuolar protein sorting mutants (vps mutants) in Saccharomyces cerevisiae comprises of 41 complementation groups. The vacuoles in these mutant strains were examined using immunofluorescence microscopy. Most of the vps mutants were found to possess vacuolar morphologies that differed significantly from wild-type vacuoles. Furthermore, mutants representing independent vps complementation groups were found to share aberrant morphological features. Six distinct classes of vacuolar morphology were observed. Mutants from eight vps complementation groups were defective both for vacuolar segregation from mother cells into developing buds and for acidification of the vacuole. Another group of mutants, represented by 13 complementation groups, accumulated a novel organelle distinct from the vacuole that contained a late-Golgi protein, active vacuolar H(+)-ATPase complex, and soluble vacuolar hydrolases. We suggest that this organelle may represent an exaggerated endosome-like compartment. None of the vps mutants appeared to mislocalize significant amounts of the vacuolar membrane protein alkaline phosphatase. Quantitative immunoprecipitations of the soluble vacuolar hydrolase carboxypeptidase Y (CPY) were performed to determine the extent of the sorting defect in each vps mutant. A good correlation between morphological phenotype and the extent of the CPY sorting defect was observed.  相似文献   

17.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders such as Zellweger syndrome. Two AAA peroxins, Pex1p and Pex6p, are encoded by PEX1 and PEX6, the causal genes for PBDs of complementation groups 1 and 4, respectively. PEX26 responsible for peroxisome biogenesis disorders of complementation group 8 codes for C-tail-anchored type-II membrane peroxin Pex26p, the recruiter of Pex1p-Pex6p complexes to peroxisomes. Pex1p is targeted to peroxisomes in a manner dependent on ATP hydrolysis, while Pex6p targeting requires ATP but not its hydrolysis. Pex1p and Pex6p are most likely regulated in their peroxisomal localization onto Pex26p via conformational changes by ATPase cycle. Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome targeting signal type-1 and shuttles between the cytosol and peroxisomes. AAA peroxins are involved in the export from peroxisomes of Pex5p. Pex5p is ubiquitinated at the conserved cysteine11 in a form associated with peroxisomes. Pex5p with a mutation of the cysteine11 to alanine, termed Pex5p-C11A, abrogates peroxisomal import of proteins harboring peroxisome targeting signals 1 and 2 in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, hence suggesting an essential role of the cysteine residue in the export of Pex5p.  相似文献   

18.
We have developed a positive selection system for the isolation of Saccharomyces cerevisiae mutants with disturbed peroxisomal functions. The selection is based on the lethality of hydrogen peroxide (H2O2) that is produced in wild type cells during the peroxisomal beta-oxidation of fatty acids. In total, 17 mutants having a general impairment of peroxisome biogenesis were isolated, as revealed by their inability to grow on oleic acid as the sole carbon source and their aberrant cell fractionation pattern of peroxisomal enzymes. The mutants were shown to have monogenetic defects and to fall into 12 complementation groups. Representative members of each complementation group were morphologically examined by immunocytochemistry using EM. In one mutant the induction and morphology of peroxisomes is normal but import of thiolase is abrogated, while in another the morphology differs from the wild type: stacked peroxisomal membranes are present that are able to import thiolase but not catalase. These mutants suggest the existence of multiple components involved in peroxisomal protein import. Some mutants show the phenotype characteristic of glucose-repressed cells, an indication for the interruption of a signal transduction pathway resulting in organelle proliferation. In the remaining mutants morphologically detectable peroxisomes are absent: this phenotype is also known from fibroblasts of patients suffering from Zellweger syndrome, a disorder resulting from impairment of peroxisomes.  相似文献   

19.
Peroxisome biogenesis disorders (PBDs) contain various clinical phenotypes; Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD), decreasing in the clinical severity in this order. We found that all IRD cell lines and some NALD lines belonging to several different complementation groups are temperature-sensitive in peroxisome assembly; that is, they lacked catalase-positive peroxisomes at 37°C, but do gain the peroxisomes at 30°C. We identified heterozygous mutations E55K/R119Stop in the PEX2 gene of an IRD patient of complementation group F. The E55K mutation was the direct cause of the temperature-sensitivity because similar phenotypes could be transferred to PEX2-defective CHO cells by transfecting the mutant gene. Thus, temperature-sensitive peroxisome assembly is representative of milder forms of PBDs. The main part of this study was published by Imamura et al. (1).  相似文献   

20.
Cells with a genetic defect affecting a biological activity and/or a cell phenotype are generally called "cell mutants" and are a highly useful tool in genetic, biochemical, as well as cell biological research. To investigate peroxisome biogenesis and human peroxisome biogenesis disorders, more than a dozen complementation groups of Chinese hamster ovary (CHO) cell mutants defective in peroxisome assembly have been successfully isolated and established as a model system. Moreover, successful PEX gene cloning studies by taking advantage of rapid functional complementation assay of CHO cell mutants invaluably contributed to the accomplishment of isolation of pathogenic genes responsible for peroxisome biogenesis diseases. Molecular mechanisms of peroxisome assembly are currently investigated by making use of such mammalian cell mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号