共查询到20条相似文献,搜索用时 0 毫秒
1.
Entrainment of running wheel activity in DD was studied in adult male Long Evans rats exposed to cycles of a constant dose of melatonin (MEL; 100 microg/h) infused subcutaneously. The period (T) of the MEL cycle was initially kept at 24 h until stable entrainment was established; T was then changed in a stepwise manner, and each new T value was maintained for at least 20 cycles. Entrainment by phase advance occurred near circadian time 12 (activity onset), and the range of entrainment was between 30 and 35 min. The negative phase angle difference between activity onset and MEL onset increased as T values approached the entrainment limit, whereas no change in the duration of daily activity periods was found. No difference was observed between pre- and posttreatment values of the endogenous circadian period; hence, no aftereffects were found for any T value. These results indicate that the functional properties of entrainment to MEL are similar to those of entrainment to light, suggesting that both zeitgebers share a common timing mechanism. 相似文献
2.
Light exposure was measured in 30 permanent night nurses to determine if specific light/dark profiles could be associated with a better circadian adaptation. Circadian adaptation was defined as a significant shift in the timing of the episode of melatonin secretion into the daytime. Light exposure was continuously recorded with ambulatory wrist monitors for 56 h, including 3 consecutive nights of work. Participants were then admitted to the laboratory for 24 h where urine was collected every 2 h under dim light for the determination of 6-sulphatoxymelatonin concentration. Cosinor analysis was used to estimate the phase position of the episode of melatonin secretion. Five participants showed a circadian adaptation by phase delay ("delayed participants") and 3 participants showed a circadian adaptation by phase advance ("advanced participants"). The other 22 participants had a timing of melatonin secretion typical of day-oriented people ("nonshifters"). There was no significant difference between the 3 groups for total light exposure or for bright light exposure in the morning when traveling home. However, the 24-h profiles of light exposure were very distinctive. The timing of the main sleep episode was associated with the timing of light exposure. Delayed participants, however, slept in darker bedrooms, and this had a major impact on their profile of light/dark exposure. Delayed and advanced participants scored as evening and morning types, respectively, on a morningness-eveningness scale. This observation suggests that circadian phase prior to night work may contribute to the initial step toward circadian adaptation, later reinforced by specific patterns of light exposure. 相似文献
3.
R Wagner C Oberste-Berghaus S Herpertz W F Blum B Pelz J Hebebrand W Senf K Mann N Albers 《Hormone research》2000,54(4):174-180
BACKGROUND: Leptin is involved in the regulation of eating behavior. Its serum levels are determined by fat mass but a diurnal rhythm is also described. It is not clear whether leptin levels are also controlled in vivo by hormonal stimuli, like insulin or cortisol. METHODS AND RESULTS: This possible temporal relation was investigated by serial measurements during 24 h (group A) and 46 h (group B) in 15 healthy volunteers and another 10 subjects (group C) while fasting for 72 h. Maximal leptin levels were observed at 4:00 a.m. and 4:00 p.m. in subjects on a normal diet. During 24 h starvation (group B), there was a 40% decrease of mean leptin concentration when compared to baseline values. In group C, the leptin concentration under starvation dropped to 25% of basal levels after 72 h. Pooled data from group A and the nonfasting data from group B showed an insulin increase preceding leptin increase by 6 h (r = 0.405, p < 0.0001), while cortisol decreased 4 h (r = 0.361, p < 0.001) after leptin decrease. CONCLUSION: Starvation results in a fall of circulating leptin, ending leptin rhythmicity. Food intake is causally involved in the fluctuation of leptin levels in serum. Presumably this effect is mediated by insulin, while cortisol does not seem to affect leptin release directly in vivo. 相似文献
4.
If applied during corresponding times of the individual melatonin profiles, bright light shifts the circadian phase equally, irrespective of diurnal type. We examined 32 young men: 10 morning types, 11 evening types, and 11 with no predisposition; 16 with high and 16 with low melatonin production. Each completed a 40 h session that included two consecutive nights during which the participants remained, apart from two short breaks during the second day, in bed under an illumination level of 30 lux. A 4 h bright light pulse was applied just after the expected individual melatonin onset the first night to cause a delay of the hormonal profile the second night. Salivary levels of melatonin and cortisol were determined hourly. Melatonin was delayed by 108 min, and cortisol offset and onset by 47 and 110 min, respectively. The cortisol quiescent period (start and end of the quiescent period being defined by the decrease below and the increase above 60% of the average cortisol production between 18:00 and 09:00 h) was prolonged. In contrast to the other subgroups, the delay of melatonin synthesis was about 0.5 h shorter in morning types, and their cortisol quiescent period was shortened. The present study leads to the hypothesis that, despite individually scheduled light exposure, morning types are potentially disadvantaged due to elevated cortisol levels, if persisting, in career night workers. 相似文献
5.
Background
The phase and amplitude of rhythms in physiology and behavior are generated by circadian oscillators and entrained to the 24-h day by exposure to the light-dark cycle and feedback from the sleep-wake cycle. The extent to which the phase and amplitude of multiple rhythms are similarly affected during altered timing of light exposure and the sleep-wake cycle has not been fully characterized.Methodology/Principal Findings
We assessed the phase and amplitude of the rhythms of melatonin, core body temperature, cortisol, alertness, performance and sleep after a perturbation of entrainment by a gradual advance of the sleep-wake schedule (10 h in 5 days) and associated light-dark cycle in 14 healthy men. The light-dark cycle consisted either of moderate intensity ‘room’ light (∼90–150 lux) or moderate light supplemented with bright light (∼10,000 lux) for 5 to 8 hours following sleep. After the advance of the sleep-wake schedule in moderate light, no significant advance of the melatonin rhythm was observed whereas, after bright light supplementation the phase advance was 8.1 h (SEM 0.7 h). Individual differences in phase shifts correlated across variables. The amplitude of the melatonin rhythm assessed under constant conditions was reduced after moderate light by 54% (17–94%) and after bright light by 52% (range 12–84%), as compared to the amplitude at baseline in the presence of a sleep-wake cycle. Individual differences in amplitude reduction of the melatonin rhythm correlated with the amplitude of body temperature, cortisol and alertness.Conclusions/Significance
Alterations in the timing of the sleep-wake cycle and associated bright or moderate light exposure can lead to changes in phase and reduction of circadian amplitude which are consistent across multiple variables but differ between individuals. These data have implications for our understanding of circadian organization and the negative health outcomes associated with shift-work, jet-lag and exposure to artificial light. 相似文献6.
Although previous reports indicate that nocturnal plasma melatonin secretion declines with age, some recent findings do not support this point. In the present cross-sectional study, we documented serum melatonin concentrations at two time points, 02:00 and 08:00 h, in 144 persons aged 30-110 yr and found a significant age-related decline. It began around the age of 60 and reached a very significantly lower level in subjects in their 70s and over 80 yr of age (P < 0.01, when compared with age <60 yr). Nocturnal melatonin levels were higher among (post-menopausal only) women than men overall (P < 0.05). In the older age-groups, nocturnal melatonin levels did not differ between healthy controls and subjects with high blood pressure or ischemic heart disease. To further check these results, we also assessed the circadian pattern of serum melatonin in four subgroups of healthy men, aged 30-39, 40-49, 50-59, and 60-69 yr: blood samples were taken at 2 h intervals from 08:00 to 22:00 h and hourly from 22:00 to 08:00 h. Our results showed generally similar circadian melatonin patterns that peaked at night with very low levels during the daytime. No significant difference was found among the three younger groups, but nocturnal melatonin levels were significantly lower in the men in their 60s. 相似文献
7.
Zawilska JB Lorenc A Berezińska M Vivien-Roels B Pévet P Skene DJ 《Chronobiology international》2006,23(1-2):341-350
The aim of the present study was to examine arylalkylamine N-acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light-dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night-time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high-amplitude melatonin rhythms in the turkey. 相似文献
8.
The gray mouse lemur (Microcebus murinus), a prosimian primate, exhibits seasonal rhythms strictly controlled by photoperiodic variations. Previous studies indicated that longevity can be altered by long-term acceleration of seasonal rhythms, providing a model for assessing various aspects of aging. To assess the effect of aging and accelerated aging on the circadian system of this primate, we compared the circadian rhythm of the locomotor activity in adult mouse lemurs (2-4.5 years, n = 9), aged mouse lemurs (5-9 years, n = 10), and adult mouse lemurs that had been exposed from birth to a shortened seasonal photoperiodic cycle (2-4.5 years, n = 7). Compared to adult animals, aged mouse lemurs showed a significant increase in intradaily variability and an advanced activity onset. Aging was characterized by a decrease in amplitude, with both a decrease in nocturnal activity and an increase in daytime activity. When maintained in constant dim red light, aged animals exhibited a shortening of the free-running period (22.8 +/- 0.1 h) compared to adult animals (23.5 +/- 0.1 h). A 3- to 5-year exposure to an accelerated seasonal photoperiodic rhythm ("annual" duration of 5 months) in accelerated mouse lemurs produced disturbances of the locomotor activity rhythm that resembled those of aged mouse lemurs, whether animals were studied in entrained or in free-running conditions. The present study demonstrated a weakened and fragmented locomotor activity rhythm during normal aging in this primate. Increasing the number of expressed seasonal cycles accelerated aging of parameters related to circadian rhythmicity in adult animals. 相似文献
9.
Young MW 《Trends in biochemical sciences》2000,25(12):3540-606
Our sleep–wake cycles and many other 24-hour rhythms of behavior and physiology persist in the absence of environmental cues. Genetic and biochemical studies have shown that such rhythms are controlled by internal molecular clocks. These are assembled from the cycling RNA and protein products of a small group of genes that are conserved throughout the animal kingdom. 相似文献
10.
Buxton OM L'Hermite-Balériaux M Turek FW van Cauter E 《American journal of physiology. Regulatory, integrative and comparative physiology》2000,278(2):R373-R382
To systematically determine the effects of daytime exposure to sleep in darkness on human circadian phase, four groups of subjects participated in 4-day studies involving either no nap (control), a morning nap (0900-1500), an afternoon nap (1400-2000), or an evening nap (1900-0100) in darkness. Except during the scheduled sleep/dark periods, subjects remained awake under constant conditions, i.e., constant dim light exposure (36 lx), recumbence, and caloric intake. Blood samples were collected at 20-min intervals for 64 h to determine the onsets of nocturnal melatonin and thyrotropin secretion as markers of circadian phase before and after stimulus exposure. Sleep was polygraphically recorded. Exposure to sleep and darkness in the morning resulted in phase delays, whereas exposure in the evening resulted in phase advances relative to controls. Afternoon naps did not change circadian phase. These findings indicate that human circadian phase is dependent on the timing of darkness and/or sleep exposure and that strategies to treat circadian misalignment should consider not only the timing and intensity of light, but also the timing of darkness and/or sleep. 相似文献
11.
Perez-Lloret S Risk M Golombek DA Cardinali DP Sanchez R Ramirez A 《Chronobiology international》2008,25(1):99-113
24 h and ultradian rhythms of blood pressure (BP) have been previously shown to be disorganized in nocturnal hypertensive subjects. The present study was undertaken to further analyze the ultradian and circadian BP rhythm structure in sleep-time hypertensive subjects with normal or elevated awake-time BP levels. Fourier analysis was used to fit 24, 12, 8, and 6 h curves to mean BP as well as heart rate (HR) time series data derived from 24 h ambulatory blood pressure monitoring. Awake and sleep periods were defined according to individual sleep diaries. Awake-time hypertension was defined as diurnal systolic (SBP) and/or diastolic BP (DBP) means ≥135/85 mmHg. Sleep-time hypertension was defined as nocturnal SBP and/or DBP means ≥120/70 mmHg. The sample included 240 awake-time normotensive subjects (180 sleep-time normotensives and 60 sleep-time hypertensives) and 138 untreated awake-time hypertensive subjects (31 sleep-time normotensives and 107 sleep-time hypertensives). The amplitude and integrity (i.e., percent rhythm) of the 24 and 12 h BP rhythms were lower in the sleep-time hypertensive subjects and higher in the awake-time hypertensive subjects. However, no differences were detected when the integrity and amplitude of the 6 and 8 h mean BP rhythms were analyzed. The sleep-time hypertensive group showed significantly higher 24 h BP rhythm acrophase variability. No differences could be found in any of the HR rhythm parameters. Altogether, the findings suggest a disorganization of the BP circadian rhythm in sleep-time hypertensives that results in reduced 24 h rhythm amplitude and integrity that could be related to cardiovascular risk. 相似文献
12.
13.
Background
Although an endogenous circadian clock located in the retinal photoreceptor layer governs various physiological events including melatonin rhythms in Xenopus laevis, it remains unknown which of the photoreceptors, rod and/or cone, is responsible for the circadian regulation of melatonin release.Methodology/Principal Findings
We selectively disrupted circadian clock function in either the rod or cone photoreceptor cells by generating transgenic Xenopus tadpoles expressing a dominant-negative CLOCK (XCLΔQ) under the control of a rod or cone-specific promoter. Eyecup culture and continuous melatonin measurement revealed that circadian rhythms of melatonin release were abolished in a majority of the rod-specific XCLΔQ transgenic tadpoles, although the percentage of arrhythmia was lower than that of transgenic tadpole eyes expressing XCLΔQ in both rods and cones. In contrast, whereas a higher percentage of arrhythmia was observed in the eyes of the cone-specific XCLΔQ transgenic tadpoles compare to wild-type counterparts, the rate was significantly lower than in rod-specific transgenics. The levels of the transgene expression were comparable between these two different types of transgenics. In addition, the average overall melatonin levels were not changed in the arrhythmic eyes, suggesting that CLOCK does not affect absolute levels of melatonin, only its temporal expression pattern.Conclusions/Significance
These results suggest that although the Xenopus retina is made up of approximately equal numbers of rods and cones, the circadian clocks in the rod cells play a dominant role in driving circadian melatonin rhythmicity in the Xenopus retina, although some contribution of the clock in cone cells cannot be excluded. 相似文献14.
15.
Both melatonin and DSIP (a nine amino acid peptide) effects have been previously shown to be (a) circadian rhythm related and (b) involved in inducing hypothermic effects in rats. In this study we report the hypothermia effects by each of these drugs alone and in combination when studied in normal (unoperated), pinealectomized, and hypophysectomized rats at various time points of the corresponding circadian cycle. A clear differential effect of drugs × time × preparation was found. While both DSIP and melatonin hypothermic effects were both circadian cycle dependent in intact rats the rhythmicity of melatonin hypothermic effect in pinealectomized rats, and DSIP hypothermic effect in hypophysectomized rats was missing. Although several hypotheses have been offered to account for the physiological mechanism(s) that govern the effects of the drugs, it is not yet possible to reliably relate the findings to existing neurochemical theory. 相似文献
16.
17.
Subramanian P Dakshayani KB Pandi-Perumal SR Trakht I Cardinali DP 《Redox report : communications in free radical research》2008,13(2):78-86
To compare the effects of alpha-ketoglutarate (alpha-KG) and melatonin on 24-h rhythmicity of oxidative stress in N-nitrosodiethylamine (NDEA)-injected Wistar male rats, melatonin (5 mg/kg i.p.) or alpha-KG (2 g/kg through an intragastric tube) was given daily for 20 weeks. In blood collected at 6 time points during a 24-h period, serum activity of aspartate transaminase (AST) and alanine transaminase (ALT) and the levels of alpha-fetoprotein (alpha-FP) were measured as markers of liver function. To assess lipid peroxidation and the antioxidant status, plasma levels of thiobarbituric acid reactive substances (TBARS) and of reduced glutathione (GSH) were measured, together with the activity of erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST). NDEA augmented mesor and amplitude of rhythms in AST and ALT activity and plasma alpha-FP levels and mesor values of plasma TBARS, while decreasing mesor values of plasma GSH and erythrocyte SOD, CAT, GPx and GST. Acrophases were delayed by NDEA in all cases except for alpha-FP rhythm, which became phase-advanced. Co-administration of melatonin or alpha-KG partially counteracted the effects of NDEA. Melatonin decreased mesor of plasma TBARS and augmented mesor of SOD activity. The results indicate that melatonin and alpha-KG are effective in protecting from NDEA-induced perturbation of 24-h rhythms in oxidative stress. Melatonin augmented antioxidant defense in rats. 相似文献
18.
19.
20.
Interindividual differences in a set of biological rhythms documented during the high arctic summer (79 degrees N) in three healthy subjects 总被引:1,自引:0,他引:1
A Reinberg T Brossard M F Andre D Joly J Malaurie F Lévi A Nicolai 《Chronobiology international》1984,1(2):127-138
The High Arctic summer with its permanent sunlight provides a situation in which one of the natural synchronizers, the light-dark alternation, is minimal. During the summers of 1981 and 1982 three healthy right-handed geographers who were performing field studies in Svalbard as part of their own research volunteered to document, 4-6 times per 24 hr for respectively 63,141 and 147 days, a set of circadian rhythms: self-rated fatigue, oral temperature, grip strength of both hands, heart rate and times of awakening and retiring. Tests were performed before departure from France, in Svalbard (79°IN latitude) where their daily activities were often strenuous, and after returning to France. Time series were treated individually according to three methods: display of data as a function of time, cosinor analyses to quantify rhythm parameters, and spectral analyses to estimate component periods of rhythms. Circadian parameters such as period and acrophase of activity-rest, oral temperature and fatigue rhythms were not altered. On the other hand, the circadian rhythm in grip strength was altered: the period differed from 24 hr in one subject, while grip strength acrophase of the left, but not the right, hand of the other two subjects was phase shifted during the sojourn in Svalbard. A prominent circahemidian (about 12 hr) rhythm was observed in two subjects for their heart rate in Svalbard, while a prominent circadian rhythm (differing from exactly 24 hr) was observed in France associated with a small circahemidian component. 相似文献