首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 883 毫秒
1.
The unique Ag-presenting capabilities of dendritic cells (DCs) make them attractive vehicles for the delivery of therapeutic cancer vaccines. While tumor Ag-pulsed DC vaccination has shown promising results in a variety of murine tumor models and early clinical trials, the optimal form of tumor Ag for use in DC pulsing has not been determined. We have studied DC vaccination using alternative forms of a soluble protein tumor Ag, the tumor-specific Ig idiotype (Id) expressed by a murine B cell lymphoma. Vaccination of mice with Id-pulsed DCs was able to induce anti-Id Abs only when the Id was modified to constitute a hapten-carrier system. DCs pulsed with Id proteins modified to include foreign constant regions, foreign constant regions plus GM-CSF, or linkage to keyhole limpet hemocyanin (KLH) carrier protein were increasingly potent in their ability to elicit anti-Id Abs. Vaccination with Id-KLH-pulsed DCs induced tumor-protective immunity superior to that obtained with Id-KLH plus a chemical adjuvant, and protection was not dependent upon effector T cells. Rather, protection was associated with the induction of high titers of anti-Id Abs of the IgG2a subclass, characteristic of a Th1 response. These findings have implications for the design of therapeutic Ag-pulsed DC vaccines for cancer immunotherapy in humans.  相似文献   

2.
Follicular lymphoma (FL) is a disease that responds to current treatment regimens; however, patients in general relapse with increasingly refractory disease. Idiotype-based vaccines are currently under trial for the treatment of FL. These vaccines comprise the patient’s BCR idiotype (Id) as the tumor antigen conjugated to the protein carrier Keyhole Limpet Hemocyanin (KLH); however, other protein carriers may enhance the immune response to the lymphoma Id. In this study we investigated whether an alternate carrier, Listeriolysin O (LLO), would amplify the immune response to Id protein and provide better protection against challenge by 38C13 murine lymphoma. The Id-LLO vaccine compared favorably against Id-KLH in tumor-protection studies and both vaccines provided systemic immunity against 38C13 lymphoma. However, the immune response to the two conjugates was different in that Id-LLO induced a more powerful Th1 response characterized by high titer IgG2a anti-Id antibodies after one immunization and the presence of CD4 cells secreting IFN-γ. In vivo studies demonstrated that immune serum contributed to the anti-lymphoma efficacy seen following Id-LLO immunization. Interestingly, Id-LLO immunized mice, when challenged twice with 38C13 lymphoma provided better protection against challenge by the BCR loss variant 38C13-V2, suggesting that Id-LLO immunized mice have more potential to develop epitope spreading than Id-KLH. In conclusion, Id-LLO compared favorably against Id-KLH in its anti-lymphoma efficacy. Furthermore, Id-LLO induced a more potent humoral and cell-mediated immune response and promoted epitope spreading after lymphoma challenge. Thus, anti-Id vaccines incorporating LLO may be a better therapeutic option for treatment of B-cell lymphoma. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
TCR Id protein conjugated to keyhole limpet hemocyanin (KLH) (TCR Id:KLH) and injected with a chemical adjuvant (QS-21) induces a protective, Id-specific immune response against the murine T cell lymphoma, C6VL. However, Id-based immunotherapy of C6VL has not demonstrated therapeutic efficacy in tumor-bearing mice. We report here that C6VL lysate-pulsed dendritic cells (C6VL-DC) vaccines display enhanced efficacy in both the prevention and the therapy of T cell lymphoma compared with TCR Id:KLH with QS-21 vaccines. C6VL-DC vaccines stimulated potent tumor-specific immunity that protected mice against lethal challenge with C6VL and significantly enhanced the survival of tumor-bearing mice. Tumor-specific proliferation and secretion of IFN-gamma indicative of a Th1-type immune response were observed upon ex vivo stimulation of vaccine-primed lymph node cells. Adoptive transfer of immune T cell-enriched lymphocytes was sufficient to protect naive recipients from lethal tumor challenge. Furthermore, CD8(+) T cells were absolutely required for tumor protection. Although C6VL-DC and control vaccines stimulated low levels of tumor-specific Ab production in mice, Ab levels did not correlate with the protective ability of the vaccine. Thus, tumor cell lysate-pulsed DC vaccines appear to be an effective approach to generate potent T cell-mediated immune responses against T cell malignancies without requiring identification of tumor-specific Ags or patient-specific Id protein expression.  相似文献   

4.
Cryptococcus neoformans causes a life-threatening meningoencephalitis in AIDS patients. Mice immunized with a glycoconjugate vaccine composed of the glucuronoxylomannan (GXM) component of the cryptococcal capsular polysaccharide conjugated to tetanus toxoid produce Abs that can be either protective or nonprotective. Because nonprotective Abs block the efficacy of protective Abs, an effective vaccine must focus the Ab response on a protective epitope. Mice immunized with peptide mimetics of GXM conjugated to keyhole limpet hemocyanin (KLH) with glutaraldehyde developed Abs to GXM. However, control peptides P315 and P24 conjugated to KLH also elicited Abs to GXM. GXM-binding Abs from mice immunized with P315-KLH were inhibited by KLH treated with glutaraldehyde (KLH-g), but not by P315. Furthermore, KLH-g inhibited binding of GXM by serum of mice immunized with GXM-TT, indicating that glutaraldehyde treatment of KLH reveals an epitope(s) that cross-reacts with GXM. Vaccination with KLH-g or unmodified KLH elicited Abs to GXM, but did not confer protection against C. neoformans, suggesting the cross-reactive epitope on KLH was not protective. This was supported by the finding that 4H3, a nonprotective mAb, cross-reacted strongly with KLH-g. Sera from mice immunized with either native KLH or KLH-g cross-reacted with several other carbohydrate Ags, many of which have been conjugated to KLH for vaccine development. This study illustrates how mAbs can be used to determine the efficacy of potential vaccines, in addition to describing the complexity of using KLH and glutaraldehyde in the development of vaccines to carbohydrate Ags.  相似文献   

5.
Tumor-associated proteins can act as effective immunotherapeutic targets. Immunization with tumor TCR protein conjugated to the immunogenic protein keyhole limpet hemocyanin (KLH) protects mice from tumor challenge with the murine T cell lymphoma C6VL. The immune mechanisms responsible for this tumor protection are of interest for designing more effective vaccine strategies. Previous studies using depletion experiments had suggested a CD8-mediated component of protection induced by TCR-KLH vaccines. In this study we used CD8alpha knockout, micro MT, and FcgammaR knockout mice to investigate the relative roles of CD8+ T cells and Ab in protective immunity induced by TCR-KLH immunization. We found that CD8+ T cells are not required for tumor protection, although they may contribute to protection. Vaccine-induced Abs are sufficient to mediate protection against this murine T cell lymphoma through an FcR-dependent mechanism. This was confirmed with Ab transfers, which protect challenged mice. Additionally, recombinase-activating gene 1(-/-) splenocytes can mediate Ab-dependent cellular cytotoxicity against this tumor in the presence of bound anti-TCR Abs. IFN-gamma knockout mice demonstrated a requirement for IFN-gamma, probably via generation of IgG2c Abs, in vaccine-induced tumor protection. IFN-gamma knockout mice were not protected by immunization and had a severe impairment in IgG2c Ab production in response to immunization. Although mock-depleted anti-TCR Abs could transfer tumor protection, IgG2c-deficient anti-TCR Abs were unable to transfer tumor protection to wild-type mice. These results suggest that TCR-KLH vaccine-induced tumor protection in the C6VL system is primarily attributable to the induction of IgG2c Abs and humoral immunity.  相似文献   

6.
Many cancers elicit an anti-tumor immune response, which is nevertheless unable to protect the patient. One approach to boost anti-tumor immunity is to target immunostimulatory cytokines to the tumor. Such targeting can be achieved by generating chimeric proteins (immunocytokines) in which the cytokine in question is fused to the C-terminus of a tumor-specific antibody. Immunocytokines containing interleukin-2 (IL-2) have been efficacious in mouse tumor models and have entered clinical trials. Numerous enhancements of immunocytokines are possible, including use of additional stimulatory cytokines, alternate modes of tumor targeting, structural modifications to improve pharmacokinetics, and removal of potentially immunogenic sequences from the fusion protein. In addition, immunocytokines are likely to be efficacious in combination with other therapies, including some forms of chemotherapy and cancer vaccines.  相似文献   

7.
In conclusion  The primary function of antibodies is the elimination of circulating viral or bacterial pathogens from the blood-stream, lymphatics and interstitial spaces, and so, once induced, antibodies should be ideally suited for eliminating tumor cells and micrometastases from these spaces as well. Natural or tumor-induced and vaccine-induced antibodies against human cancer-associated antigens have been correlated with an improved clinical outcome. In the mouse, passive administration of monoclonal antibodies against cell-surface antigens 1–4 days after tumor challenge, and active induction of antibodies with vaccines, has resulted in prolonged survival or complete protection from tumor growth. This is a setting similar to the adjuvant setting in humans. Carbohydrates are the most abundant antigens at the cell surface of cancer cells, where they play important roles in cell-cell interactions, proliferation and the metastatic process. They have been shown to be excellent targets for immune attack by antibodies against human cancers, especially in the adjuvant setting. Vaccines containing these carbohydrate antigens covalently attached to immunogenic carrier proteins, such as KLH, plus potent immunological adjuvants, such as QS-21, effectively induce antibodies against these antigens in patients, which can result in complement-mediated lysis of antigen-positive tumor cells. Phase III trials with KLH conjugate vaccines have been initiated in the adjuvant setting against two carbohydrate antigens, the ganglioside GM2 and the blood-group-related antigen sTn. As the immunogenicity of additional vaccines is confirmed in small pilot trials, trials with polyvalent vaccines against two to five different antigens tailored for particular cancer types are planned.  相似文献   

8.
《Molecular medicine today》1998,4(11):478-484
Heat shock proteins (Hsps), ubiquitous in nature, act as chaperones for peptides and other proteins. They have been implicated in loading immunogenic peptides onto major histocompatibility complex molecules for presentation to T cells. When isolated from tumor cells, Hsps are complexed with a wide array of peptides, some of which serve as tumor-specific antigens. Animal studies have demonstrated that heat shock protein–peptide complexes (HSPPCs) from tumor cells can act as vaccines to prevent or treat tumors. Potent and specific tumor antigens have long been the holy grail in cancer immunotherapy; HSPPCs from tumor cells could become a safe and reliable source of tumor-specific antigens for clinical application.  相似文献   

9.
The abnormal cytokine release in the stromal microenvironment of pathologic tissues, contributes to the pathogenesis of viral infections such as AIDS, cancer and auto-immune diseases. Neovacs developed therapeutic vaccines, named Kinoids, which induce anti-cytokine Antibodies. Kinoids are non toxic but immunogenic cytokine derivatives. Kinoid immunizations induce high titre of neutralizing Abs to the corresponding cytokine, is well tolerated and experimentally effective. In transgenic mice expressing huTNFalpha, the TNFalpha kinoid decreases clinical signs of Rheumatoid Arthritis and in mice challenged with syngenic CT26 tumor cell line huVEGF kinoid inhibits lung metastases. After validation by clinical trials, kinoid vaccines could represent a second generation of specific immune therapy to be used to combat ectopic cytokines.  相似文献   

10.
Sialyl-Tn (STn) is an O-serine- or O-threonine-linked disaccharide [NeuAcα(2→6)GalNAcα- O-Ser/Thr) expressed on mucins of most types of adenocarcinoma as single STn or clustered STn [STn (c)] epitopes. Though STn is expressed on some normal tissues it is relatively tumor-specific, especially in the clustered conformation. Clinical trials with STn-keyhole limpet hemocyanin (KLH) conjugate vaccines, prepared using reductive amination with a two-carbon linker group, have resulted in high titers against STn but lower titers against natural forms of STn (ovine submaxillary mucin, or tumor cells). To obtain antibodies of more appropriate specificity, we attempted to prepare STn(c)-KLH conjugates to establish their immunogenicity in mice in preparation for clinical trials; however, conjugation efficiency was poor when the same two-carbon linker was used, presumably because of steric hindrance. STn-KLH and STn(c)-KLH conjugates were prepared using the regular two-carbon or the recently developed more efficient longer heterobifunctional 4-(4-maleimidomethyl)cyclohexane-1-carboxyl hydrazide (MMCCH) linkers, and the resulting immunogenicities in mice were compared. The highest titers against STn were seen with the STn-KLH conjugate with the two-carbon linker, and the highest titers against STn(c) were seen with STn(c)-KLH with the MMCCH linker. Conjugation with MMCCH resulted in the highest conjugation efficiency (yield) and the highest titers against ovine submaxillary mucin and STn-positive tumor cells, and is the method of choice for the preparation of STn(c) vaccine for clinical trials. Received: 30 October 1998 / Accepted: 18 December 1998  相似文献   

11.
The demonstration that Abs to adhesion molecules can block tumor metastasis suggested their use for therapy. However, such Abs affect nonmalignant cells as well. To circumvent this adverse effect, we proposed the use of bispecific Abs that bind simultaneously to an adhesion receptor and to a tumor-specific Ag. Such bifunctional Abs bind more avidly to tumor cells that coexpress both target Ags than to normal cells. The Id of the surface Ig of malignant B lymphocytes is a tumor-specific Ag. Therefore, we produced bispecific Abs with specificity to the adhesion molecule, CD44, and to an idiotypic determinant of the murine B cell lymphoma, 38C-13. These anti-Id x anti-CD44 bispecific Abs blocked 38C-13 cell adhesion to hyaluronic acid, while not affecting adhesion of Id-negative cells. In vivo studies demonstrated that the bispecific Abs inhibited lymphoma cell dissemination to the lymph nodes, bone marrow, and spleen, and prolonged survival of tumor-bearing mice. Migration of 38C-13 cells to the lymphoid organs was inhibited by the bispecific Abs. Thus, the bispecific Ab-mediated reduction in metastasis resulted, at least in part, from reduced homing to these organs. In contrast to anti-CD44 monospecific Abs, the anti-Id x anti-CD44 bispecific Abs did not affect immune responses such as delayed-type hypersensitivity. Hence, bispecific Abs against adhesion molecules and tumor-specific Ags may selectively block tumor metastasis in a way which may leave at least part of the immune system intact.  相似文献   

12.
Several studies have shown that immunization with DNA, which encodes the idiotypic determinants of a B cell lymphoma, generates tumor-specific immunity. Although induction of antiidiotypic Abs has correlated with tumor protection, the effector mechanisms that contribute to tumor protection have not been clearly identified. This study evaluated the tumor protective effects of humoral and cellular immune mechanisms recruited by idiotype-directed DNA vaccines in the 38C13 murine B cell lymphoma model. Antiidiotypic Abs induced by DNA vaccination supported in vitro complement-mediated cytotoxicity of tumor cells, and simultaneous transfer of tumor cells and hyperimmune sera protected naive animals against tumor growth. However, in vitro stimulation of immune splenocytes with tumor cells failed to induce idiotype-specific cytotoxicity, and following vaccination, depletion of CD4 or CD8 T cell subsets did not compromise protection. Furthermore, protection of naive recipients against tumor challenge could not be demonstrated either by a Winn assay approach or by adoptive transfer of spleen and lymph node cells. Thus, in this experimental model, current evidence suggests that the tumor-protective effects of DNA vaccination can be largely attributed to idiotype-specific humoral immunity.  相似文献   

13.
One of several effector mechanisms thought to contribute to Ab efficacy against cancer is complement-dependent cytotoxicity (CDC). Serological analysis of a series of clinical trials conducted over a 10-year period suggested that six vaccines containing different glycolipids induced Abs mediating CDC whereas four vaccines containing carbohydrate or peptide epitopes carried almost exclusively by mucin molecules induced Abs that did not mediate CDC. To explore this further, we have now compared cell surface reactivity using flow cytometry assays (FACS), complement-fixing ability, and CDC activity of a panel of mAbs and immune sera from these trials on the same two tumor cell lines. Abs against glycolipids GM2, globo H and Lewis Y, protein KSA (epithelial cell adhesion molecule, also known as EpCAM) and mucin Ags Tn, sialylated Tn, Thomsen Friedenreich (TF), and MUC1 all reacted comparably by FACS with tumor cells expressing these Ags. Compared with the strong complement binding and CDC with Abs against glycolipids and KSA, complement binding was diminished with Abs against mucin Ags and no CDC was detected. A major difference between these two groups of Ags is proximity to the cell membrane. Glycolipids and globular glycoproteins extend less than 100 A from the cell membrane while mucins extend up to 5000 A. Although complement activation at sites remote from the cell membrane has long been known as a mechanism for resistance from complement lysis in bacteria, it is identified here for the first time as a factor which may contribute to resistance from CDC against cancer cells.  相似文献   

14.
Anticancer vaccines have been extensively studied in animal models and in clinical trials. While vaccination can lead to tumor protection in numerous murine models, objective tumor regressions after anticancer vaccination in clinical trials have been rare. B16 is a poorly immunogenic murine melanoma that has been extensively used in anticancer vaccination experiments. Because B16 has been widely used, different vaccination strategies can be compared. We reviewed the results obtained when B16 was treated with five common vaccine types: recombinant viral vaccines, DNA vaccines, dendritic cell vaccines, whole-tumor vaccines, and peptide vaccines. We also reviewed the results obtained when B16 was treated with vaccines combined with adoptive transfer of tumor antigen-specific T cells. We found several characteristics of vaccination regimens that were associated with antitumor efficacy. Many vaccines that incorporated xenogeneic antigens exhibited more potent anticancer activity than vaccines that were identical except that they incorporated the syngeneic version of the same antigen. Interleukin-2 enhanced the antitumor efficacy of several vaccines. Finally, several effective regimens generated large numbers of tumor antigen-specific CD8(+) T cells. Identification of vaccine characteristics that are associated with antitumor efficacy may aid in the development of more effective anticancer vaccination strategies.  相似文献   

15.
Myasthenia gravis (MG) and its animal model, experimental autoimmune (EA) MG, are caused by interference with neuromuscular transmission by autoantibodies against the nicotinic acetylcholine receptor (AChR) on muscle. Previously, we have shown that two peptides, denoted RhCA 67-16 and RhCA 611-001, designed to be complementary in structure to the main immunogenic region and the dominant Lewis rat T cell epitope (alpha-chain residues 100-116) of the AChR, respectively, are effective vaccines that prevent EAMG in rats by inducing antiidiotypic/clonotypic antibodies (Ab) and lowering levels of AChR Ab. These studies employed keyhole limpet hemocyanin (KLH) as a carrier and complete Freunds adjuvant (CFA). In advance of a clinical trial the present study tested the efficacy of RhCA 611-001 when combined with different adjuvants that are approved for use in humans. Adjuvants chosen for comparison were incomplete Freunds adjuvant (IFA) and aluminum hydroxide (Alum). As a second goal we evaluated diphtheria toxin (DT) as an alternative carrier protein to KLH. Alum was found to be an effective adjuvant, particularly when used with the peptide conjugated to DT. This combination of carrier and adjuvant provided protection against EAMG comparable with that observed with CFA and KLH. Using enzyme-linked immunosorbent assays for Ab against RhCA 611-001, it was found that disease protection is qualitatively, but not quantitatively, related to the anti-peptide Ab response. Our results demonstrate a vaccine formulation that should be useful in the first soon-to-be-conducted clinical trials of peptide vaccines to specifically correct aberrant T and B cell responses in an autoimmune disease.  相似文献   

16.
The primary goal of cancer immunotherapy is to elicit an immune response capable of eradicating established tumors and preventing tumor metastasis. One strategy to achieve this goal utilizes whole killed tumor cells as the primary immunogen. Killed tumor cells provide a comprehensive source of tumor-associated antigens (TAAs), thereby eliminating the need to identify individual antigens. Unfortunately, killed tumor cells tend to be poorly immunogenic. To overcome this limitation, we covalently conjugated immunostimulatory CpG oligodeoxynucleotides (ODN) to apoptotic tumor cells and examined their ability to induce TAA-specific immune responses. Results indicate that CpG conjugation enhances the uptake of cell-based vaccines by dendritic cells (DCs), up-regulates co-stimulatory molecule expression, and promotes the production of immunostimulatory cytokines. Vaccination with CpG-conjugated tumor cells triggers the expansion of tumor-specific cytotoxic T lymphocytes (CTL) that reduce the growth of established tumors and prevents their metastatic spread. Thus, conjugating CpG ODN to cell-based tumor vaccines is an important step toward improving cancer immunotherapy.  相似文献   

17.
Vaccine strategies in the treatment of low-grade non-Hodgkin lymphoma   总被引:1,自引:0,他引:1  
Recent years have witnessed the development of a variety of promising immunotherapies for treating patients with B-cell non-Hodgkin's lymphomas. Each B lymphocyte expresses an immunoglobulin molecule that is the product of a unique combination of gene segments. B cell malignancy arises from one original B lymphocyte, and therefore all the members of a given lymphoma tumor population have the same unique immunoglobulin, which can serve as a target for immune therapy. When the idiotype (Id), or unique portion, of each immunoglobulin is used as a vaccine, antibodies and T cells can be induced and each can cause rejection of the tumor by the host. This special opportunity for tumor specificity is accompanied by the challenge of constructing a different vaccine for each patient. The first clinical trial of Id vaccination for lymphoma was initiated at Stanford University in 1988. Tumor cells obtained from lymph node sampling were fused with a myeloma cell line to generate a "hybridoma" producing large quantities of idiotype protein. Purified Id protein was then chemically coupled to keyhole limpet hemocyanin (KLH) and emulsified in an "oil-in-water" type immunologic adjuvant. The initial trial included patients with low-grade, follicular lymphoma, in first remission following chemotherapy. Among the first 32 vaccinated patients, roughly half (14/32) developed anti-Id immune responses. These were principally humoral responses rather than cellular responses. Long-term follow-up of these 32 patients has revealed that the development of an immune response is strongly correlated with prolonged freedom from disease progression interval and overall survival. Further trials have confirmed significant clinical benefit following Id vaccination. There is reason for excitement about the prospects for effective vaccine therapies for lymphoma as randomized Id vaccine trials commence and newer cell-based vaccine trials enter the clinic. As the clinical activity of lymphoma vaccines becomes established, it will be important to determine how to best integrate active vaccination approaches with standard therapeutic approaches.  相似文献   

18.
Abs to adhesion molecules can block tumor metastasis. However, they may also block the function of normal cells. To circumvent this adverse effect, we proposed the use of bispecific Abs that bind simultaneously to an adhesion receptor and to a tumor-specific Ag. Such Abs bind more avidly to tumor cells that coexpress both target Ags than to normal cells. The Id of the surface Ig of malignant B lymphocytes is a tumor-specific Ag. We therefore produced a bispecific Ab with specificity to the adhesion molecule LFA-1 and to the Id of the murine B cell lymphoma 38C-13. Here we demonstrate that this Ab blocked liver metastasis in mice carrying primary s.c. tumors and partially inhibited lymph node metastasis. Migration of 38C-13 cells to liver and lymph nodes was inhibited by the bispecific Ab, while migration to spleen was not affected. Hence, the bispecific Ab-mediated reduction in liver and lymph node metastasis resulted at least in part from reduced homing to these organs. In contrast to anti-LFA-1 monospecific Abs, the anti-Id x anti-LFA-1 bispecific Ab did not affect immune responses such as delayed-type hypersensitivity. Hence, bispecific Abs against adhesion molecules and against tumor-specific Ags may selectively block tumor metastasis in a way that may leave much of the immune system intact.  相似文献   

19.
Yu S  Wang Q  Zhang J  Wu Q  Guo Z 《MedChemComm》2011,2(6):524-530
GM3, a sialylated trisaccharide antigen expressed by a number of tumors, is an attractive target in the design of therapeutic cancer vaccines. However, a serious problem associated with GM3 is that it is poorly immunogenic. To overcome this problem for the development of GM3-based cancer vaccines, four GM3 derivatives, including 5'-N-p-methylphenylacetyl, 5'-N-p-methoxyphenylacetyl, 5'-N-p-acetophenylacetyl and 5'-N-p-chlorophenylacetyl GM3, were synthesized and then coupled to a carrier protein, keyhole limpet haemocyanin (KLH). The resultant glycoconjugates were evaluated as vaccines in mouse and compared to the KLH conjugate of 5'-N-phenylacetyl GM3 (GM3NPhAc), a highly immunogenic GM3 derivative that was previously investigated as a vaccine candidate. All of the four new GM3 derivatives were proved to be more immunogenic than GM3NPhAc and elicit very strong T cell-dependent immune responses desirable for cancer immunotherapy. It was concluded that the new GM3 derivatives can form promising vaccine candidates that may be used to combine with cell glycoengineering for cancer immunotherapy.  相似文献   

20.
Vaccination of melanoma patients with tumor-specific antigens recognized by cytotoxic T lymphocytes (CTLs) may produce significant tumor regressions. Here, we suggest a novel type of tumor vaccines, with well-studied CTL epitopes presented on highly immunogenic virus-like particle (VLP) carriers. Cancer-germline gene MAGE-3 encodes for an antigenic nonapeptide (MAGE-3(168-176) peptide) that is recognized by CTLs on human leukocyte antigen (HLA)-A1 and HLA-B35 molecules. A set of recombinant genes encoding hepatitis B virus core protein carrying MAGE-3 epitope was constructed and expressed in Escherichia coli cells. Variants that led to formation of chimeric VLPs in vivo were purified and analyzed for their DNA binding properties in vitro. VLPs exhibiting the most pronounced nucleic acid binding affinity were selected and loaded either with single-stranded DNA oligodeoxynucleotides rich in nonmethylated CG motifs, or with longer double-stranded DNA fragments. Packaged DNA was protected, at least partially, against the action of bacterial DNase. Such highly purified chimeric VLPs with entrapped immunomodulatory sequences could possibly be used as antitumor vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号