首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Astrocytes play an important role in initiating and regulating CNS immune responses through the release of proinflammatory cytokines and chemokines. Here we demonstrate that primary astrocytes are capable of recognizing the Gram-positive bacterium Staphylococcus aureus and its cell wall product peptidoglycan (PGN) and respond by producing numerous proinflammatory mediators including interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1beta (MIP-1beta), MIP-2, and monocyte chemoattractant protein (MCP-1). Astrocytes have recently been shown to express Toll-like receptor 2 (TLR2), a pattern recognition receptor important for recognizing structural components of various Gram-positive bacteria, fungi, and protozoa. However, the functional significance of TLR2 in mediating astrocyte activation remains unknown. Primary astrocytes from TLR2 knockout mice were used to evaluate the role of TLR2 in astrocyte responses to S. aureus and PGN. The results demonstrate that TLR2 is essential for maximal proinflammatory cytokine and chemokine production, but not phagocytosis, in primary astrocytes following S. aureus and PGN exposure. In addition, both stimuli led to a significant increase in TLR2 mRNA expression in wild-type astrocytes as assessed by real-time quantitative RT-PCR. These findings suggest that astrocytes may play a key role in the initial antibacterial immune response in the CNS through engagement of TLR2.  相似文献   

2.
Besides their traditional role in maintaining CNS homeostasis, astrocytes also participate in innate immune responses. Indeed, we have previously demonstrated that astrocytes are capable of recognizing bacterial pathogens such as Staphylococcus aureus , a common etiologic agent of CNS infections, and respond with the robust production of numerous proinflammatory mediators. Suppression of Poly (ADP-ribose) polymerase-1 (PARP-1), a DNA repair enzyme, has been shown to attenuate inflammatory responses in several cell types including mixed glial cultures. However, a role for PARP-1 in regulating innate immune responses in purified astrocytes and the potential for multiple PARP family members to cooperatively regulate astrocyte activation has not yet been examined. The synthetic PARP-1 inhibitor PJ-34 attenuated the production of several proinflammatory mediators by astrocytes in response to S. aureus stimulation including nitric oxide, interleukin-1 beta, tumor necrosis factor-alpha, and CCL2. The release of all four mediators was partially reduced in PARP-1 knockout (KO) astrocytes compared to wild-type cells. The residual inflammatory mediator expression detected in PARP-1 KO astrocytes was further blocked with PJ-34, suggesting either non-specific effects of the drug or actions on alternative PARP isoforms. Reduction in PARP-2 or PARP-3 expression by siRNA knock down revealed that these isoforms also contributed to inflammatory mediator regulation in response to S. aureus . Interestingly, the combined targeting of either PARP-1/PARP-2 or PARP-2/PARP-3 attenuated astrocyte inflammatory responses more effectively compared to knock down of either PARP alone, suggesting cooperativity between PARP isoforms. Collectively, these findings suggest that PARPs influence the extent of S. aureus -induced astrocyte activation.  相似文献   

3.
Microglia represent one effector arm of CNS innate immunity as evident by their role in pathogen recognition. We previously reported that exposure of microglia to Staphylococcus aureus ( S. aureus), a prevalent CNS pathogen, led to elevated Toll-like receptor 2 (TLR2) expression, a pattern recognition receptor capable of recognizing conserved structural motifs associated with gram-positive bacteria such as S. aureus . In this study, we demonstrate that the proinflammatory cytokine tumor necrosis factor-α (TNF-α) enhances TLR2 expression in microglia, whereas interleukin-1β has no significant effect. To determine the downstream signaling events responsible for elevated microglial TLR2 expression in response to TNF-α, a series of signal transduction inhibitors were employed. Treatment with caffeic acid phenethyl ester, an inhibitor of redox-mediated nuclear factor-kappa B activation, significantly attenuated TNF-α-induced TLR2 expression. Similar results were observed with the IKK-2 and IκB-α inhibitors SC-514 and BAY 11-7082, respectively. In contrast, no significant alterations in TLR2 expression were observed with protein kinase C or p38 mitogen-activated protein kinase inhibitors. A definitive role for TNF-α was demonstrated by the inability of S. aureus to augment TLR2 expression in microglia isolated from TNF-α knockout mice. In addition, TLR2 expression was significantly attenuated in brain abscesses of TNF-α knockout mice. Collectively, these results indicate that in response to S. aureus , TNF-α acts in an autocrine/paracrine manner to enhance TLR2 expression in microglia and that this effect is mediated, in part, by activation of the nuclear factor-kappa B pathway.  相似文献   

4.
Microglia are important innate immune effectors against invading CNS pathogens, such as Staphylococcus aureus (S. aureus), a common etiological agent of brain abscesses typified by widespread inflammation and necrosis. The NLRP3 inflammasome is a protein complex involved in IL-1β and IL-18 processing following exposure to both pathogen- and danger-associated molecular patterns. Although previous studies from our laboratory have established that IL-1β is a major cytokine product of S. aureus-activated microglia and is pivotal for eliciting protective anti-bacterial immunity during brain abscess development, the molecular machinery responsible for cytokine release remains to be determined. Therefore, the functional role of the NLRP3 inflammasome and its adaptor protein apoptosis-associated speck-like protein (ASC) in eliciting IL-1β and IL-18 release was examined in primary microglia. Interestingly, we found that IL-1β, but not IL-18 production, was significantly attenuated in both NLRP3 and ASC knockout microglia following exposure to live S. aureus. NLRP3 inflammasome activation was partially dependent on autocrine/paracrine ATP release and α- and γ-hemolysins produced by live bacteria. A cathepsin B inhibitor attenuated IL-β release from NLRP3 and ASC knockout microglia, demonstrating the existence of alternative inflammasome-independent mechanisms for IL-1β processing. In contrast, microglial IL-18 secretion occurred independently of cathepsin B and inflammasome action. Collectively, these results demonstrate that microglial IL-1β processing is regulated by multiple pathways and diverges from mechanisms utilized for IL-18 cleavage. Understanding the molecular events that regulate IL-1β production is important for modulating this potent proinflammatory cytokine during CNS disease.  相似文献   

5.
6.
In the present study, we examined the role of Staphylococcus aureus protein A (SpA) in inducing inflammatory response in human corneal epithelial cells (HCECs). Exposure of HCECs to SpA induces rapid NF-kappaB activation and secretion of proinflammatory cytokine/chemokines (TNF-alpha and IL-8) in both concentration and time-dependent manner. Challenge of HCECs with live SpA(-/-) mutant S. aureus strains resulted in significantly reduced production of the cytokines when compared to the wild-type S. aureus strain. SpA also elicited the activation of MAP Kinases P38, ERK, but not JNK, in HCECs. SpA-induced production of proinflammatory cytokine were completely blocked by the NF-kappaB and p38 inhibitors and partially inhibited by the Jnk inhibitor. Pretreatment with anti-TLR2 neutralizing antibody had no effect on SpA-induced inflammatory response in HCECs, suggesting that this response is independent of TLR2 signaling. Moreover, unlike TLR2 ligands, SpA failed to induce the expression of antimicrobial peptides (hBD2 and LL-37) in HCECs. These studies indicate that SpA is a S. aureus virulence factor that stimulates HCEC inflammatory response through a pathway distinct from TLR2 in HCECs.  相似文献   

7.
Hemorrhagic shock causes myocardial contractile depression. Although this myocardial disorder is associated with increased expression of tumor necrosis factor-alpha (TNF-alpha), the role of TNF-alpha as a myocardial depressant factor in hemorrhagic shock remains to be determined. Moreover, it is unclear which TNF-alpha receptor mediates the myocardial depressive effects of TNF-alpha. Toll-like receptor 4 (TLR4) regulates cellular expression of proinflammatory mediators following lipopolysaccharide stimulation and may be involved in the tissue inflammatory response to injury. The contribution of TLR4 signaling to tissue TNF-alpha response to hemorrhagic shock and TLR4's role in myocardial depression during hemorrhagic shock are presently unknown. We examined the relationship of TNF-alpha production to myocardial depression in a mouse model of nonresuscitated hemorrhagic shock, assessed the influence of TLR4 mutation, resulting in defective signaling, on TNF-alpha production and myocardial depression, and determined the roles of TNF-alpha and TNF-alpha receptors in myocardial depression using a gene knockout (KO) approach. Hemorrhagic shock resulted in increased plasma and myocardial TNF-alpha (4.9- and 4.5-fold, respectively) at 30 min and induced myocardial contractile depression at 4 h. TLR4 mutation abolished the TNF-alpha response and attenuated myocardial depression (left ventricular developed pressure of 43.0 +/- 6.2 mmHg in TLR4 mutant vs. 30.0 +/- 3.6 mmHg in wild type, P < 0.05). TNF-alpha KO also attenuated myocardial depression in hemorrhagic shock, and the p55 receptor KO, but not the p75 receptor KO, mimicked the effect of TNF-alpha KO. The results suggest that TLR4 plays a novel role in signaling to the TNF-alpha response during hemorrhagic shock and that TNF-alpha through the p55 receptor activates a pathway leading to myocardial depression. Thus TLR4 and the p55 TNF-alpha receptor represent therapeutic targets for preservation of cardiac mechanical function during hemorrhagic shock.  相似文献   

8.
Efficient clearance of apoptotic cells (AC) by professional phagocytes is crucial for tissue homeostasis and resolution of inflammation. Macrophages respond to AC with an increase in antiinflammatory cytokine production but a diminished release of proinflammatory mediators. Mechanisms to explain attenuated proinflammatory cytokine formation remain elusive. We provide evidence that peroxisome proliferator-activated receptor gamma (PPARgamma) coordinates antiinflammatory responses following its activation by AC. Exposing murine RAW264.7 macrophages to AC before LPS stimulation reduced NF-kappaB transactivation and lowered target gene expression of, that is, TNF-alpha and IL-6 compared with controls. In macrophages overexpressing a dominant negative mutant of PPARgamma, NF-kappaB transactivation in response to LPS was restored, while macrophages from myeloid lineage-specific conditional PPARgamma knockout mice proved that PPARgamma transmitted an antiinflammatory response, which was delivered by AC. Expressing a PPARgamma-Delta aa32-250 deletion mutant, we observed no inhibition of NF-kappaB. Analyzing the PPARgamma domain structures within aa 32-250, we anticipated PPARgamma sumoylation in mediating the antiinflammatory effect in response to AC. Interfering with sumoylation of PPARgamma by mutating the predicted sumoylation site (K77R), or knockdown of the small ubiquitin-like modifier (SUMO) E3 ligase PIAS1 (protein inhibitor of activated STAT1), eliminated the ability of AC to suppress NF-kappaB. Chromatin immunoprecipitation analysis demonstrated that AC prevented the LPS-induced removal of nuclear receptor corepressor (NCoR) from the kappaB site within the TNF-alpha promoter. We conclude that AC induce PPARgamma sumoylation to attenuate the removal of NCoR, thereby blocking transactivation of NF-kappaB. This contributes to an antiinflammatory phenotype shift in macrophages responding to AC by lowering proinflammatory cytokine production.  相似文献   

9.
Heat shock protein (HSP) 72 is released by cells during stress and injury. HSP-72 also stimulates the release of cytokines in macrophages by binding to Toll-like receptors (TLR) 2 and 4. Circulating levels of HSP-72 increase during hepatic ischemia-reperfusion injury. The role of extracellular HSP-72 (eHSP-72) in the injury response to ischemia-reperfusion is unknown. Therefore, the objective of the present study was to determine whether eHSP-72 has any direct effects on hepatocytes. Primary mouse hepatocytes were treated with purified human recombinant HSP-72. Conditioned media were evaluated by ELISA for the cytokines, TNF-alpha, IL-6, and macrophage inflammatory protein 2 (MIP-2). Stimulation of hepatocytes with eHSP-72 did not induce production of TNFalpha or IL-6 but resulted in dose-dependent increases in MIP-2 production. To evaluate the pathway responsible for this response, expression of TLR2 and TLR4 was confirmed on hepatocytes by immunohistochemistry. Hepatocyte production of MIP-2 was significantly decreased in hepatocytes obtained from TLR2 or TLR4 knockout mice. MIP-2 production was found to be partially dependent on NF-kappaB because inhibition of NF-kappaB with Bay 11-7085 significantly decreased eHSP-72-induced MIP-2 production. Inhibitors of p38 mitogen-activated protein kinase or c-Jun NH(2)-terminal kinase had no effect on production of MIP-2 induced by eHSP-72. The data suggest that eHSP-72 binds to TLR2 and TLR4 on hepatocytes and signals through NF-kappaB to increase MIP-2 production. The fact that eHSP-72 did not increase TNF-alpha or IL-6 production may be indicative of a highly regulated signaling pathway downstream from TLR.  相似文献   

10.
Myocardial ischemia/reperfusion is characterized by oxidative stress and induction of proinflammatory cytokines. Interleukin (IL)-18, a member of the IL-1 family, acts as a proinflammatory cytokine, and is induced during various immune and inflammatory disorders. Therefore, in the present study we investigated whether IL-18 expression is regulated by cytokines and oxidative stress in cardiomyocytes. TNF-alpha induced rapid and sustained activation of NF-kappaB whereas H(2)O(2) induced delayed and transient activation. Both TNF-alpha and H(2)O(2) induced IL-18 mRNA and precursor protein in cardiomyocytes, and IL-18 release into culture supernatants. However, only TNF-alpha led to sustained expression. Expression of IL-18Rbeta, but not alpha, was induced by both agonists. TNF-alpha and H(2)O(2) induced delayed expression of IL-18 BP. Pretreatment with PDTC attenuated TNF-alpha and H(2)O(2) induced IL-18 and IL-18Rbeta, but not basal expression of IL-18Ralpha. These results indicate that adult cardiomyocytes express IL-18 and its receptors, and proinflammatory cytokines and oxidative stress regulate their expression via activation of NF-kappaB. Presence of both ligand and receptors suggests IL-18 impacts myocardial biology through an autocrine pathway.  相似文献   

11.
12.
Macrophages are the major cytokine producers in chronic inflammatory diseases, but the biochemical pathways regulating cytokine production are poorly understood. This is because genetic tools to dissect signaling pathways cannot be used in macrophages because of difficulties in transfection. We have developed an adenoviral technique to achieve high efficiency gene delivery into macrophages and recently showed that spontaneous TNF-alpha production in rheumatoid arthritis joint cells, chiefly from macrophages, is 75% blocked by adenoviral transfer of IkappaBalpha. In this report we use the same adenovirus to investigate whether the production of a number of proinflammatory cytokines (e.g., TNF-alpha, IL-1beta, IL-6, and IL-8) from human macrophages depends on NF-kappaB. While the cytokine response to certain inducers, such as LPS, PMA, and UV light, is blocked by overexpression of IkappaBalpha, the response to zymosan is not. In contrast, anti-inflammatory mediators (IL-10 and IL-1 receptor antagonist) induced by LPS are only marginally inhibited by IkappaBalpha excess. These studies demonstrate several new points about macrophage cytokine production. First, there is heterogeneity of mechanisms regulating both the proinflammatory and anti-inflammatory cytokines within populations of a single cell type. In addition, the results confirm the utility of the adenoviral technique for functional analysis of cytokine induction. The results also confirm that there are autocrine and paracrine interactions regulating cytokine synthesis within a single cell type. The selectivity of NF-kappaB blockade for proinflammatory but not anti-inflammatory mediators indicates that in macrophages, NF-kappaB may be a good target for the treatment of chronic inflammatory diseases.  相似文献   

13.
Microglia, the innate immune effector cells of the CNS parenchyma, express TLR that recognize conserved motifs of microorganisms referred to as pathogen-associated molecular patterns (PAMP). All TLRs identified to date, with the exception of TLR3, use a common adaptor protein, MyD88, to transduce activation signals. Recently, we reported that microglial activation in response to the Gram-positive bacterium Staphylococcus aureus was not completely attenuated following TLR2 ablation, suggesting the involvement of additional receptors. To assess the functional role of alternative TLRs in microglial responses to S. aureus and its cell wall product peptidoglycan as well as the Gram-negative PAMP LPS, we evaluated primary microglia from MyD88 knockout (KO) and wild-type mice. The induction of TNF-alpha, IL-12 p40, and MIP-2 (CXCL2) expression by S. aureus- and peptidoglycan-stimulated microglia was MyD88 dependent, as revealed by the complete inhibition of cytokine production in MyD88 KO cells. In addition, the expression of additional pattern recognition receptors, including TLR9, pentraxin-3, and lectin-like oxidized LDL receptor-1, was regulated, in part, via a MyD88-dependent manner as demonstrated by the attenuated expression of these receptors in MyD88 KO microglia. Microglial activation was only partially inhibited in LPS-stimulated MyD88 KO cells, suggesting the involvement of MyD88-independent pathways. Collectively, these findings reveal the complex mechanisms for microglia to respond to diverse bacterial pathogens, which occur via both MyD88-dependent and -independent pathways.  相似文献   

14.
Members of the interleukin (IL)-12 family constitute subunits of IL-12, -23, and -27. These ILs represent pivotal mediators in the regulation of cell-mediated immune responses and in animal models of human inflammatory bowel disease. Recent work has suggested that intestinal endothelial cells might serve as a second line of defense in bacterial sensing of invading pathogens. The purpose of this study was to examine the production of IL-12 family members in intestinal endothelial cells (HIMEC). HIMEC were stimulated with proinflammatory agents (TNF-alpha, IFN-gamma, IL-1beta) and microbial antigens [LPS, lipoteichoic acid, peptidoglycan, CpG-DNA, flagellin, poly(I:C)]. Expression of IL-12 family members and of Toll-like receptor (TLR)3 in HIMEC was assessed by real-time RT-PCR, immunostaining, flow cytometry, and immunoblot analysis. HIMEC display an induction of Epstein-Barr virus-induced gene 3 (EBI3), IL-12p35, and IL-23p19, whereas no expression of IL-12p40 and IL-27p28 was detectable. The strongest induction was induced by proinflammatory factors known to utilize the NF-kappaB pathway, and expression of EBI3 and IL-23p19 was diminished by an NF-kappaB inhibitor. HIMEC display regulated expression of TLR3. Adhesion and transmigration assays showed proinflammatory responses after HIMEC stimulation. HIMEC are capable of producing IL-12 family members as a response to microbial stimuli. The TLR3 agonist, poly(I:C), was shown to enhance leukocyte adhesion in vitro in HIMEC. Our data suggest that the intestinal microvasculature is responsive to ligands of TLR3 expressed on intestinal endothelial cells, thereby adding to the regulation of adaptive immunity and leukocyte recruitment.  相似文献   

15.
Microglial activation is a hallmark of brain abscess. The continual release of proinflammatory mediators by microglia following bacterial challenge may contribute, in part, to the destruction of surrounding normal tissue characteristic of brain abscess. Therefore, attenuating chronic microglial activation during the course of CNS bacterial infections may have therapeutic benefits. The purpose of this study was to evaluate the ability of the natural peroxisome proliferator-activated receptor (PPAR)-gamma agonist 15-deoxy-Delta12,14- prostaglandin J2 (15d-PGJ2) to modulate microglial activation in response to Staphylococcus aureus, one of the main etiologic agents of brain abscess in humans. 15d-PGJ2 was a potent inhibitor of proinflammatory cytokine (IL-1beta, TNF-alpha, IL-12 p40) and CC chemokine (MIP-1beta, MCP-1) production in primary microglia, but had no effect upon the expression of select CXC chemokines (MIP-2, KC). 15d-PGJ2 also selectively inhibited the S. aureus-dependent increase in microglial TLR2, CD14, MHC class II, and CD40 expression, whereas it had no effect on the co-stimulatory molecules CD80 and CD86. Microarray analysis revealed additional inflammatory mediators modulated by 15d-PGJ2 in primary microglia following S. aureus exposure, the majority of which were chemokines. These results suggest that suppressing microglial activation through the use of 15d-PGJ2 may lead to the sparing of damage to normal brain parenchyma that often results from brain abscess.  相似文献   

16.
Reactive oxygen species (ROS) contribute to neutrophil activation and the development of acute inflammatory processes in which neutrophils play a central role. However, there is only limited information concerning the mechanisms through which extracellular ROS, and particularly cell membrane-impermeable species, such as superoxide, enhance the proinflammatory properties of neutrophils. To address this issue, neutrophils were exposed to superoxide generating combinations of xanthine oxidase and hypoxanthine or lumazine. Extracellular superoxide generation induced nuclear translocation of nuclear factor-kappaB (NF-kappaB) and increased neutrophil production of the NF-kappaB-dependent cytokines tumor necrosis factor-alpha (TNF-alpha) and macrophage inhibitory protein-2 (MIP-2). In contrast, there were no changes in TNF-alpha or MIP-2 expression when neutrophils lacking Toll-like receptor-4 (TLR4) were exposed to extracellular superoxide. Immunoprecipitation, confocal microscopy, and fluorescence resonance energy transfer (FRET) studies demonstrated association between TLR4 and xanthine oxidase. Exposure of neutrophils to heparin attenuated binding of xanthine oxidase to the cell surface as well as interactions with TLR4. Heparin also decreased xanthine oxidase-induced nuclear translocation of NF-kappaB as well as production of proinflammatory cytokines. These results demonstrate that extracellular superoxide has proinflammatory effects on neutrophils, predominantly acting through an TLR4-dependent mechanism that enhances nuclear translocation of NF-kappaB and increases expression of NF-kappaB-dependent cytokines.  相似文献   

17.
18.
Neuroinflammation is associated with a variety of CNS pathologies. Levels of tumor necrosis factor-alpha (TNF-alpha), a major proinflammatory cytokine, as well as extracellular ATP, are increased following various CNS insults. Here we report on the relationship between ATP/P2 purinergic receptor activation and lipopolysaccharide (LPS)-induced TNF-alpha release from primary cultures of rat cortical astrocytes. Using ELISA, we confirmed that treatment with LPS stimulated the release of TNF-alpha in a concentration and time dependent manner. ATP treatment alone had no effect on TNF-alpha release. LPS-induced TNF-alpha release was attenuated by 1 mm ATP, a concentration known to activate P2X7 receptors. Consistent with this, 3'-O-(4-Benzoyl)benzoyl-ATP (BzATP), a P2X7 receptor agonist, also attenuated LPS-induced TNF-alpha release. This reduction in TNF-alpha release was not due to loss of cell viability. Adenosine and 2-chloroadenosine were ineffective, suggesting that attenuation of LPS-induced TNF-alpha release by ATP was not due to ATP breakdown and subsequent activation of adenosine/P1 receptors. Interestingly, treatment of astrocyte cultures with 10 microm or 100 microm ATP potentiated TNF-alpha release induced by a submaximal concentration of LPS. UTP and 2methylthioADP (2-MeSADP), P2Y receptor agonists, also enhanced this LPS-induced TNF-alpha release. Our observations demonstrate opposing effects of ATP/P2 receptor activation on TNF-alpha release, i.e. P2X receptor activation attenuates, whereas P2Y receptor activation potentiates TNF-alpha release in LPS-stimulated astrocytes. These observations suggest a mechanism whereby astrocytes can sense the severity of damage in the CNS via ATP release from damaged cells and can modulate the TNF-alpha mediated inflammatory response depending on the extracellular ATP concentration and corresponding type of astrocyte ATP/P2 receptor activated.  相似文献   

19.
Hypoxia/reoxygenation (H/R) elicits neuronal cell injury and glial cell activation within the central nervous system (CNS). Neuroinflammation is a process that primarily results from the acute or chronic activation of glial cells. This overactive state of glial cells results in the increased release of nitric oxide (NO) and/or tumor necrosis factor alpha (TNF-alpha), a process which can lead to neuronal damage or death. In this study, we found that hypoxia for eight or twelve hours (h) followed by 24 h reoxygenation (H8/ R24 or H12/R24) induced NO production and TNF-alpha release from cultures of enriched microglial or mixed glial cells. However, microglial cells could not survive longer periods of hypoxia (> or = 12 h) in microglia-enriched culture. While astrocytes retained a 95% viability following longer periods of H/R in astrocyte-enriched cultures, they did not produce any significant quantities of NO and TNF-alpha. Reoxygenation for prolonged periods (three and five days) following H24 resulted in progressively greater increases in NO production (about two-fold greater level in hypoxia as compared to normoxic conditions) accompanied by relatively less increases in TNF-alpha release in mixed glial cell cultures. Our data indicate that inflammatory mediators such as NO and TNF-alpha are released from glia-enriched mix culture in response to H/R. While microglial cells are more vulnerable than astrocytes during H/R, they survive longer in the presence of astrocyte and are the major cell type producing NO and TNF-alpha. Furthermore, the TNF-alpha release precedes NO production in response to a prolonged duration of reoxygenation following hypoxia for 24 h.  相似文献   

20.
We previously showed that human corneal epithelial cells (HCECs) express Toll-like receptors (TLRs), which recognize gram-positive bacteria and respond to Staphylococcus aureus infection by the expression and secretion of proinflammatory cytokines and beta-defensin-2 (hBD2). In this study, we further elucidated the underlying mechanisms regulating hBD-2 expression and its role in innate defense in HCECs in response to S. aureus challenge. Exposure of HUCL cells, a telomerase-immortalized HCEC line, to S. aureus, its exoproducts (1:10 dilution), or synthetic lipopeptide Pam3Cys (10 microg/ml) resulted in the up-regulation of hBD-2, but not hBD1 and hBD3. Similar to HUCL cells, primary HCECs responded to S. aureus-exoproducts and Pam3Cys challenge by expressing hBD2 mRNA and secreting hBD2 into the culture media. Furthermore, these stimuli induced the expression of TLR2 at both mRNA and protein levels. Consistently with its role as a major pattern-recognizing receptor, TLR2 was located at the cell surface by cell surface biotinylation. The treatment of HUCL cells with TLR2 neutralizing antibody resulted in a significant decrease in Pam3Cys-induced hBD2 production as well as IL-6, IL-8, and TNF-alpha secretion. The Pam3Cys-induced hBD2 expression was completely blocked by NF-kappaB inhibitors and partially inhibited by p38 MAP kinase and the JNK inhibitors. Conditioned media derived from HCECs challenged with S. aureus-exoproducts or Pam3Cys exhibited antibacterial activity against S. aureus, Pseudomonas aeruginosa and Escherichia coli. These findings suggest that S. aureus induces hBD2 production through TLR2-mediated pathways in HCECs and that pathogen-challenged, TLR-activated HCECs possess antimicrobial activity. Thus, the epithelium might play a role in innate defense against bacterial infection by directly killing bacteria in the cornea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号