首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradability of fecal nitrogen in composting process   总被引:1,自引:0,他引:1  
Biodegradability of fecal nitrogen was studied in composting process. Fecal nitrogen was subdivided into two fractions: a type originally inert in biological activity (N(XI)), and a slowly biodegradable one (N(XS)). During the composting process, an inert type of organic matter (N(XIB)) was reproduced by endogenous respiration of heterotrophic microorganism. Evaluations for fecal nitrogen formed a conclusion of 75% (N(XS)) and 25% (N(XI)), respectively. It was estimated that the N(XIB) could be 9% of initial fecal nitrogen. Thus, approximately 34% (N(XI)+N(XIB)) of initial fecal nitrogen remained in the composting material (mixture of sawdust and feces) as biologically inert type of organic nitrogen.  相似文献   

2.
A dynamic mathematical model was developed for the simulation of the aerobic treatment of piggery wastewater. This model includes the carbon oxidation, the nitrification and the denitrification. According to the experimental results obtained during this study, a modified version of the activated sludge model No. 1 has been developed. The model includes (1) nitrite as intermediate of nitrification and denitrification, (2) the distinction between the anoxic heterotrophic yield and the aerobic heterotrophic yield, respectively equal to 0.53 and 0.6 and (3) the first-order hydrolysis of the slowly biodegradable fraction. The calibration and the validation of the model was performed using experimental data from three experiments with two piggery wastewaters. A set of kinetic and stoichiometric parameters emerged from these tests. Except the kinetic of hydrolysis of the slowly biodegradable organic matter varying from 6 to 25 gCOD(gCODday)(-1), all other parameters were similar for all experiments. The dissolved oxygen concentration was identified as the main variable influencing the nitrite accumulation during nitrification. In the calibrated model, the oxygen half-saturation coefficient of the ammonium oxidisers (0.3g O(2)m(-3)) was lower than for the nitrite oxidisers (1.1 gO(2)m(-3)), leading to nitrite accumulation when the dissolved oxygen concentration was low. Simulations with the proposed model could be very useful for improved design and management of biological treatment of piggery wastewaters, particularly in case of partial nitrification to nitrite directly followed by denitrification.  相似文献   

3.
This pilot study compares the compositions of bacterial biofilms in pipe networks supplied with water containing either high levels of biodegradable organic matter (BOM) or low levels of BOM (conventionally or biologically treated, respectively). The Microbial Identification System for fatty acid analysis was utilized in this study to identify a large number of organisms (>1,400) to determine population changes in both conventionally and biologically treated water and biofilms. Data generated during this study indicated that suspended bacteria have little impact on biofilms, and despite treatment (conventional or biological), suspended microbial populations were similar following disinfection. Prechlorination with free chlorine resulted not only in reduced plate count values but also in a dramatic shift in the composition of the bacterial population to predominately gram-positive bacteria. Chlorination of biologically treated water produced the same shifts toward gram-positive bacteria. Removal of assimilable organic carbon by the biologically active filters slowed the rate of biofilm accumulation, but biofilm levels were similar to those found in conventionally treated water within several weeks. Iron pipes stimulated the rate of biofilm development, and bacterial levels on disinfected iron pipes exceeded those for chlorinated polyvinyl chloride pipes. The study showed that the iron pipe surface dramatically influenced the composition, activity, and disinfection resistance of biofilm bacteria.  相似文献   

4.
This pilot study compares the compositions of bacterial biofilms in pipe networks supplied with water containing either high levels of biodegradable organic matter (BOM) or low levels of BOM (conventionally or biologically treated, respectively). The Microbial Identification System for fatty acid analysis was utilized in this study to identify a large number of organisms (>1,400) to determine population changes in both conventionally and biologically treated water and biofilms. Data generated during this study indicated that suspended bacteria have little impact on biofilms, and despite treatment (conventional or biological), suspended microbial populations were similar following disinfection. Prechlorination with free chlorine resulted not only in reduced plate count values but also in a dramatic shift in the composition of the bacterial population to predominately gram-positive bacteria. Chlorination of biologically treated water produced the same shifts toward gram-positive bacteria. Removal of assimilable organic carbon by the biologically active filters slowed the rate of biofilm accumulation, but biofilm levels were similar to those found in conventionally treated water within several weeks. Iron pipes stimulated the rate of biofilm development, and bacterial levels on disinfected iron pipes exceeded those for chlorinated polyvinyl chloride pipes. The study showed that the iron pipe surface dramatically influenced the composition, activity, and disinfection resistance of biofilm bacteria.  相似文献   

5.
Co-composting kinetics of rose processing waste with OFMSW   总被引:3,自引:0,他引:3  
The objective of this study was to evaluate the kinetics of co-composting of rose processing waste (RPW) and organic fraction of municipal solid waste (OFMSW). Experimental data was obtained from 65-L batch reactors. Mixtures settled up with different ratios of RPW, OFMSW, inoculation, and bulking agent. The data was consisting of CO(2) evolution and inner temperature changing with time in the reactors. Decomposition process was evaluated based on rapidly and slowly biodegradable fractions of organic matter. The experimental data has been analyzed by kinetic models including the first-zero-order, first-first-order, Chen and Hashimoto's and Levi-Minzi's kinetic models using non-linear regression techniques. Kinetic parameters and rate constants were evaluated based on the average relative errors and coefficient of determination. The results of study showed that the best fitting kinetic model is the first-first-order.  相似文献   

6.
The conditioning film developed on glass panels immersed in surface seawater over a period of 24 h was analysed for total organic carbon (OC), total organic nitrogen (ON), and total hydrolyzable amino acid (THAA) concentrations and composition. The concentrations of C and N and THAA increased, whereas the C/N ratio decreased over the period of immersion. The amino acid-C and N accounted for 3.7-6.7% and 10.3-65.3% of OC and ON, respectively. The relative contribution of glycine plus threonine and serine to the total amino acids decreased while that of valine, phenylalanine, isoleucine and leucine increased over the period of immersion. Principal component analysis (PCA) based on mole% amino acid composition showed that the degradation indices (DI) for the conditioning film organic matter increased over the period of immersion. A high C/N ratio, a low %THAA-C, % THAA-N and DI values and the abundance of glycine plus threonine and serine in the conditioning film organic matter during the first few hours following immersion imply that the adsorbed organic matter was mostly derived from degraded organic matter.  相似文献   

7.
The conditioning film developed on glass panels immersed in surface seawater over a period of 24?h was analysed for total organic carbon (OC), total organic nitrogen (ON), and total hydrolyzable amino acid (THAA) concentrations and composition. The concentrations of C and N and THAA increased, whereas the C/N ratio decreased over the period of immersion. The amino acid-C and N accounted for 3.7?–?6.7% and 10.3?–?65.3% of OC and ON, respectively. The relative contribution of glycine plus threonine and serine to the total amino acids decreased while that of valine, phenylalanine, isoleucine and leucine increased over the period of immersion. Principal component analysis (PCA) based on mole% amino acid composition showed that the degradation indices (DI) for the conditioning film organic matter increased over the period of immersion. A high C/N ratio, a low %THAA-C, % THAA-N and DI values and the abundance of glycine plus threonine and serine in the conditioning film organic matter during the first few hours following immersion imply that the adsorbed organic matter was mostly derived from degraded organic matter.  相似文献   

8.
Bioremediation of soil contaminated by organic compounds can remove the contaminants to a large extent, but residual contamination levels may remain which are not or only slowly biodegraded. Residual levels often exceed existing clean-up guidelines and thereby limit the use of bioremediation in site clean-up. A method for estimating the expected residual levels would be a useful tool in the assessment of the feasability of bioremediation. In this study, three soil types from a creosote-contaminated field site, which had been subjected to 6 months of bioremediation in laboratory column studies, were used to characterize the residual contamination levels and assess their availability for biodegradation. The soils covered a wide range of organic carbon levels and particle size distributions. Results from the biodegradation studies were compared with desorption rate measurements and selective extractability using butanol. Residual levels of polycyclic aromatic hydrocarbons after bioremediation were found to be strongly dependent on soil type. The presence of both soil organic matter and asphaltic compounds in the soil was found to be associated with higher residual levels. Good agreement was found between the biodegradable fraction and the rapidly desorbable fraction in two of the three soils studied. Butanol extraction was found to be a useful method for roughly estimating the biodegradable fraction in the soil samples. The results indicate that both desorption and selective extraction measurements could aid the assessment of the feasability for bioremediation and identifying acceptable end-points. Received: 15 September 1999 / Received revision: 7 February 2000 / Accepted: 13 February 2000  相似文献   

9.
The aim of this study was to examine whether the characterisation of organic matter on the basis of an oxygen uptake rate (OUR) could be applied to organic waste from an anaerobic waste treatment process. Three anaerobic digestion experiments were carried out in a bioreactor. Volatile fatty acids (VFA) and dissolved organic carbon (DOC) were monitored. OUR-experiments were carried out with diluted samples from the process. The graphs of the OUR-experiments showed a clear lag-phase, which was due to the slow adaptation of aerobic microorganisms. Model simulations of the OUR versus time curve showed sufficient agreement, if based on one fraction of readily biodegradable and two fractions of less easily biodegradable organic matter. The shape of the simulated graphs was affected considerably by the value of the maintenance energy requirement rate qm and could be improved by reducing the standard value qm = 1 d(-1) to qm = 0.1 d(-1). Only little agreement was achieved when comparing the results of the OUR-experiments with the VFA- and DOC-concentrations. Experiments with additional trace elements and vitamins led to an increase in the OUR and proved that the oxygen consumption was not exclusively determined by the availability of organic matter.  相似文献   

10.
Rumpel  C.  Kögel-Knabner  I.  Hüttl  R. F. 《Plant and Soil》1999,213(1-2):161-168
In the Lusatian mining district, in the eastern part of the Federal Republic of Germany, organic matter of reclaimed mine soils consists of a mixture of lignite and recently formed soil organic matter (recent carbon). The aim of the study was to investigate the recent carbon accumulation and the degree of humification of a chronosequence of young mine soils under forest. The lignite content of the forest floor, Ai (0–5 cm) and Cv horizons (1 m depth) was determined by 14CU activity measurements and the structural composition of the organic matter was characterised by 13C CPMAS NMR spectroscopy. To obtain a characterisation of the degree of humification, the soil samples were analysed for the content of polysaccharides, proteins, lignin and lipids by wet chemical methods. 14C activity measurements indicate that at the oldest site, comparable amounts of carbon accumulated in the first few centimetres of the soil profile than in natural forest soils. 13C CPMAS NMR spectra of the organic matter in the Ai horizons of the three soil profiles were dominated by aromatic and alkyl carbon species characteristic for lignite, but indicated as well an increasing contribution of carbon species from decomposing plant litter with soil age. When the results from wet chemical analyses were normalised to the total carbon content no changes with age could be noticed. After normalisation of the amount of litter compounds to the recent carbon content, the carbon identified by plant litter compound analysis decreased with increasing depth and increasing age of the soils. After 32 years the values are comparable to those of natural forest soils. These observations were confirmed by increasing degree of lignin alteration with stand age and soil depth. The data of wet chemical analyses complement data obtained by 14C activity measurements and 13C CPMAS NMR spectroscopy and lead to the conclusion that 32 years after reforestation the degree of humification of the soil organic matter is in the same range as those of natural sites. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Summary The kinetics of anaerobic fermentation of rice straw to methane were studied. Rice straw was the only carbon source at influent volatile solid concentrations of 18.9 and 37.8 g/l. Semicontinous runs were carried out at 37°C in laboratory scale perfectly mixed reactors. The Contois' kinetic model constants were calculated from the experimental data. Arefrac tory coefficient was measured (R=0.374) to account for the nonbiodegradable portion of the organic matter of rice straw and incorporated into the kinetic equations. The predicted values of effluent substrate concentration, volumetric methane yield, volumetric methane production rate, and biodegradable conversion efficiency fit well with those measured experi mentally.Percent destruction values of feed constituents were measured.  相似文献   

12.
In recent years, two different approaches to the study of biodegradable organic matter in distribution systems have been followed. The assimilable organic carbon (AOC) indicates the portion of the dissolved organic matter used by bacteria and converted to biomass, which is directly measured as total bacteria, active bacteria or colony-forming units and indirectly as ATP or increase in turbidity. In contrast, the biodegradable dissolved organic carbon (BDOC) is the portion of the dissolved organic carbon that can be mineralized by heterotrophic micro-organisms, and it is measured as the difference between the inflow and the outflow of a bioreactor. In this study, at different steps in a water treatment plant, the bacterial regrowth capability was determined by the AOC method that measures the maximum growth rate by using a computerized Monitek turbidimeter. The BDOC was determined using a plug flow bioreactor. Measurements of colony-forming units and total organic carbon (TOC) evolution in a turbidimeter and of colony-forming units at the inflow/outflow of the bioreactor were also performed, calculating at all sampling points the coefficient yield ( Y = cfu/ΔTOC) in both systems. The correlations between the results from the bioreactor and turbidimeter have been calculated ; a high correlation level was observed between BDOC values and all the other parameters, except for Y calculated from bacterial suspension measured in the turbidimeter.  相似文献   

13.
We followed a long-term (up to 503 days) microbial mineralization of dissolved organic carbon (DOC) from lake water in a bioassay and described the kinetics of biodegradation with a new model based on a reactivity continuum approach. The biodegradability of DOC was expressed as the probability of biodegradation, which was assumed to follow a beta distribution. We compared the performance of our beta model to five earlier models: the simplest first order kinetic model, two G models, the power model and the gamma model. The simplest first order kinetic model described the decreasing microbial mineralization of DOC poorly (r 2 = 0.73), but the other models explained the observed kinetics of biodegradation well (r 2 > 0.95). When we assessed the extrapolation power of models beyond the length of the bioassay by reducing the amount of data, the predictive power of the G models was poor. Instead, the beta model predicted the biodegradation kinetics consistently and correctly based on even only three observations in time. The beta model provided also long-term predictions (up to 5,000 years) along the observed long-term mineralization trajectory of organic carbon in sediments. Additionally, the beta model formulated the biodegradability continuum of DOC, which was skewed towards low biodegradability. During the bioassay, the skew towards low biodegradability increased as the most biodegradable parts of DOC were consumed. The beta model describes the biodegradability continuum quantitatively and can predict biodegradation in a realistic manner, thus, improving our understanding about the biodegradability and the role of natural organic matter in the environment.  相似文献   

14.
Post-treatment of anaerobic wastewater was undertaken to biologically oxidize dissolved methane, with the aim of preventing methane emission. The performance of dissolved methane oxidation and competition for oxygen among methane, ammonium, organic matter, and sulfide oxidizing bacteria were investigated using a lab-scale closed-type down-flow hanging sponge (DHS) reactor. Under the oxygen abundant condition of a hydraulic retention time of 2h and volumetric air supply rate of 12.95m(3)-airm(-3)day(-1), greater than 90% oxidation of dissolved methane, ammonium, sulfide, and organic matter was achieved. With reduction in the air supply rate, ammonium oxidation first ceased, after which methane oxidation deteriorated. Sulfide oxidation was disrupted in the final step, indicating that COD and sulfide oxidation occurred prior to methane oxidation. A microbial community analysis revealed that peculiar methanotrophic communities dominating the Methylocaldum species were formed in the DHS reactor operation.  相似文献   

15.
重金属污染对土壤有机质积累的影响   总被引:1,自引:0,他引:1  
采用田间采样分析与室内培养试验相结合的方法,研究了不同重金属污染土壤中有机质积累的差异及重金属污染强度对土壤有机质矿化动态变化的影响.结果表明:污染土壤中重金属的大量积累可减弱有机物质的矿化速率,增加土壤有机质的积累.土壤中颗粒态有机质及其占总有机碳的比例随重金属积累的增加而增加;而微生物生物量碳占总碳的比例却随土壤重金属污染水平的提高而下降.污染土壤中颗粒态有机质对重金属有显著的富集,这可能是影响土壤有机物质进一步矿化的原因之一.重金属污染可改变土壤有机质的矿化速率,影响土壤有机质的积累与分配.  相似文献   

16.
Decomposition is a critical process in global carbon cycling. During decomposition, leaf and fine root litter may undergo a later, relatively slow phase; past long-term experiments indicate this phase occurs, but whether it is a general phenomenon has not been examined. Data from Long-term Intersite Decomposition Experiment Team, representing 27 sites and nine litter types (for a total of 234 cases) was used to test the frequency of this later, slow phase of decomposition. Litter mass remaining after up to 10 years of decomposition was fit to models that included (dual exponential and asymptotic) or excluded (single exponential) a slow phase. The resultant regression equations were evaluated for goodness of fit as well as biological realism. Regression analysis indicated that while the dual exponential and asymptotic models statistically and biologically fit more of the litter type–site combinations than the single exponential model, the latter was biologically reasonable for 27–65% of the cases depending on the test used. This implies that a slow phase is common, but not universal. Moreover, estimates of the decomposition rate of the slowly decomposing component averaged 0.139–0.221 year−1 (depending on method), higher than generally observed for mineral soil organic matter, but one-third of the faster phase of litter decomposition. Thus, this material may be slower than the earlier phases of litter decomposition, but not as slow as mineral soil organic matter. Comparison of the long-term integrated decomposition rate (which included all phases of decomposition) to that for the first year of decomposition indicated the former was on average 75% that of the latter, consistent with the presence of a slow phase of decomposition. These results indicate that the global store of litter estimated using short-term decomposition rates would be underestimated by at least one-third.  相似文献   

17.
《L' Année biologique》1998,37(3):117-161
The maintenance of the quality of water from the outlet of the treatment plant to the consumer tap is a major concern of water distributors. From a biological point of view, this maintenance must be characterized by a stability of biological features, namely bacterial growth from biodegradable organic matter, and protozoan bacterivory which must be not detectable. However, drinking water distribution systems are continuously exposed to a flow of biodegradable organic matter, which can represent around 20–30 % of the total dissolved organic carbon, and a flow of allochthonous microorganisms (bacteria, fungi, protozoa…), coming from the water treatment plant but also from incidents (breaks/repairs) on the distribution network itself. Apart from these microorganisms (heterotrophic bacteria in particular) can grow in this ultra-oligotrophic environment and colonize the all drinking water distribution system. The highest density of microorganisms occurs on the surface of pipewalls where they are organized in microcolonies (biofilm) that are mixed with corrosion products and inorganic precipitates. Five groups of organisms have been identified in distribution networks, in both the water phase and the biofilm: bacterial cells, protozoa, yeast, fungi and algae. The majority of these organisms are not pathogens, nevertheless potentially pathogen bacteria (Legionella…), fecal bacteria (coliforms, E. coli…), and pathogen protozoan cysts (Giardia intestinalis, Cryptosporidium parvum…) can transitorily find favorable conditions for their proliferation in the networks. Bacteria grow from the biodegradable fraction of dissolved organic matter while protozoa grow from dissolved organic matter, other protozoa but especially from bacterial prey items. The protozoan bacterivory was extensively studied in marine aquatic environments and in rivers, lakes,… but very rarely in drinking water distribution networks. Actually, proofs of the protozoan grazing on fixed and free-living bacterial cells were given by photography or film of biofilms accumulation on coupons that were previously immersed in potable water or by direct microscopic observation of bacteria in food vacuole of protozoa from potable water. A single and recent study has estimated protozoan bacterivory rate from laboratory experiences using fluorescent markers. It appears that in an experimental distribution system fed with biologically treated water (ozone/filtration through granular activated carbon), only ciliates present in the biofilm have a measurable grazing activity, estimated at 2 bacteria·ciliate−1·h−1 on average.Bacterial dynamics in drinking water distribution systems is complex and related to different parameters, like the biodegradable fraction of dissolved organic carbon, the presence of a residual of disinfectant, the nature and the state of pipewalls, the relative biomass of free and fixed bacterial, and grazing impact.The preservation of the biological stability of potable water during its storage in reservoir or its transport through the distribution systems can be achieved by (a) the use of chemical disinfectants (in particular by addition of chlorine) which is the widely used technique, or (b) the use of new techniques such as nanofiltration that can eliminate bacteria and significantly decrease the concentrations of organic matter at the inlet of the distribution network and in the potable water.
  • (a)The use of oxidant, usually chlorine, induces a number of problems, in particular the development of oxidation by-products like trihalomethans (THM), among which some are recognized as carcinogenic products for animals. In addition, chlorine added at the outlet of treatment plant is consumed in the network and the maintenance of a residual of chlorine along an entire distribution network would need high concentrations of chlorine at the outlet of the treatment plant. This may be incompatible with standards for both residual chlorine and its by-products. Nevertheless, chlorine has a disinfectant effect on planctonic bacteria, if considering that only around 10 % of free bacterial cells are living cells, i.e. are able of respiratory oxidation. However, some studies show that bacteria fixed on granular activated carbon particles can be resistant to chlorine, as well as bacteria in aggregates. Thus, the addition of chlorine in potable water does not inhibit the formation of a biofilm at the surface of pipewalls. In the same way, protozoa transported by potable water can resist to chlorine.
  • (b)The above disadvantages permitted the development of membrane filtration techniques like the nanofiltration, which is at the junction between reverse osmosis and ultrafiltration, and which seems to be an interesting alternative to conventional treatments because it presents the advantage to (i) decrease very strongly the concentrations of dissolved organic carbon (on average 90 % for DOC (Dissolved Organic Carbon) and 99 % for BDOC (Biodegradable Dissolved Organic Carbon)), (ii) to remove a very high proportion of almost the entire microorganisms (99 %), precursors of chlorination by-products, and micropollutans, (iii) to decrease the musty flavor of water (2-fold) and (iv) to produce a water that needs low concentration of chlorine.
  相似文献   

18.
Summary An attempt has been made to imitate the grassland system by a perfusion apparatus containing a soil-column to which labeled glucose is continuously supplied. Experiments have also been performed with substrate supplied at the start of the experiment to imitate processes occurring in arable land. Deficiency of available nitrogen caused that more of the glucose carbon added to the soil was incorporated into soil organic matter than in the presence of a supplied nitrogen source. Even more glucose carbon was incorporated into soil organic matter when nitrogen deficiency was accompanied by a continous addition of the glucose. The results obtained indicate that the continuous addition of substrate together with nitrogen deficiency as it occurs in permanent pastures are responsible for the accumulation of soil organic matter in these soils.  相似文献   

19.
The terrestrial biosphere sequesters up to a third of annual anthropogenic carbon dioxide emissions, offsetting a substantial portion of greenhouse gas forcing of the climate system. Although a number of factors are responsible for this terrestrial carbon sink, atmospheric nitrogen deposition contributes by enhancing tree productivity and promoting carbon storage in tree biomass. Forest soils also represent an important, but understudied carbon sink. Here, we examine the contribution of trees versus soil to total ecosystem carbon storage in a temperate forest and investigate the mechanisms by which soils accumulate carbon in response to two decades of elevated nitrogen inputs. We find that nitrogen-induced soil carbon accumulation is of equal or greater magnitude to carbon stored in trees, with the degree of response being dependent on stand type (hardwood versus pine) and level of N addition. Nitrogen enrichment resulted in a shift in organic matter chemistry and the microbial community such that unfertilized soils had a higher relative abundance of fungi and lipid, phenolic, and N-bearing compounds; whereas, N-amended plots were associated with reduced fungal biomass and activity and higher rates of lignin accumulation. We conclude that soil carbon accumulation in response to N enrichment was largely due to a suppression of organic matter decomposition rather than enhanced carbon inputs to soil via litter fall and root production.  相似文献   

20.
为了探究不同有机物覆盖对冷凉地区果园土壤理化性质的影响,在‘寒富’苹果园设置了杂草、稻草、玉米秸秆、粉碎枝条4个覆盖处理,对比分析了各处理果园土壤水分、养分等指标的变化.结果表明: 有机物覆盖增加了土壤含水量,以干旱季节最为明显;减缓了春季土壤温度上升速度,不利于果树前期生长,但降低了夏季土壤的最高温,提高了秋冬季土壤的最低温;提高了土壤的pH值,以玉米秸秆覆盖处理最为明显,减轻了土壤酸化,使土壤pH接近中性;不同程度提高了土壤有机质含量,以杂草覆盖处理最为明显.覆盖还增加了土壤碱解氮、速效磷、速效钾含量,但稻草覆盖处理碱解氮含量低于对照.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号