首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the relationship between changes in cardiorespiratory and cerebrovascular function in 14 healthy volunteers with and without hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 80%] at rest and during 60-70% maximal oxygen uptake steady-state cycling exercise. During all procedures, ventilation, end-tidal gases, heart rate (HR), arterial blood pressure (BP; Finometer) cardiac output (Modelflow), muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAV; transcranial Doppler ultrasound) were measured continuously. The effect of hypoxia on dynamic cerebral autoregulation was assessed with transfer function gain and phase shift in mean BP and MCAV. At rest, hypoxia resulted in increases in ventilation, progressive hypocapnia, and general sympathoexcitation (i.e., elevated HR and cardiac output); these responses were more marked during hypoxic exercise (P < 0.05 vs. rest) and were also reflected in elevation of the slopes of the linear regressions of ventilation, HR, and cardiac output with Sa(O(2)) (P < 0.05 vs. rest). MCAV was maintained during hypoxic exercise, despite marked hypocapnia (44.1 +/- 2.9 to 36.3 +/- 4.2 Torr; P < 0.05). Conversely, hypoxia both at rest and during exercise decreased cerebral oxygenation compared with muscle. The low-frequency phase between MCAV and mean BP was lowered during hypoxic exercise, indicating impairment in cerebral autoregulation. These data indicate that increases in cerebral neurogenic activity and/or sympathoexcitation during hypoxic exercise can potentially outbalance the hypocapnia-induced lowering of MCAV. Despite maintaining MCAV, such hypoxic exercise can potentially compromise cerebral autoregulation and oxygenation.  相似文献   

2.
Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation (E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise (E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset andE slope below RC (P<0.05). In hypoxia, MCAv and E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO2 in hypoxia increased E at RC (P<0.05) but no difference was observed in RC onset, MCAv, or E slope below RC (P>0.05). The E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the ‘normal’ cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted.  相似文献   

3.
We tested the hypothesis that intermittent hypoxia (IH) and/or continuous hypoxia (CH) would enhance the ventilatory response to acute hypoxia (HVR), thereby altering blood pressure (BP) and cerebral perfusion. Seven healthy volunteers were randomly selected to complete 10-12 days of IH (5-min hypoxia to 5-min normoxia repeated for 90 min) before ascending to mild CH (1,560 m) for 12 days. Seven other volunteers did not receive any IH before ascending to CH for the same 12 days. Before the IH and CH, following 12 days of CH and 12-13 days post-CH exposure, all subjects underwent a 20-min acute exposure to poikilocapnic hypoxia (inspired fraction of O(2), 0.12) in which ventilation, end-tidal gases, arterial O(2) saturation, BP, and middle cerebral artery blood flow velocity (MCAV) were measured continuously. Following the IH and CH exposures, the peak HVR was elevated and was related to the increase in BP (r = 0.66 to r = 0.88, respectively; P < 0.05) and to a reciprocal decrease in MCAV (r = 0.73 to r = 0.80 vs. preexposures; P < 0.05) during the hypoxic test. Following both IH and CH exposures, HVR, BP, and MCAV sensitivity to hypoxia were elevated compared with preexposure, with no between-group differences following the IH and/or CH conditions, or persistent effects following 12 days of sea level exposure. Our findings indicate that IH and/or mild CH can equally enhance the HVR, which, by either direct or indirect mechanisms, facilitates alterations in BP and MCAV.  相似文献   

4.
The influence of severe passive heat stress and hypohydration (Hypo) on cardiorespiratory and cerebrovascular function is not known. We hypothesized that 1) heating-induced hypocapnia and peripheral redistribution of cardiac output (Q) would compromise blood flow velocity in the middle cerebral artery (MCAv) and cerebral oxygenation; 2) Hypo would exacerbate the hyperthermic-induced hypocapnia, further decreasing MCAv; and 3) heating would reduce MCAv-CO2 reactivity, thereby altering ventilation. Ten men, resting supine in a water-perfused suit, underwent progressive hyperthermia [0.5 degrees C increments in core (esophageal) temperature (TC) to +2 degrees C] while euhydrated (Euh) or Hypo by 1.5% body mass (attained previous evening). Time-control (i.e., non-heat stressed) data were obtained on six of these subjects. Cerebral oxygenation (near-infrared spectroscopy), MCAv, end-tidal carbon dioxide (PetCO2) and arterial blood pressure, Q (flow model), and brachial and carotid blood flows (CCA) were measured continuously each 0.5 degrees C change in TC. At each level, hypercapnia was achieved through 3-min administrations of 5% CO2, and hypocapnia was achieved with controlled hyperventilation. At baseline in Hypo, heart rate, MCAv and CCA were elevated (P<0.05 vs. Euh). MCAv-CO2 reactivity was unchanged in both groups at all TC levels. Independent of hydration, hyperthermic-induced hyperventilation caused a severe drop in PetCO2 (-8+/-1 mmHg/ degrees C), which was related to lower MCAv (-15+/-3%/ degrees C; R2=0.98; P<0.001). Elevations in Q were related to increases in brachial blood flow (R2=0.65; P<0.01) and reductions in MCAv (R2=0.70; P<0.01), reflecting peripheral distribution of Q. Cerebral oxygenation was maintained, presumably via enhanced O2-extraction or regional differences in cerebral perfusion.  相似文献   

5.
We hypothesized that 1) acute severe hypoxia, but not hyperoxia, at sea level would impair dynamic cerebral autoregulation (CA); 2) impairment in CA at high altitude (HA) would be partly restored with hyperoxia; and 3) hyperoxia at HA and would have more influence on blood pressure (BP) and less influence on middle cerebral artery blood flow velocity (MCAv). In healthy volunteers, BP and MCAv were measured continuously during normoxia and in acute hypoxia (inspired O2 fraction = 0.12 and 0.10, respectively; n = 10) or hyperoxia (inspired O2 fraction, 1.0; n = 12). Dynamic CA was assessed using transfer-function gain, phase, and coherence between mean BP and MCAv. Arterial blood gases were also obtained. In matched volunteers, the same variables were measured during air breathing and hyperoxia at low altitude (LA; 1,400 m) and after 1-2 days after arrival at HA ( approximately 5,400 m, n = 10). In acute hypoxia and hyperoxia, BP was unchanged whereas it was decreased during hyperoxia at HA (-11 +/- 4%; P < 0.05 vs. LA). MCAv was unchanged during acute hypoxia and at HA; however, acute hyperoxia caused MCAv to fall to a greater extent than at HA (-12 +/- 3 vs. -5 +/- 4%, respectively; P < 0.05). Whereas CA was unchanged in hyperoxia, gain in the low-frequency range was reduced during acute hypoxia, indicating improvement in CA. In contrast, HA was associated with elevations in transfer-function gain in the very low- and low-frequency range, indicating CA impairment; hyperoxia lowered these elevations by approximately 50% (P < 0.05). Findings indicate that hyperoxia at HA can partially improve CA and lower BP, with little effect on MCAv.  相似文献   

6.
Blood flow and vasodilatory responses are altered by age in a number of vascular beds, including the cerebral circulation. To test the role of prostaglandins as regulators of cerebral vascular function, we examined cerebral vasodilator responses to CO(2) (cerebrovascular reactivity) in young (26 ± 5 yr; 6 males/6 females) and older (65 ± 6 yr, 5 males/5 females) healthy humans before and after cyclooxygenase inhibition (using indomethacin). Middle cerebral artery velocity (MCAv) responses to stepped hypercapnia were measured before and 90 min after indomethacin. Changes in MCAv during the recovery from hypercapnia (vasoconstrictor responses) were also evaluated before and after indomethacin. Cerebrovascular reactivity was calculated using linear regression between MCAv and end-tidal CO(2). Young adults demonstrated greater MCAv (55 ± 6 vs. 39 ± 5 cm/s: P < 0.05) and MCAv reactivity (1.67 ± 0.20 vs. 1.09 ± 0.19 cm·s(-1)·mmHg(-1); P < 0.05) to hypercapnia compared with older adults (P < 0.05). In both groups MCAv and MCAv reactivity decreased between control and indomethacin. Furthermore, the age-related differences in these cerebrovascular variables were abolished by indomethacin. During the recovery from hypercapnia, there were no age-related differences in MCAv reactivity; however, indomethacin significantly reduced the MCAv reactivity in both groups. Taken together, these results suggest that cerebral blood flow velocity and cerebrovascular reactivity are attenuated in aging humans, and may be due to a loss of prostaglandin-mediated vasodilation.  相似文献   

7.
We hypothesized that, in healthy subjects without pharmacological intervention, an overnight reduction in cerebrovascular CO(2) reactivity would be associated with an elevated hypercapnic ventilatory [ventilation (VE)] responsiveness and a reduction in cerebral oxygenation. In 20 healthy male individuals with no sleep-related disorders, continuous recordings of blood velocity in the middle cerebral artery, arterial blood pressure, VE, end-tidal gases, and frontal cortical oxygenation using near infrared spectroscopy were monitored during hypercapnia (inspired CO(2), 5%), hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 84%], and during a 20-s breath hold to investigate the related responses to hypercapnia, hypoxia, and apnea, respectively. Measurements were conducted in the evening (6-8 PM) and in the early morning (6-8 AM). From evening to morning, the cerebrovascular reactivity to hypercapnia was reduced (5.3 +/- 0.6 vs. 4.6 +/- 1.1%/Torr; P < 0.05) and was associated with a reduced increase in cerebral oxygenation (r = 0.39; P < 0.05) and an elevated morning hypercapnic VE response (r = 0.54; P < 0.05). While there were no overnight changes in cerebrovascular reactivity or VE response to hypoxia, there was greater cerebral desaturation for a given Sa(O(2)) in the morning (AM, -0.45 +/- 0.14 vs. PM, -0.35 +/- 0.14%/Sa(O(2)); P < 0.05). Following the 20-s breath hold, in the morning, there was a smaller surge middle cerebral artery velocity and cerebral oxygenation (P < 0.05 vs. PM). These data indicate that normal diurnal changes in the cerebrovascular response to CO(2) influence the hypercapnic ventilatory response as well as the level of cerebral oxygenation during changes in arterial Pco(2); this may be a contributing factor for diurnal changes in breathing stability and the high incidence of stroke in the morning.  相似文献   

8.
We tested the hypothesis that, following exposure to high altitude, cerebrovascular reactivity to CO2 and cerebral autoregulation would be attenuated. Such alterations may predispose to central sleep apnea at high altitude by promoting changes in brain PCO2 and thus breathing stability. We measured middle cerebral artery blood flow velocity (MCAv; transcranial Doppler ultrasound) and arterial blood pressure during wakefulness in conditions of eucapnia (room air), hypocapnia (voluntary hyperventilation), and hypercapnia (isooxic rebeathing), and also during non-rapid eye movement (stage 2) sleep at low altitude (1,400 m) and at high altitude (3,840 m) in five individuals. At each altitude, sleep was studied using full polysomnography, and resting arterial blood gases were obtained. During wakefulness and polysomnographic-monitored sleep, dynamic cerebral autoregulation and steady-state changes in MCAv in relation to changes in blood pressure were evaluated using transfer function analysis. High altitude was associated with an increase in central sleep apnea index (0.2 +/- 0.4 to 20.7 +/- 23.2 per hour) and an increase in mean blood pressure and cerebrovascular resistance during wakefulness and sleep. MCAv was unchanged during wakefulness, whereas there was a greater decrease during sleep at high altitude compared with low altitude (-9.1 +/- 1.7 vs. -4.8 +/- 0.7 cm/s; P < 0.05). At high altitude, compared with low altitude, the cerebrovascular reactivity to CO2 in the hypercapnic range was unchanged (5.5 +/- 0.7 vs. 5.3 +/- 0.7%/mmHg; P = 0.06), while it was lowered in the hypocapnic range (3.1 +/- 0.7 vs. 1.9 +/- 0.6%/mmHg; P < 0.05). Dynamic cerebral autoregulation was further reduced during sleep (P < 0.05 vs. low altitude). Lowered cerebrovascular reactivity to CO2 and reduction in both dynamic cerebral autoregulation and MCAv during sleep at high altitude may be factors in the pathogenesis of breathing instability.  相似文献   

9.
We sought to describe cerebrovascular responses to incremental exercise and test the hypothesis that changes in cerebral oxygenation influence maximal performance. Eleven men cycled in three conditions: 1) sea level (SL); 2) acute hypoxia [AH; hypobaric chamber, inspired Po(2) (Pi(O(2))) 86 Torr]; and 3) chronic hypoxia [CH; 4,300 m, Pi(O(2)) 86 Torr]. At maximal work rate (W(max)), fraction of inspired oxygen (Fi(O(2))) was surreptitiously increased to 0.60, while subjects were encouraged to continue pedaling. Changes in cerebral (frontal lobe) (C(OX)) and muscle (vastus lateralis) oxygenation (M(OX)) (near infrared spectroscopy), middle cerebral artery blood flow velocity (MCA V(mean); transcranial Doppler), and end-tidal Pco(2) (Pet(CO(2))) were analyzed across %W(max) (significance at P < 0.05). At SL, Pet(CO(2)), MCA V(mean), and C(OX) fell as work rate rose from 75 to 100% W(max). During AH, Pet(CO(2)) and MCA V(mean) declined from 50 to 100% W(max), while C(OX) fell from rest. With CH, Pet(CO(2)) and C(OX) dropped throughout exercise, while MCA V(mean) fell only from 75 to 100% W(max). M(OX) fell from rest to 75% W(max) at SL and AH and throughout exercise in CH. The magnitude of fall in C(OX), but not M(OX), was different between conditions (CH > AH > SL). Fi(O(2)) 0.60 at W(max) did not prolong exercise at SL, yet allowed subjects to continue for 96 +/- 61 s in AH and 162 +/- 90 s in CH. During Fi(O(2)) 0.60, C(OX) rose and M(OX) remained constant as work rate increased. Thus cerebral hypoxia appeared to impose a limit to maximal exercise during hypobaric hypoxia (Pi(O(2)) 86 Torr), since its reversal was associated with improved performance.  相似文献   

10.
Prolonged exposure to hypoxia is accompanied by decreased hypoxic ventilatory response (HVR), but the relative importance of peripheral and central mechanisms of this hypoxic desensitization remain unclear. To determine whether the hypoxic sensitivity of peripheral chemoreceptors decreases during chronic hypoxia, we measured ventilatory and carotid sinus nerve (CSN) responses to isocapnic hypoxia in five cats exposed to simulated altitude of 5,500 m (barometric pressure 375 Torr) for 3-4 wk. Exposure to 3-4 wk of hypobaric hypoxia produced a decrease in HVR, measured as the shape parameter A in cats both awake (from 53.9 +/- 10.1 to 14.8 +/- 1.8; P less than 0.05) and anesthetized (from 50.2 +/- 8.2 to 8.5 +/- 1.8; P less than 0.05). Sustained hypoxic exposure decreased end-tidal CO2 tension (PETCO2, 33.3 +/- 1.2 to 28.1 +/- 1.3 Torr) during room-air breathing in awake cats. To determine whether hypocapnia contributed to the observed depression in HVR, we also measured eucapnic HVR (PETCO2 33.3 +/- 0.9 Torr) and found that HVR after hypoxic exposure remained lower than preexposed value (A = 17.4 +/- 4.2 vs. 53.9 +/- 10.1 in awake cats; P less than 0.05). A control group (n = 5) was selected for hypoxic ventilatory response matched to the baseline measurements of the experimental group. The decreased HVR after hypoxic exposure was associated with a parallel decrease in the carotid body response to hypoxia (A = 20.6 +/- 4.8) compared with that of control cats (A = 46.9 +/- 6.3; P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Exercise exacerbates acute mountain sickness. In infants and small mammals, hypoxia elicits a decrease in body temperature (Tb) [hypoxic thermal response (HTR)], which may protect against hypoxic tissue damage. We postulated that exercise would counteract the HTR and promote hypoxic tissue damage. Tb was measured by telemetry in rats (n = 28) exercising or sedentary in either normoxia or hypoxia (10% O2, 24 h) at 25 degrees C ambient temperature (Ta). After 24 h of normoxia, rats walked at 10 m/min on a treadmill (30 min exercise, 30 min rest) for 6 h followed by 18 h of rest in either hypoxia or normoxia. Exercising normoxic rats increased Tb ( degrees C) vs. baseline (39.68 +/- 0.99 vs. 38.90 +/- 0.95, mean +/- SD, P < 0.05) and vs. sedentary normoxic rats (38.0 +/- 0.09, P < 0.05). Sedentary hypoxic rats decreased Tb (36.15 +/- 0.97 vs. 38.0 +/- 0.36, P < 0.05) whereas Tb was maintained in the exercising hypoxic rats during the initial 6 h of exercise (37.61 +/- 0.55 vs. 37.72 +/- 1.25, not significant). After exercise, Tb in hypoxic rats reached a nadir similar to that in sedentary hypoxic rats (35.05 +/- 1.69 vs. 35.03 +/- 1.32, respectively). Tb reached its nadir significantly later in exercising hypoxic vs. sedentary hypoxic rats (10.51 +/- 1.61 vs. 5.36 +/- 1.83 h, respectively; P = 0.002). Significantly greater histopathological damage and water contents were observed in brain and lungs in the exercising hypoxic vs. sedentary hypoxic and normoxic rats. Thus exercise early in hypoxia delays but does not prevent the HTR. Counteracting the HTR early in hypoxia by exercise exacerbates brain and lung damage and edema in the absence of ischemia.  相似文献   

12.
Individual effects of hypoxic hypoxia and hypercapnia on the cerebral circulation are well described, but data on their combined effects are conflicting. We measured the effect of hypoxic hypoxia on cerebral blood flow (CBF) and cerebral O2 consumption during normocapnia (arterial PCO2 = 33 +/- 2 Torr) and during hypercapnia (60 +/- 2 Torr) in seven pentobarbital-anesthetized lambs. Analysis of variance showed that neither the magnitude of the hypoxic CBF response nor cerebral O2 consumption was significantly related to the level of arterial PCO2. To determine whether hypoxic cerebral vasodilation during hypercapnia was restricted by reflex sympathetic stimulation we studied an additional six hypercapnic anesthetized lambs before and after bilateral removal of the superior cervical ganglion. Sympathectomy had no effect on base-line CBF during hypercapnia or on the CBF response to hypoxic hypoxia. We conclude that the effects of hypoxic hypoxia on CBF and cerebral O2 consumption are not significantly altered by moderate hypercapnia in the anesthetized lamb. Furthermore, we found no evidence that hypercapnia results in a reflex increase in sympathetic tone that interferes with the ability of cerebral vessels to dilate during hypoxic hypoxia.  相似文献   

13.
To investigate the effects of muscle metaboreceptor activation during hypoxic static exercise, we recorded muscle sympathetic nerve activity (MSNA), heart rate, blood pressure, ventilation, and blood lactate in 13 healthy subjects (22 +/- 2 yr) during 3 min of three randomized interventions: isocapnic hypoxia (10% O(2)) (chemoreflex activation), isometric handgrip exercise in normoxia (metaboreflex activation), and isometric handgrip exercise during isocapnic hypoxia (concomitant metaboreflex and chemoreflex activation). Each intervention was followed by a forearm circulatory arrest to allow persistent metaboreflex activation in the absence of exercise and chemoreflex activation. Handgrip increased blood pressure, MSNA, heart rate, ventilation, and lactate (all P < 0.001). Hypoxia without handgrip increased MSNA, heart rate, and ventilation (all P < 0.001), but it did not change blood pressure and lactate. Handgrip enhanced blood pressure, heart rate, MSNA, and ventilation responses to hypoxia (all P < 0.05). During circulatory arrest after handgrip in hypoxia, heart rate returned promptly to baseline values, whereas ventilation decreased but remained elevated (P < 0.05). In contrast, MSNA, blood pressure, and lactate returned to baseline values during circulatory arrest after hypoxia without exercise but remained markedly increased after handgrip in hypoxia (P < 0.05). We conclude that metaboreceptors and chemoreceptors exert differential effects on the cardiorespiratory and sympathetic responses during exercise in hypoxia.  相似文献   

14.
We tested the hypothesis that dehydration exacerbates reductions of middle cerebral artery blood velocity (MCAv) and alters cerebrovascular control during standing after heavy resistance exercise. Ten males participated in two trials under 1) euhydration (EUH) and 2) dehydration (DEH; fluid restriction + 40 mg furosemide). We recorded finger photoplethysmographic arterial pressure and MCAv (transcranial Doppler) during 10 min of standing immediately after high-intensity leg press exercise. Symptoms (e.g., lightheadedness) were ranked by subjects during standing (1-5 scale). Low-frequency (LF) oscillations of mean arterial pressure (MAP) and mean MCAv were calculated as indicators of cerebrovascular control. DEH reduced plasma volume by 11% (P = 0.002; calculated from hemoglobin and hematocrit). During the first 30 s of standing after exercise, subjects reported greater symptoms during DEH vs. EUH (P = 0.05), but these were mild and resolved at 60 s. While MAP decreased similarly between conditions immediately after standing, MCAv decreased more with DEH than EUH (P = 0.02). With prolonged standing under DEH, mean MCAv remained below baseline (P ≤ 0.01), and below EUH values (P ≤ 0.05). LF oscillations of MAP were higher for DEH at baseline and during the entire 10 min of stand after exercise (P ≤ 0.057), while LF oscillations in mean MCAv were distinguishable only at baseline and 5 min following stand (P = 0.05). Our results suggest that mean MCAv falls below a "symptomatic threshold" in the acute phase of standing after exercise during DEH, although symptoms were mild and transient. During the prolonged phase of standing, increases in LF MAP and mean MCAv oscillations with DEH may help to maintain cerebral perfusion despite absolute MCAv remaining below the symptomatic threshold.  相似文献   

15.
The effect of moderately extended, intermittent-hypoxia (IH) on cerebral perfusion during changes in CO2 was unknown. Thus, we assessed the changes in cerebral vascular conductance (CVC) and cerebral tissue oxygenation (ScO2) during experimental hypocapnia and hypercapnia following 14-day normobaric exposures to IH (10% O2). CVC was estimated from the ratio of mean middle cerebral arterial blood flow velocity (transcranial Doppler sonography) to mean arterial pressure (tonometry), and ScO2 in the prefrontal cortex was monitored by near-infrared spectroscopy. Changes in CVC and ScO2 during changes in partial pressure of end-tidal CO2 (PETCO2, mass spectrometry) induced by 30-s paced-hyperventilation (hypocapnia) and during 6-min CO2 rebreathing (hypercapnia) were compared before and after 14-day IH exposures in eight young nonsmokers. Repetitive IH exposures reduced the ratio of %ΔCVC/ΔPETCO2 during hypocapnia (1.00 ± 0.13 vs 1.94 ± 0.35 vs %/mmHg, P = 0.026) and the slope of ΔCVC/ΔPETCO2 during hypercapnia (1.79 ± 0.37 vs 2.97 ± 0.64 %/mmHg, P = 0.021), but had no significant effect on ΔScO2/ΔPETCO2. The ventilatory response to hypercapnia during CO2 rebreathing was significantly diminished following 14-day IH exposures (0.83 ± 0.07 vs 1.14 ± 0.09 L/min/mmHg, P = 0.009). We conclude that repetitive normobaric IH exposures significantly diminish variations of cerebral perfusion in response to hypercapnia and hypocapnia without compromising cerebral tissue oxygenation. This IH-induced blunting of cerebral vasoreactivity during CO2 variations helps buffer excessive oscillations of cerebral underperfusion and overperfusion while sustaining cerebral O2 homeostasis.  相似文献   

16.
Obstructive sleep apnea (OSA) causes intermittent hypoxia (IH) during sleep. Both obesity and OSA are associated with insulin resistance and systemic inflammation, which may be attributable to tissue hypoxia. We hypothesized that a pattern of hypoxic exposure determines both oxygen profiles in peripheral tissues and systemic metabolic outcomes, and that obesity has a modifying effect. Lean and obese C57BL6 mice were exposed to 12 h of intermittent hypoxia 60 times/h (IH60) [inspired O? fraction (Fi(O?)) 21-5%, 60/h], IH 12 times/h (Fi(O?) 5% for 15 s, 12/h), sustained hypoxia (SH; Fi(O?) 10%), or normoxia while fasting. Tissue oxygen partial pressure (Pti(O?)) in liver, skeletal muscle and epididymal fat, plasma leptin, adiponectin, insulin, blood glucose, and adipose tumor necrosis factor-α (TNF-α) were measured. In lean mice, IH60 caused oxygen swings in the liver, whereas fluctuations of Pti(O?) were attenuated in muscle and abolished in fat. In obese mice, baseline liver Pti(O?) was lower than in lean mice, whereas muscle and fat Pti(O?) did not differ. During IH, Pti(O?) was similar in obese and lean mice. All hypoxic regimens caused insulin resistance. In lean mice, hypoxia significantly increased leptin, especially during SH (44-fold); IH60, but not SH, induced a 2.5- to 3-fold increase in TNF-α secretion by fat. Obesity was associated with striking increases in leptin and TNF-α, which overwhelmed effects of hypoxia. In conclusion, IH60 led to oxygen fluctuations in liver and muscle and steady hypoxia in fat. IH and SH induced insulin resistance, but inflammation was increased only by IH60 in lean mice. Obesity caused severe inflammation, which was not augmented by acute hypoxic regimens.  相似文献   

17.
Chronic hypercapnia is commonly found in patients with severe hypoxic lung disease and is associated with a greater elevation of pulmonary arterial pressure than that due to hypoxia alone. We hypothesized that hypercapnia worsens hypoxic pulmonary hypertension by augmenting pulmonary vascular remodeling and hypoxic pulmonary vasoconstriction (HPV). Rats were exposed to chronic hypoxia [inspiratory O(2) fraction (FI(O(2))) = 0.10], chronic hypercapnia (inspiratory CO(2) fraction = 0.10), hypoxia-hypercapnia (FI(O(2)) = 0.10, inspiratory CO(2) fraction = 0.10), or room air. After 1 and 3 wk of exposure, muscularization of resistance blood vessels and hypoxia-induced hematocrit elevation were significantly inhibited in hypoxia-hypercapnia compared with hypoxia alone (P < 0.001, ANOVA). Right ventricular hypertrophy was reduced in hypoxia-hypercapnia compared with hypoxia at 3 wk (P < 0.001, ANOVA). In isolated, ventilated, blood-perfused lungs, basal pulmonary arterial pressure after 1 wk of exposure to hypoxia (20.1 +/- 1.8 mmHg) was significantly (P < 0.01, ANOVA) elevated compared with control conditions (12.1 +/- 0.1 mmHg) but was not altered in hypoxia-hypercapnia (13.5 +/- 0.9 mmHg) or hypercapnia (11.8 +/- 1.3 mmHg). HPV (FI(O(2)) = 0.03) was attenuated in hypoxia, hypoxia-hypercapnia, and hypercapnia compared with control (P < 0.05, ANOVA). Addition of N(omega)-nitro-L-arginine methyl ester (10(-4) M), which augmented HPV in control, hypoxia, and hypercapnia, significantly reduced HPV in hypoxia-hypercapnia. Chronic hypoxia caused impaired endothelium-dependent relaxation in isolated pulmonary arteries, but coexistent hypercapnia partially protected against this effect. These findings suggest that coexistent hypercapnia inhibits hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy, reduces HPV, and protects against hypoxia-induced impairment of endothelial function.  相似文献   

18.
We examined the cardiovascular and cerebrovascular responses to acute isocapnic (IH) and poikilocapnic hypoxia (PH) in 10 men (25.7 +/- 4.2 yr, mean +/- SD). Heart rate (HR), mean arterial pressure (MAP), and mean peak middle cerebral artery blood flow velocity (Vp) were measured continuously during two randomized protocols of 20 min of step IH and PH (45 Torr). HR was elevated during both IH (P < 0.01) and PH (P < 0.01), with no differences observed between conditions. MAP was modestly elevated across all time points during IH but only became elevated after 5 min during PH. During IH, Vp was elevated from baseline throughout the exposure with a consistent hypoxic sensitivity of approximately 0.34 cm x s(-1).%desaturation(-1) (P < 0.05). The Vp response to PH was biphasic with an initial decrease from baseline occurring at 79 +/- 23 s, followed by a subsequent elevation, becoming equivalent to the IH response by 10 min. The nadir of the PH response exhibited a hypoxic sensitivity of -0.24 cm x s(-1) x % desaturation(-1). When expressed in relation to end-tidal Pco2, a sensitivity of -1.08 cm x s(-1).Torr(-1) was calculated, similar to previously reported sensitivities to euoxic hypocapnia. Cerebrovascular resistance (CVR) was not changed during IH. During PH, an initial increase in CVR was observed. However, CVR returned to baseline by 20 min of PH. These data show the cerebrovascular response to PH consists of an early hypocapnia-mediated response, followed by a secondary increase, mediated predominantly by hypoxia.  相似文献   

19.
低氧适应对家兔脑血流调节的影响   总被引:1,自引:0,他引:1  
本实验用电磁血流量法观察了低氧适应对家兔脑血流(CBF)调节的影响。结果表明,高CO_2和低O_2高CO_2时,适应组CBF改变不明显,对照组CBF明显增加(p<0.01)。两组脑脊液pH(pH_(CSF))均明显降低(p<0.05和p<0.01)。对照组低O_2高CO_2时的CBF比单独高CO_2增加更多。低CO_2、低O_2低CO_2及低O_2时,CBF和pH_(CSF)均接近于安静值。以低pH值脑脊液(CSF)脑内灌注,对照组CBF趋于增加,适应组不增加。将CO_2饱和的人工CSF用于局部脑表面,适应组脑膜微血管无明显扩张,对照组明显扩张(p<0.01)。该结果提示,低氧适应家兔脑血管和CBF对脑细胞外液H~ 和/或对低O_2的反应降低。  相似文献   

20.
Nine men completed a 24-h exercise trial, with physiological testing sessions before (T1, approximately 0630), during (T2, approximately 1640; T3, approximately 0045; T4, approximately 0630), and 48-h afterwards (T5, approximately 0650). Participants cycled and ran/trekked continuously between test sessions. A 24-h sedentary control trial was undertaken in crossover order. Within testing sessions, participants lay supine and then stood for 6 min, while heart rate variability (spectral analysis of ECG), middle cerebral artery perfusion velocity (MCAv), mean arterial pressure (MAP; Finometer), and end-tidal Pco(2) (Pet(CO(2))) were measured, and venous blood was sampled for cardiac troponin I. During the exercise trial: 1) two, six, and four participants were orthostatically intolerant at T2, T3, and T4, respectively; 2) changes in heart rate variability were only observed at T2; 3) supine MAP (baseline = 81 +/- 6 mmHg) was lower (P < 0.05) by 14% at T3 and 8% at T4, whereas standing MAP (75 +/- 7 mmHg) was lower by 16% at T2, 37% at T3, and 15% at T4; 4) Pet(CO(2)) was reduced (P < 0.05) at all times while supine (-3-4 Torr) and standing (-4-5 Torr) during exercise trial; 5) standing MCAv was reduced (P < 0.05) by 23% at T3 and 30% at T4 during the exercise trial; 6) changes in MCAv with standing always correlated (P < 0.01) with changes in Pet(CO(2)) (r = 0.78-0.93), but only with changes in MAP at T1, T2, and T3 (P < 0.05; r = 0.62-0.84); and 7) only two individuals showed minor elevations in cardiac troponin I. Recovery was complete within 48 h. During prolonged exercise, postural-induced hypotension and hypocapnia exacerbate cerebral hypoperfusion and facilitate syncope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号