首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In vivo priming by DNA injection occurs predominantly by antigen transfer.   总被引:5,自引:0,他引:5  
DNA vaccines can stimulate both humoral and cytolytic immune responses. Although bone marrow-derived elements present the expressed Ag, the mechanisms for acquiring immunogenic peptides have yet to be fully elucidated. APCs may become directly transfected by plasmid DNA or process extracellular proteins produced by other transfected cells. Using a transactivating plasmid system and bone marrow chimeras, we show that both mechanisms appear to be involved; however, the bulk of the immune response is dependent on expression of Ag by nonlymphoid tissues and transfer to APCs. These in vivo studies are the first to define the role of transfected nonlymphoid cells in generating Ag for presentation by bone marrow-derived APCs after needle injection with plasmid DNA.  相似文献   

3.
Glycolipid-enriched membrane (GEM) domains, or lipid rafts, function in signaling in immune cells, but their properties during Ag presentation are less clear. To address this question, GEM domains were studied using fluorescence cell imaging of mouse CH27 B cells presenting Ag to D10 T cells. Our experiments showed that APCs were enriched with GEM domains in the immune synapse, and this occurred in an actin-dependent manner. This enrichment was specific to GEM domains, because a marker for non-GEM regions of the membrane was excluded from the immune synapse. Furthermore, fluorescence photobleaching experiments showed that protein in the immune synapse was dynamic and rapidly exchanged with that in other compartments of CH27 cells. To identify the signals for targeting GEM domains to the immune synapse in APCs, capping of the domains was measured in cells after cross-linking surface molecules. This showed that co-cross-linking CD48 with MHC class II was required for efficient capping and intracellular signaling. Capping of GEM domains by co-cross-linking CD48 and MHC class II occurred with co-capping of filamentous actin, and both domain capping and T cell-CH27 cell conjugation were inhibited by pretreating CH27 cells with latrunculin B. Furthermore, disruption of the actin cytoskeleton of the CH27 cells also inhibited formation of a mature immune synapse in those T cells that did conjugate to APCs. Thus, Ag presentation and efficient T cell stimulation occur by an actin-dependent targeting of GEM domains in the APC to the site of T cell engagement.  相似文献   

4.
Macrophages as accessory cells for class I MHC-restricted immune responses.   总被引:7,自引:0,他引:7  
Ag do not elicit T lymphocyte responses unless they are presented in conjunction with MHC molecules on the surface of an appropriate APC. In the case of CD4+ T lymphocytes dendritic cells can deliver all signals required for complete induction as can macrophages and (activated) B cells. The function of CTL also depends on the presence of specialized accessory cells. Here we show that these accessory cells can behave like scavenger cells. They use foreign Ag in the form of cellular debris as immunogen. They are also crucial for CTL induction because in vivo depletion of phagocytotic cells completely inhibits CTL responses. In these animals CTL activity could be restored by transfer of macrophages. All of the reappearing CTL used MHC restriction elements expressed by the infused macrophages. These experiments suggest that a cognate interaction between macrophages and CTL precursors initiates class I MHC-restricted immune responses.  相似文献   

5.
Proliferation of T cells is important for the expansion of specific T cell clones during immune responses. In addition, for the establishment of protective immunity against viruses, bacteria, and tumors, the expanded T cells must differentiate into effector T cells. Here we show that effector T cell generation is driven by activation of APCs and duration of antigenic stimulation. Adoptively transferred TCR-transgenic T cells extensively proliferated upon immunization. However, these T cells failed to differentiate into effector cells and died within 1 wk after immunization unless antigenic peptides persisted for >1 day or were presented by activated APCs. The induction of protective immunity in a nontransgenic system was more stringent, since activation of APCs or prolonged Ag persistence alone was not sufficient to drive immunity. In contrast, Ag had to be presented for several days by activated APCs to trigger protective T cell responses. Thus, activation of APCs and duration of Ag presentation together regulate the induction of protective T cell responses.  相似文献   

6.
Injection of Ag into the anterior chamber (AC) of the eye induces deviant immune responses. It has been proposed that Ag internalized by ocular APCs is presented in a tolerogenic fashion in the spleen. However, the nature and distribution of the Ag-bearing cells in the lymphoid organs remain unclear. Fluorescent-labeled Ag (dextran, BSA) injected into the AC of Lewis rats was detected in the subcapsular sinus of the right submandibular lymph nodes (LNs) and cervical LNs, the marginal zone of the spleen, and the medulla of the mesenteric LNs. In the spleen, Ag-bearing cells were CD1(+), CD11b(+), ED1(+), ED2(low), ED3(+), CD86(low), OX6(+), CD11c(-), ED5(-) and in the LNs were CD4(+), CD8(+), CD80(+), and OX41(+) suggesting these were lymphoid organ resident macrophages. These Ag-bearing macrophages were located adjacent to CD4(+) cells, CD8(+) cells, and NK cells in the LNs and spleen and to marginal zone B cells in the spleen. No interaction with gamma delta T cells was observed. The data demonstrates that Ag derived from the AC of the eye is mainly internalized by resident macrophages in the LNs and spleen which are ideally placed to interact with cells involved in the induction of deviant ocular immune responses. The extensive distribution of Ag in LNs draining the upper airway and gastrointestinal tracts, together with the phenotype of Ag-bearing cells in the lymphoid organs, suggests that Ag leaves the eye predominantly in a soluble form and implies other mechanisms of tolerance may contribute to ocular-specific immune responses.  相似文献   

7.
B cell acquisition and presentation of specific autoantigens (auto-Ags) are thought to play an important and complex role in autoimmunity development. We previously identified scavenger receptor A (SR-A) as an early target in altering B cell-mediated autoimmunity. SR-A is highly expressed on professional antigen-presenting cells such as macrophages (MΦs) and dendritic cells (DCs). In this study, we demonstrate that SR-A is responsible for controlling B cell interactions with DCs/MΦs to promote Ag transfer from B cells to DCs/MΦs. We established a high-throughput ELISA-based screen to identify novel SR-A inhibitors, the specificity of which was determined by dose dependence and Biacore surface plasmon resonance testing. We identified small molecule inhibitors (SMIs) able to reduce SR-A-mediated Ag transfer in human cells. In particular, the SMIs prevented SR-A-positive cells from accumulating/loading Ag over time. Furthermore, we determined that one SMI, sennoside B, can reduce SR-A-mediated capture of B cells. Finally, SMI-mediated decreases in Ag transfer or accumulation reduced T cell proliferation in vitro and in vivo. These observations demonstrate that B cell-DC/MΦ interactions are conducive to promoting Ag trafficking between these cell types via SR-A. Inhibitors of SR-A may provide a novel therapeutic strategy in ameliorating autoimmune disease development.  相似文献   

8.
APCs initiate T cell-mediated immune responses against foreign Ags. Dendritic cells are professional APCs that play unique roles, including Ag-nonspecific capture, priming of naive T cells, and Th1 induction, whereas B cells generally lack these functions. In this study we uncovered novel aspects of murine B cells as APCs using CpG oligodeoxynucleotides (CpG) conjugated with an Ag. B cells served as efficient APCs independently of surface Igs. This characteristic was underlaid by the CpG-mediated Ag uptake and presentation, which were functional only when CpG were covalently conjugated to Ag. The B cells cultured with CpG-conjugated Ag not only enhanced IFN-gamma formation by Th1 cells, but also induced Th1 differentiation from unprimed T cells. These effects paralleled with the increase in the expression of CD40, CD86, and class II molecules on B cells and the coordinated production of IL-12 by the cells. To our knowledge this is the first report revealing that B cells share with dendritic cells common intrinsic characteristics, such as the Ag-nonspecific capture and presentation, and the induction of Th1 differentiation from unprimed T cells.  相似文献   

9.
Dendritic cells (DCs) are the only APCs capable of initiating adaptive immune responses. The initiation of immune responses requires that DCs 1) internalize and present Ags; and 2) undergo a differentiation process, called "maturation", which transforms DCs into efficient APCs. DC maturation may be initiated by the engagement of different surface receptors, including certain cytokine receptors (such as TNFR), Toll-like receptors, CD40, and FcRs. The early activation events that link receptor engagement and DC maturation are not well characterized. We found that FcR engagement by immune complexes induced the phosphorylation of Syk, a protein tyrosine kinase acting immediately downstream of FcRs. Syk was dispensable for DC differentiation in vitro and in vivo, but was strictly required for immune complexes internalization and subsequent Ag presentation to T lymphocytes. Importantly, Syk was also required for the induction of DC maturation and IL-12 production after FcR engagement, but not after engagement of other surface receptors, such as TNFR or Toll-like receptors. Therefore, protein tyrosine phosphorylation by Syk represents a novel pathway for the induction of DC maturation.  相似文献   

10.
11.
Although Ag-specific B lymphocytes can process Ag and express peptide-class II complexes as little as 1 h after Ag exposure, it requires 3-5 days for the immune system to develop a population of Ag-specific effector CD4 T lymphocytes to interact with these complexes. Presently, it is unclear how B cells maintain the expression of cell surface antigenic peptide-class II complexes until effector CD4 T lymphocytes become available. Therefore, we investigated B cell receptor (BCR)-mediated Ag processing and presentation by normal B lymphocytes to determine whether these cells have a mechanism to prolong the cell surface expression of peptide-class II complexes derived from the processing of cognate AG: Interestingly, after transit of early endocytic compartments, internalized Ag-BCR complexes are delivered to nonterminal late endosomes where they persist for a prolonged period of time. In contrast, Ags internalized via fluid phase endocytosis are rapidly delivered to terminal lysosomes and degraded. Moreover, persisting Ag-BCR complexes within nonterminal late endosomes exhibit a higher degree of colocalization with the class II chaperone HLA-DM/H2-M than with the HLA-DM/H2-M regulator HLA-DO/H2-O. Finally, B cells harboring persistent Ag-BCR complexes exhibit prolonged cell surface expression of antigenic peptide-class II complexes. These results demonstrate that B lymphocytes possess a mechanism for prolonging the intracellular persistence of Ag-BCR complexes within nonterminal late endosomes and suggest that this intracellular Ag persistence allows for the prolonged cell surface expression of peptide-class II complexes derived from the processing of specific AG:  相似文献   

12.
The dendritic cells and related antigen-presenting cells (APCs) that activate lymphocytes for acquired immunity in the female reproductive tract are not well characterized. The aim of the present study was to examine heterogeneity among uterine APCs in mice and, specifically, to determine whether phenotypically and functionally distinct subpopulations of dendritic cells and macrophages can be identified. Using immunohistochemistry, abundant cells expressing APC-restricted molecules major histocompatibility complex (MHC) class II, F4/80, class A scavenger receptor, macrosialin, and sialoadhesin were evident in estrous mice. Cells expressing the costimulatory molecule B7-2 were rarely observed. Flow cytometric analysis revealed three subpopulations of uterine APCs. Undifferentiated macrophages were F4/80-positive (+), MHC class II-negative (-) cells, of which 70-80% expressed CD11b, but few expressed class A scavenger receptor, macrosialin, or sialoadhesin. Mature macrophages were F4/80+/MHC class II+ cells, of which approximately 50% expressed CD11b, class A scavenger receptor, macrosialin, and sialoadhesin. Uterine dendritic cells were F4/ 80-/MHC class II+ cells, with stimulatory immunoaccessory function relative to uterine macrophages and heterogeneous expression of dendritic markers 33D1, DEC205, CD11c, and CD1. Experiments in ovariectomized mice showed that undifferentiated macrophages were steroid hormone dependent but that mature macrophages and dendritic cells persisted after depletion of ovarian steroid hormones, although with altered phenotypes. In summary, our findings identify three discrete populations of APCs inhabiting the murine uterus and suggest that both mature macrophages and dendritic cells differentiate from undifferentiated macrophage precursor cells. Plasticity in the ontogenetic and functional relationships between uterine dendritic cells and macrophages likely is critical in regulating immune responses conducive to reproductive success.  相似文献   

13.
Dendritic cells acquire antigens from live cells for cross-presentation to CTL   总被引:10,自引:0,他引:10  
Dendritic cells (DC) can readily capture Ag from dead and dying cells for presentation to MHC class I-restricted CTL. We now show by using a primate model that DC also acquire Ag from healthy cells, including other DC. Coculture assays showed that fluorescently labeled plasma membrane was rapidly and efficiently transferred between DC, and transfer of intracellular proteins was observed to a lesser extent. Acquisition of labeled plasma membrane and intracellular protein was cell contact-dependent and was primarily a function of immature DC, whereas both immature and CD40L-matured DC could serve as donors. Moreover, immature DC could acquire labeled plasma membrane and intracellular proteins from a wide range of hemopoietic cells, including macrophages, B cells, and activated T cells. Notably, macrophages, which readily phagocytose apoptotic bodies, were very inefficient at acquiring labeled plasma membrane and intracellular proteins from other live macrophages or DC. With live-cell imaging techniques, we demonstrate that individual DC physically extract plasma membrane from other DC, generating endocytic vesicles of up to 1 microm in diameter. Finally, DC but not macrophages acquired an endogenous melanoma Ag expressed by live DC and cross-presented Ag to MHC class I-restricted CTL, demonstrating the immunological relevance of our finding. These data show for the first time that DC readily acquire Ag from other live cells. We suggest that Ag acquisition from live cells may provide a novel mechanism whereby DC can present Ag in the absence of direct infection, and may serve to expand and regulate the immune response in vivo.  相似文献   

14.
An immune response can deviate toward either a Th1- or Th2-like response. In this work we examine the contribution that activated macrophages and IgG Abs make toward this deviation. The use of activated macrophages as APCs resulted in a strong polarized T cell response that was predominated by IFN-gamma. However, when Ag was targeted to FcgammaRs on these macrophages, the T cell response was reversed and biased toward a Th2-like response. This Th2-like phenotype was stable and was retained when the T cells were subsequently restimulated under nonbiasing conditions. The T cell biasing and its reversal via FcgammaR was also observed in vivo. Mice vaccinated with IgG-opsonized OVA made high levels of IgG Ab of the IgG1 isotype. These studies demonstrate that the ligation of FcgammaR on activated macrophages can reverse the Th1 biasing that occurs as a result of innate immune responses to microbial products.  相似文献   

15.
Recognition of drugs by immune cells is usually explained by the hapten model, which states that endogenous metabolites bind irreversibly to protein to stimulate immune cells. Synthetic metabolites interact directly with protein-generating antigenic determinants for T cells; however, experimental evidence relating intracellular metabolism in immune cells and the generation of physiologically relevant Ags to functional immune responses is lacking. The aim of this study was to develop an integrated approach using animal and human experimental systems to characterize sulfamethoxazole (SMX) metabolism-derived antigenic protein adduct formation in immune cells and define the relationship among adduct formation, cell death, costimulatory signaling, and stimulation of a T cell response. Formation of SMX-derived adducts in APCs was dose and time dependent, detectable at nontoxic concentrations, and dependent on drug-metabolizing enzyme activity. Adduct formation above a threshold induced necrotic cell death, dendritic cell costimulatory molecule expression, and cytokine secretion. APCs cultured with SMX for 16 h, the time needed for drug metabolism, stimulated T cells from sensitized mice and lymphocytes and T cell clones from allergic patients. Enzyme inhibition decreased SMX-derived protein adduct formation and the T cell response. Dendritic cells cultured with SMX and adoptively transferred to recipient mice initiated an immune response; however, T cells were stimulated with adducts derived from SMX metabolism in APCs, not the parent drug. This study shows that APCs metabolize SMX; subsequent protein binding generates a functional T cell Ag. Adduct formation above a threshold stimulates cell death, which provides a maturation signal for dendritic cells.  相似文献   

16.
The CNS is considered immune privileged due to the blood-brain barrier and the absence of conventional lymphatics. Nonetheless, T cell immune responses specific for CNS Ag have been documented. Where these events are initiated and what cellular mechanisms are involved remain unknown. In this study, we established an experimental mouse model to evaluate the requirements for priming CD8+ T cells following the cross-presentation of intracranial Ag. Surprisingly, we find that even with a damaged blood-brain barrier, Ag presentation occurs in regional lymph nodes and not within the CNS itself. Only once the responding cells have expanded can they traffic to the site of CNS injury. Cross-presentation of intracranial Ag is efficient and the subsequent priming of CD8+ T cells is dependent on CD4+ T cell help and CD40 signaling in host APCs. Our findings have important implications for the initiation of T cell immune responses toward CNS Ags.  相似文献   

17.
Bacillus Calmette-Guérin (BCG), the antituberculosis vaccine, localizes within immature phagosomes of macrophages and dendritic cells (APCs), and avoids lysosomal degradation. BCG-derived antigenic peptides are thus inefficiently processed by APCs, and we investigated alternate mechanisms of Ag processing. Proteomics identified that BCG phagosomes are enriched for nicastrin, APH, and presenilin components of γ-secretase, a multimeric protease. Using an in vitro Ag presentation assay and BCG-infected APCs, we found γ-secretase components to cleave BCG-derived Ag85B to produce a peptide epitope, which, in turn, primed IL-2 release from Ag85B-specific T cell hybridoma. siRNA knockdown or chemical inhibition of γ-secretase components using L685458 decreased the ability of BCG or Mycobacterium tuberculosis-infected APCs to present Ag85B. In addition, L685485 inhibition of γ-secretase led to a decreased ability of BCG-dendritic cells to immunize mice and induce Ag85B-specific CD4 T cells in vivo. Because BCG and M. tuberculosis sequester within APCs preventing immune recognition, γ-secretase components appear to fortuitously process the immunodominant Ag85B, facilitating immune recognition.  相似文献   

18.
Glucose-6-phosphate isomerase (GPI) is the target autoantigen recognized by KRN T cells in the K/BxN model of rheumatoid arthritis. T cell reactivity to this ubiquitous Ag results in the recruitment of anti-GPI B cells and subsequent immune complex-mediated arthritis. Because all APCs have the capacity to process and present this autoantigen, it is unclear why systemic autoimmunity with polyclonal B cell activation does not ensue. To this end, we examined how GPI is presented by B cells relative to other immunologically relevant APCs such as dendritic cells (DCs) and macrophages in the steady state, during different phases of arthritis development, and after TLR stimulation. Although all APCs can process and present the GPI:I-A(g7) complex, they do so with different efficiencies. DCs are the most potent at baseline and become progressively more potent with disease development correlating with immune complex uptake. Interestingly, in vivo and in vitro maturation of DCs did not enhance GPI presentation, suggesting that DCs use mechanisms to regulate the presentation of self-peptides. Non-GPI-specific B cells are the weakest APCs (100-fold less potent than DCs) and fail to productively engage KRN T cells at steady state and during arthritis. However, the ability to stimulate KRN T cells is strongly enhanced in B cells after TLR ligation and provides a mechanism whereby polyclonal B cells may be activated in the wake of an acute infection.  相似文献   

19.
Optimal Ag targeting and activation of APCs, especially dendritic cells (DCs), are important in vaccine development. In this study, we report the effects of different Toll-like receptor (TLR)-binding compounds to enhance immune responses induced by human APCs, including CD123(+) plasmacytoid DCs (PDCs), CD11c(+) myeloid DCs (MDCs), monocytes, and B cells. PDCs, which express TLR7 and TLR9, responded to imidazoquinolines (imiquimod and R-848) and to CpG oligodeoxynucleotides stimulation, resulting in enhancement in expression of costimulatory molecules and induction of IFN-alpha and IL-12p70. In contrast, MDCs, which express TLR3, TLR4, and TLR7, responded to poly(I:C), LPS, and imidazoquinolines with phenotypic maturation and high production of IL-12 p70 without producing detectable IFN-alpha. Optimally TLR ligand-stimulated PDCs or MDCs exposed to CMV or HIV-1 Ags enhanced autologous CMV- and HIV-1-specific memory T cell responses as measured by effector cytokine production compared with TLR ligand-activated monocytes and B cells or unstimulated PDCs and MDCs. Together, these data show that targeting specific DC subsets using TLR ligands can enhance their ability to activate virus-specific T cells, providing information for the rational design of TLR ligands as adjuvants for vaccines or immune modulating therapy.  相似文献   

20.
Targeting recycling endocytic receptors with specific Abs provides a means for introducing a variety of tumor-associated Ags into human dendritic cells (DCs), culminating in their efficient presentation to T cells. We have generated a human mAb (B11) against the mannose receptor that is rapidly internalized by DCs through receptor-mediated endocytosis. By genetically linking the melanoma Ag, pmel17, to Ab B11, we obtained the fully human fusion protein, B11-pmel17. Treatment of DCs with B11-pmel17 resulted in the presentation of pmel17 in the context of HLA class I and class II molecules. Thus, potent pmel17-specific T cells were cytotoxic toward gp100(+) HLA-matched melanoma targets, but not HLA-mismatched melanoma or gp100(-) nonmelanoma tumor lines. Importantly, competitive inhibition of lysis of an otherwise susceptible melanoma cell line by cold targets pulsed with known gp100 CD8 T cell epitopes as well as a dose-dependent proliferative response to Th epitopes demonstrates that DCs can process targeted Ag for activation of cytotoxic as well as helper arms of the immune response. Thus, the specific targeting of soluble exogenous tumor Ag to the DC mannose receptor directly contributes to the generation of multiple HLA-restricted Ag-specific T cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号