首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous experiments two extreme modes of visual discrimination performance have been investigated by measuring small differences in pattern shape at points along a continuum of pattern shapes. These two modes, associated with discrete and continuous encoding processes, were obtained by simultaneously manipulating the number of pattern components in the display and the effective duration of the display. In this experiment, discrimination performance was measured for a fixed number of pattern components, namely three, and variable display time course. The stimuli used were curved lines drawn from a continuum with curvature parameter s. There were three stimulus time courses: (1) 2-s stimulus display, (2) 100-ms stimulus display, and (3) 100-ms stimulus display followed by a post-stimulus mask. Discrimination performance declined smoothly and monotonically with s for (1), but varied non-monotonically with s revealing a central peak for (3). Performance for (2) was intermediate between that for (1) and that for (3). A reduction in effective stimulus duration alone was thus sufficient to cause a transition from continuous to discrete modes of discrimination performance, a result which may be compatible with an explanation of variable discrimination modes based on a method of successive internal approximations of the stimulus.  相似文献   

2.
Summary Five Greater Horseshoe bats,Rhinolophus ferrumequinum, were trained in a two-alternative forced-choice procedure to discriminate between artificial echoes of insects fluttering at different wingbeat rates. The stimuli were electronically produced phantom targets simulating fluttering insects with various wingbeat frequencies (Figs. 3, 4). Difference thresholds for wingbeat rates of 50 Hz and 100 Hz were determined. For an S+ of 50 Hz the difference threshold values lay between 2.8 and 4.6 Hz for individual bats; with an S+ of 100 Hz they increased to between 9.8 and 12.0 Hz (Figs. 5, 6, Table 1).Three bats, previously trained to discriminate between a S+ of 50 Hz and a S– with a lower wingbeat rate, were tested with higher frequency stimuli. When they had to decide between their old S+ of 50 Hz and either a 60 or 70 Hz echo two bats continued to select the 50 Hz stimulus while the third bat now preferred the faster fluttering insects (Table 2).During the discrimination task the echolocation behavior of the bats was monitored. When the phantom targets were presented all bats increased their duty-cycle of sound emission from about 40% to sometimes near 70%. They did so by either emitting longer echolocation calls or by increasing the sound repetition rate (Figs. 7, 8).The results show that Greater Horseshoe bats can determine the wingbeat rate of flying insects with an accuracy between 6 and 12%. Possible cues for flutter rate determination by cf-fm bats from natural and artificial insect echoes are discussed.Abbreviations DC duty-cycle - PD pulse duration - PI pulse interval - cf constantfrequency - fm frequency modulation  相似文献   

3.
To understand how information is coded in the primary somatosensory cortex (S1) we need to decipher the relationship between neural activity and tactile stimuli. Such a relationship can be formally measured by mutual information. The present study was designed to determine how S1 neuronal populations code for the multidimensional kinetic features (i.e. random, time-varying patterns of force) of complex tactile stimuli, applied at different locations of the rat forepaw. More precisely, the stimulus localization and feature extraction were analyzed as two independent processes, using both rate coding and temporal coding strategies. To model the process of stimulus kinetic feature extraction, multidimensional stimuli were projected onto lower dimensional subspace and then clustered according to their similarity. Different combinations of stimuli clustering were applied to differentiate each stimulus identification process. Information analyses show that both processes are synergistic, this synergy is enhanced within the temporal coding framework. The stimulus localization process is faster than the stimulus feature extraction process. The latter provides more information quantity with rate coding strategy, whereas the localization process maximizes the mutual information within the temporal coding framework. Therefore, combining mutual information analysis with robust clustering of complex stimuli provides a framework to study neural coding mechanisms related to complex stimuli discrimination.  相似文献   

4.
The present experiment examined whether, in a matching-to-sample (MTS) procedure, a relation between two stimuli, a sample and a comparison, could be established as a result of just stimulus–stimulus pairing, even if back up reinforcers were never provided for the conditional relation between the sample and comparison stimuli, but rather only for the comparison stimulus. A procedure called “pseudo matching-to-sample” was used in which, when S1 was presented as a sample stimulus, two comparison stimuli (C1 and C2) were presented, and only responses to C1 were reinforced. Conversely, when S2 was presented, only responses to C3 (and not C4) were reinforced. In other words, organisms experiencing this procedure could discriminate C1 from C2, and C3 from C4, by simple discrimination without regard to the conditional sample stimuli. In order to examine cross-species differences, responding by humans in this procedure was compared to that by pigeons. Although the humans developed a discriminative function for the sample stimuli, that is, the humans’ responding was affected by both the sample stimuli and the reinforcers, responding by the pigeons was affected solely by the reinforcers. These data suggest that, in this procedure, humans (but not pigeons) are able to learn relations among stimuli simply as a result of stimulus–stimulus pairing.  相似文献   

5.
We studied the spatial arrangement of L- and M-cone driven electroretinograms (ERGs) reflecting the activity of magno- and parvocellular pathways. L- and M-cone isolating sine wave stimuli were created with a four primary LED stimulator using triple silent substitution paradigms. Temporal frequencies were 8 and 12 Hz, to reflect cone opponent activity, and 30, 36 and 48 Hz to reflect luminance activity. The responses were measured for full-field stimuli and for different circular and annular stimuli. The ERG data confirm the presence of two different mechanisms at intermediate and high temporal frequencies. The responses measured at high temporal frequencies strongly depended upon spatial stimulus configuration. In the full-field conditions, the L-cone driven responses were substantially larger than the full-field M-cone driven responses and also than the L-cone driven responses with smaller stimuli. The M-cone driven responses at full-field and with 70° diameter stimuli displayed similar amplitudes. The L- and M-cone driven responses measured at 8 and 12 Hz were of similar amplitude and approximately in counter-phase. The amplitudes were constant for most stimulus configurations. The results indicate that, when the ERG reflects luminance activity, it is positively correlated with stimulus size. Beyond 35° retinal eccentricity, the retina mainly contains L-cones. Small stimuli are sufficient to obtain maximal ERGs at low temporal frequencies where the ERGs are also sensitive to cone-opponent processing.  相似文献   

6.
We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating''s spatial frequency or envelope''s standard deviation. We tested 21 different envelope''s standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating''s spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised.  相似文献   

7.
Several studies have reported optimal population decoding of sensory responses in two-alternative visual discrimination tasks. Such decoding involves integrating noisy neural responses into a more reliable representation of the likelihood that the stimuli under consideration evoked the observed responses. Importantly, an ideal observer must be able to evaluate likelihood with high precision and only consider the likelihood of the two relevant stimuli involved in the discrimination task. We report a new perceptual bias suggesting that observers read out the likelihood representation with remarkably low precision when discriminating grating spatial frequencies. Using spectrally filtered noise, we induced an asymmetry in the likelihood function of spatial frequency. This manipulation mainly affects the likelihood of spatial frequencies that are irrelevant to the task at hand. Nevertheless, we find a significant shift in perceived grating frequency, indicating that observers evaluate likelihoods of a broad range of irrelevant frequencies and discard prior knowledge of stimulus alternatives when performing two-alternative discrimination.  相似文献   

8.
We studied the role of the lateral line system for detection and discrimination of dipole stimuli in the oscar, Astronotus ocellatus (Family Cichlidae), and determined detection thresholds in still water and frequency discrimination capabilities in still and turbulent water. Average detection threshold of six animals for a 100-Hz dipole stimulus was 0.0059 μm peak-to-peak water displacement at the surface of the fish. After inactivation of the neuromast receptor organs of the lateral line system with the antibiotic streptomycin, dipole detection was reduced, but recovered within 2–4 weeks. This suggests that the oscar relied strongly on hydrodynamic information received by the lateral line system. Five oscars learned to discriminate a 100-Hz stimulus from 70 Hz and lower frequencies. When turbulence was introduced into the experimental tank, fish were still able to discriminate 100 Hz from frequencies 70 Hz and lower indicating that frequency discrimination mediated by the lateral line system was not reduced in turbulent water.  相似文献   

9.
The ability of visual attention to tune to the stimulus size (when this size could not be described by spatial frequencies) was studies. Sinusoidal gratings with frequencies of 1.5, 3, and 6 cycle/degree were used as test stimuli. All these stimuli consisted of 3 periods, consequently, they had different sizes: 2 x 2, 1 x 1, and 0.5 x 0.5 degrees. Three reference stimuli had the same sizes but were constructed as a superposition of all the test frequencies. The reference stimulus of suprathreshold contrast was displayed for 400 ms to the left or to the right of a fixation point at a distance of 3 degrees. After that, the test stimulus of threshold contrast was for 100 ms displayed symmetrically to the fixation point on the other side. Subjects were instructed that the sizes of the reference and test stimuli were the same. It was found that the probability of test detection decreased with increase in the difference between the sizes of the reference and test stimuli. Since in our experiments the spatial frequency could not be used for tuning visual attention, the obtained results suggest that there are specialized mechanisms in the visual system for estimation of the general image size.  相似文献   

10.
We sought to determine the extent to which red-green, colour-opponent mechanisms in the human visual system play a role in the perception of drifting luminance-modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance-modulated (yellow-black) test sinusoids was measured following adaptation to isoluminant red-green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1-16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1-4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal-frequency-dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance-modulated motion targets drifting at speeds of up to at least 32 degrees s(-1). We argue that such mechanisms most probably lie within a parvocellular-dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.  相似文献   

11.
Effects of prior discrimination training on stimulus control by color and shape dimensions of compound stimuli were studied with college students. In Phase 1, single-stimulus discrimination training was conducted for two values of color and shape. Phase 2 discrimination training employed two 2-dimensional compound stimuli composed of the color and shape stimuli trained in Phase 1. For conflict-compound stimuli, the stimulus-response-consequence contingency was altered between phases for one stimulus dimension (target dimension), but not for the other, non-target, dimension. Level of congruence (100%, 25%, and 0%) of the contingency for the target dimension between phases was manipulated across groups. When each stimulus value was tested in Phase 3, level of Phase-2-consistent responding to the target dimension varied with level of Phase-1-to-Phase-2 congruence. In Experiment 2, training history for the non-target dimension was altered across three conditions: (a) Correlated with reinforcement, as in Experiment 1, (b) No-Training, or (c) Not-Correlated. Phase-2-consistent responding to the target cue in Phase 3 was lower under the latter conditions than under the Correlated condition, indicating that the non-target dimension modulated control by the target dimension, consistent with stimulus competition. The data suggest elemental, rather than configural processing of the compound stimuli during Phase 2.  相似文献   

12.
Using an operant conditioning paradigm, we tested the ability of CD-1 mice to discriminate between members of a homologous series of aliphatic aldehydes presented at four different concentrations. We found that the mice were clearly capable of discriminating between all odorant pairs when stimuli were presented at concentrations of 1, 0.01, and 0.001 ppm (corresponding to four, two, and one log unit above the highest individual detection threshold) with no significant difference in performance between these concentrations. In contrast, the animals generally failed to discriminate above chance level when stimuli were presented at 0.0001 ppm (corresponding to the highest individual detection threshold) although stimuli were clearly detectable. Further, we found a significant negative correlation between discrimination performance and structural similarity of odorants in terms of differences in carbon chain length. These findings suggest that an increase in stimulus concentration of only one log unit above detection threshold appears to be sufficient for recruitment of additional subpopulations of odorant receptors to allow for qualitative recognition of aliphatic aldehydes.  相似文献   

13.
An interval bisection procedure was used to study time discrimination in spontaneously hypertensive rats (SHR), which have been proposed as an animal model for the attention deficit hyperactivity disorder (ADHD); Wistar Kyoto and Wistar rats were used as comparison groups. In this procedure, after subjects learn to make one response (S) following a short duration stimulus, and another (L) following a long duration stimulus, stimuli of intermediate durations are presented, and the percentage of L is calculated for each duration. A logistic function is fitted to these data, and different parameters that describe the time discrimination process are obtained. Four conditions, with different short and long durations (1-4, 2-8, 3-12, 4-16s) were used. The results indicate that time discrimination is not altered in SHR, given that no difference in any of the parameters obtained were significant. Given that temporal processing has been proposed as a fundamental factor in the development of the main symptoms of ADHD, and that deficits in time discrimination have been found in individuals with that disorder, the present results suggest the necessity of exploring time perception in SHR with other procedures and sensory modalities, in order to assess its validity as an animal model of ADHD.  相似文献   

14.
A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.  相似文献   

15.
We examined whether Java sparrows use imagery of auditory stimuli (imagery is a subject's mental representation of a stimulus by which the subject's behaviour may be governed under stimulus control even in the absence of the physical stimulus). Three types of ascending tone sequences were used. In the intact scale, sequence tones were played in ascending order. In the intact-masked scale, part of the sequence was masked by noise but the remaining scale was identical with the intact scale, whereas in the violated scale, the sequence could be heard as if tones were played slowly (Experiment 1) or quickly (Experiment 2). Subjects were divided into two groups: one group was trained to respond to the intact and intact-masked scales and to suppress response to the violation scale (imagery-positive group). The contingency was reversed for the other (violation-positive) group. In Experiment 1, all the birds acquired discrimination, but successful transfer to novel stimuli was observed only in the imagery-positive group, suggesting that the imagery of the tone sequence was used as a discriminative cue. Experiment 2 confirmed that the stimulus duration was a discriminative cue for both groups, suggesting that the birds also acquired discrimination using only specific cues.  相似文献   

16.
Spike discharge activity was recorded from low-threshold, rapidly adapting, skin mechanoreceptive afferents (RA afferents) dissected from the median (forelimb) or tibial (hindlimb) nerves in anesthetized monkeys and cats. The spike activity was evoked by delivery of controlled sinusoidal vertical skin displacement ("flutter") stimuli to the receptive field (RF). The stimuli (15-30 Hz; 30-400 microm peak-to-peak amplitude; duration 0.8-15 s) were superimposed on a static skin indentation (0.5-1.0 mm) which was either maintained continuously throughout the run or applied trial-by-trial. The neural activity and the analog signal of the position of the stimulator probe were digitized at 10 kHz resolution and stored for off-line analysis. The main goal was to determine whether changes in the RA afferent response to skin flutter stimulation may be responsible for the enhanced capacity to discriminate stimulus frequency that accompanies a relatively brief (approximately 1 min) pre-exposure to such stimulation in humans. To this end, the spike train data were evaluated using methods that enabled independent measurement of entrainment and responsivity. Responsivity (response intensity) was measured as the average number of spikes/stimulus cycle, while entrainment (the degree to which evoked spike train activity is phase-locked to the stimulus) was quantitatively assessed using statistical techniques developed for the analysis of "circular" (directional) data, supplemented by methods based on the calculation of power spectra from point process data. The methods are demonstrated to enable quantification of RA afferent entrainment over a range of stimulus durations and amplitudes substantially greater than reported in previous studies. While RA afferent responsivity was found to decline to a minor extent (10-20%) both across and within stimulus trials, entrainment remained consistently high and stable, and exhibited no temporal trends or dependence on any other measured factor. The average phase angle of the entrained RA afferent response also remained stable both within and across trials, showing only a tendency to increase slightly during the initial 100-500 ms after stimulus onset. The results imply that the improved capacity to discriminate stimulus frequency that develops in response to an exposure to cutaneous flutter stimulation is not attributable to a change in RA afferent entrainment per se.  相似文献   

17.
Spike discharge activity was recorded from low-threshold, rapidly adapting, skin mechanoreceptive afferents (RA afferents) dissected from the median (forelimb) or tibial (hindlimb) nerves in anesthetized monkeys and cats. The spike activity was evoked by delivery of controlled sinusoidal vertical skin displacement ("flutter") stimuli to the receptive field (RF). The stimuli (15-30 Hz; 30-400 mum peak-to-peak amplitude; duration 0.8-15 s) were superimposed on a static skin indentation (0.5-1.0 mm) which was either maintained continuously throughout the run or applied trial-by-trial. The neural activity and the analog signal of the position of the stimulator probe were digitized at 10 kHz resolution and stored for off-line analysis. The main goal was to determine whether changes in the RA afferent response to skin flutter stimulation may be responsible for the enhanced capacity to discriminate stimulus frequency that accompanies a relatively brief (approximately equal to 1 min) pre-exposure to such stimulation in humans. To this end, the spike train data were evaluated using methods that enabled independent measurement of entrainment and responsivity. Responsivity (response intensity) was measured as the average number of spikes/stimulus cycle, while entrainment (the degree to which evoked spike train activity is phase-locked to the stimulus) was quantitatively assessed using statistical techniques developed for the analysis of "circular" (directional) data, supplemented by methods based on the calculation of power spectra from point process data. The methods are demonstrated to enable quantification of RA afferent entrainment over a range of stimulus durations and amplitudes substantially greater than reported in previous studies. While RA afferent responsivity was found to decline to a minor extent (10-20%) both across and within stimulus trials, entrainment remained consistently high and stable, and exhibited no temporal trends or dependence on any other measured factor. The average phase angle of the entrained RA afferent response also remained stable both within and across trials, showing only a tendency to increase slightly during the initial 100-500 ms after stimulus onset. The results imply that the improved capacity to discriminate stimulus frequency that develops in response to an exposure to cutaneous flutter stimulation is not attributable to a change in RA afferent entrainment per se.  相似文献   

18.
19.
A prerequisite for adaptive goal-directed behavior is that animals constantly evaluate action outcomes and relate them to both their antecedent behavior and to stimuli predictive of reward or non-reward. Here, we investigate whether single neurons in the avian nidopallium caudolaterale (NCL), a multimodal associative forebrain structure and a presumed analogue of mammalian prefrontal cortex, represent information useful for goal-directed behavior. We subjected pigeons to a go-nogo task, in which responding to one visual stimulus (S+) was partially reinforced, responding to another stimulus (S–) was punished, and responding to test stimuli from the same physical dimension (spatial frequency) was inconsequential. The birds responded most intensely to S+, and their response rates decreased monotonically as stimuli became progressively dissimilar to S+; thereby, response rates provided a behavioral index of reward expectancy. We found that many NCL neurons'' responses were modulated in the stimulus discrimination phase, the outcome phase, or both. A substantial fraction of neurons increased firing for cues predicting non-reward or decreased firing for cues predicting reward. Interestingly, the same neurons also responded when reward was expected but not delivered, and could thus provide a negative reward prediction error or, alternatively, signal negative value. In addition, many cells showed motor-related response modulation. In summary, NCL neurons represent information about the reward value of specific stimuli, instrumental actions as well as action outcomes, and therefore provide signals useful for adaptive behavior in dynamically changing environments.  相似文献   

20.
Four pigeons were trained in a successive same/different procedure involving the alternation of two stimuli per trial. Using a go/no-go procedure, two different or two identical color photographs were alternated, with a brief, dark, inter-stimulus interval, on a computer screen for 20s. Pigeons learned to discriminate between same (S+) and different (D-) sequences with moderate to large contrasts between successive pictures. Analyses of pecking behavior within single trials revealed this discrimination emerged at the earliest possible point in the sequence (i.e. by the presentation of the second item). Pigeons transferred to novel color and gray-scale pictures, and showed savings in tests with novel video stimuli. These results suggest that same/different discrimination and concept formation can be acquired with successively presented pairs of stimuli by pigeons. When combined with results using simultaneous same/different presentations, these findings further support a qualitative similarity among birds and primates in their capacity to judge certain types of stimulus relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号