首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turgor pressure in plant cells is involved in many important processes. Stable and normal turgor pressure is required for healthy growth of a plant, and changes in turgor pressure are indicative of changes taking place within the plant tissue. The ability to quantify the turgor pressure of plant cells in vivo would provide opportunities to understand better the process of pressure regulation within plants, especially when plant stress is considered, and to understand the role of turgor pressure in cellular signaling. Current experimental methods do not separate the influence of the turgor pressure from the effects associated with deformation of the cell wall when estimates of turgor pressure are made. In this paper, nanoindentation measurements are combined with finite element simulations to determine the turgor pressure of cells in vivo while explicitly separating the cell‐wall properties from the turgor pressure effects. Quasi‐static cyclic tests with variable depth form the basis of the measurements, while relaxation tests at low depth are used to determine the viscoelastic material properties of the cell wall. Turgor pressure is quantified using measurements on Arabidopsis thaliana under three pressure states (control, turgid and plasmolyzed) and at various stages of plant development. These measurements are performed on cells in vivo without causing damage to the cells, such that pressure changes may be studied for a variety of conditions to provide new insights into the biological response to plant stress conditions.  相似文献   

2.
Cell poking is an experimental technique that is widely used to study the mechanical properties of plant cells. A full understanding of the mechanical responses of plant cells to poking force Is helpful for experimental work. The aim of this study was to numerically investigate the stress distribution of the cell wall, cell turgor, and deformation of plant cells in response to applied poking force. Furthermore, the locations damaged during poking were analyzed. The model simulates cell poking, with the cell treated as a spherical, homogeneous, isotropic elastic membrane, filled with incompressible, highly viscous liquid. Equilibrium equations for the contact region and the non-contact regions were determined by using membrane theory. The boundary conditions and continuity conditions for the solution of the problem were found. The forcedeformation curve, turgor pressure and tension of the cell wall under cell poking conditions were obtained. The tension of the cell wall circumference was larger than that of the meridian. In general, maximal stress occurred at the equator around. When cell deformation increased to a certain level, the tension at the poker tip exceeded that of the equator. Breakage of the cell wall may start from the equator or the poker tip, depending on the deformation. A nonlinear model is suitable for estimating turgor, stress, and stiffness, and numerical simulation is a powerful method for determining plant cell mechanical properties.  相似文献   

3.
Cell division of Mycobacterium vaccae was initiated by deposition of new wall material in the cross wall. The surface layers of the old wall remained continuous until septum formation was complete. Subsequently, rupture of the outer cell wall layers occurred circumferentially, leaving rings on the cell wall. The two daughter cells remained connected with each other at the new pole and bent to form V-shaped structures at the connecting point.  相似文献   

4.
Growing plant cells increase in volume principally by water uptake into the vacuole. There are only three general mechanisms by which a cell can modulate the process of water uptake: (a) by relaxing wall stress to reduce cell turgor pressure (thereby reducing cell water potential), (b) by modifying the solute content of the cell or its surroundings (likewise affecting water potential), and (c) by changing the hydraulic conductance of the water uptake pathway (this works only for cells remote from water potential equilibrium). Recent studies supporting each of these potential mechanisms are reviewed and critically assessed. The importance of solute uptake and hydraulic conductance is advocated by some recent studies, but the evidence is indirect and conclusions remain controversial. For most growing plant cells with substantial turgor pressure, it appears that reduction in cell turgor pressure, as a consequence of wall relaxation, serves as the major initiator and control point for plant cell enlargement. Two views of wall relaxation as a viscoelastic or a chemorheological process are compared and distinguished.  相似文献   

5.
Using light and electron microscopy, the early stages of root hair initiation were investigated under control conditions and in a situation where F-actin polymerization was effectively inhibited by latrunculin B. Trichoblasts in their early stage of bulge formation possessed large vacuole traversed by cytoplasmic strands and enclosed within a narrow peripheral layer of cytoplasm. The nucleus was settled at the inner periclinal cell wall, typically opposite the site of bulge formation. Within the bulging area, dense cytoplasm and numerous ER elements, and other organelles were accumulated, together with pleiomorphic membrane-bound structures, the identity and nature of which will require further studies. These unusual structures, which were associated with the outer cell wall, contained material similar to that of the cell wall. Similar cell wall-like bodies were observed also in the cytoplasm and sometimes within vacuoles. The possible role of these novel organelles of plant cells in cell wall thinning/degradation or in the turgor pressure maintenance are discussed. Latrunculin B treatment allowed bulge formation but prevented the switch from the slow and diffuse expansion of bulge into the rapid tip-growth characteristic of the emerging root hair. Moreover, the cytoplasm of the bulging domain became extensively vacuolated and lacked abundant ER elements and other organelles including the membrane-bound structures. These results indicate important roles of F-actin in the switch from diffuse to highly polarized tip growth.  相似文献   

6.
From a mechanical point of view, plant and hyphal cells are more complex than their animal counterparts because the variety of structural components determining cellular architecture is broader. In addition to cytoskeletal elements and the plasma membrane, the cell wall and turgor pressure equip plant and hyphal cells with structures analogous to an exoskeleton and a hydroskeleton, respectively. To quantify the physical properties of plant and hyphal cells, researchers have developed a plethora of experimental methods. This review provides an overview of experimental approaches that have been used to measure turgor pressure and to determine the mechanical properties of the plant cell wall at the subcellular level. It is completed by a glimpse into the arsenal of techniques that has been used to characterize the physical properties of cytoskeletal elements. These have mostly been used on animal cells, but we hope they will find their way into plant cell research. Finally, assays and tests to measure the generation of forces by cells and subcellular structures are discussed.  相似文献   

7.
Plant cell morphogenesis depends critically on two processes: the deposition of new wall material at the cell surface and the mechanical deformation of this material by the stresses resulting from the cell's turgor pressure. We developed a model of plant cell morphogenesis that is a first attempt at integrating these two processes. The model is based on the theories of thin shells and anisotropic viscoplasticity. It includes three sets of equations that give the connection between wall stresses, wall strains and cell geometry. We present an algorithm to solve these equations numerically. Application of this simulation approach to the morphogenesis of tip-growing cells illustrates how the viscoplastic properties of the cell wall affect the shape of the cell at steady state. The same simulation approach was also used to reproduce morphogenetic transients such as the initiation of tip growth and other non-steady changes in cell shape. Finally, we show that the mechanical anisotropy built into the model is required to account for observed patterns of wall expansion in plant cells.  相似文献   

8.
We analysed cell wall formation in rapidly growing root hairs of Triticum aestivum under reduced turgor pressure by application of iso- and hypertonic mannitol solutions. Our experimental series revealed an osmotic value of wheat root hairs of 150 mOsm. In higher concentrations (200–650 mOsm), exocytosis of wall material and its deposition, as well as callose synthesis, still occurred, but the elongation of root hairs was stopped. Even after strong plasmolysis when the protoplast retreated from the cell wall, deposits of wall components were observed. Labelling with DiOC6(3) and FM1-43 revealed numerous Hechtian strands that spanned the plasmolytic space. Interestingly, the Hechtian strands also led towards the very tip of the root hair suggesting strong anchoring sites that are readily incorporated into the new cell wall. Long-term treatments of over 24 h in mannitol solutions (150–450 mOsm) resulted in reduced growth and concentration-dependent shortening of root hairs. However, the formation of new root hairs does occur in all concentrations used. This reflects the extraordinary potential of wheat root cells to adapt to environmental stress situations.  相似文献   

9.
When leaf epidermal cells are puncture wounded with a glass microcapillary tip, a small droplet of fluid is discharged and then evaporates, leaving a solid residue on the cell surface. For puncture wounds of about 3.5 micrometers in diameter, this process is complete within 2 to 3 seconds. A second puncture wound also exhibits a similar discharge, indicating the persistence of some turgor pressure within the cell, despite damage to the cell wall. Direct measurement of turgor on the large epidermal cells of Tradescantia virginiana L. demonstrated that turgor was substantially maintained (91-96%) after puncture wounding. Anatomical and histochemical evidence suggests that the damaged portion of the cell wall was sealed with an amorphous plug of material comprised of pectinaceous polysaccharides. Rapid sealing of puncture wounds and the maintenance of turgor in epidermal cells may be an important functional component of plant adaptation to physical damage such as that caused by insect feeding.  相似文献   

10.
Morphogenesis of plant cells is tantamount to the shaping of the stiff cell wall that surrounds them. To this end, these cells integrate two concomitant processes: 1), deposition of new material into the existing wall, and 2), mechanical deformation of this material by the turgor pressure. However, due to uncertainty regarding the mechanisms that coordinate these processes, existing models typically adopt a limiting case in which either one or the other dictates morphogenesis. In this report, we formulate a simple mechanism in pollen tubes by which deposition causes turnover of cell wall cross-links, thereby facilitating mechanical deformation. Accordingly, deposition and mechanics are coupled and are both integral aspects of the morphogenetic process. Among the key experimental qualifications of this model are: its ability to precisely reproduce the morphologies of pollen tubes; its prediction of the growth oscillations exhibited by rapidly growing pollen tubes; and its prediction of the observed phase relationships between variables such as wall thickness, cell morphology, and growth rate within oscillatory cells. In short, the model captures the rich phenomenology of pollen tube morphogenesis and has implications for other plant cell types.  相似文献   

11.
A system for modelling cell-cell interactions during plant morphogenesis   总被引:2,自引:0,他引:2  
  相似文献   

12.
Despite the importance of understanding plant growth, the mechanisms underlying how plant and fruit growth declines during drought remain poorly understood. Specifically, it remains unresolved whether carbon or water factors are responsible for limiting growth as drought progresses. We examine questions regarding the relative importance of water and carbon to fruit growth depending on the water deficit level and the fruit growth stage by measuring fruit diameter, leaf photosynthesis, and a proxy of cell turgor in olive (Olea europaea). Flow cytometry was also applied to determine the fruit cell division stage. We found that photosynthesis and turgor were related to fruit growth; specifically, the relative importance of photosynthesis was higher during periods of more intense cell division, while turgor had higher relative importance in periods where cell division comes close to ceasing and fruit growth is dependent mainly on cell expansion. This pattern was found regardless of the water deficit level, although turgor and growth ceased at more similar values of leaf water potential than photosynthesis. Cell division occurred even when fruit growth seemed to stop under water deficit conditions, which likely helped fruits to grow disproportionately when trees were hydrated again, compensating for periods with low turgor. As a result, the final fruit size was not severely penalized. We conclude that carbon and water processes are able to explain fruit growth, with importance placed on the combination of cell division and expansion. However, the major limitation to growth is turgor, which adds evidence to the sink limitation hypothesis.  相似文献   

13.
Bacteria face the challenging requirement to maintain their shape and avoid rupture due to the high internal turgor pressure, but simultaneously permit the import and export of nutrients, chemical signals, and virulence factors. The bacterial cell wall, a mesh-like structure composed of cross-linked strands of peptidoglycan, fulfills both needs by being semi-rigid, yet sufficiently porous to allow diffusion through it. How the mechanical properties of the cell wall are determined by the molecular features and the spatial arrangement of the relatively thin strands in the larger cellular-scale structure is not known. To examine this issue, we have developed and simulated atomic-scale models of Escherichia coli cell walls in a disordered circumferential arrangement. The cell-wall models are found to possess an anisotropic elasticity, as known experimentally, arising from the orthogonal orientation of the glycan strands and of the peptide cross-links. Other features such as thickness, pore size, and disorder are also found to generally agree with experiments, further supporting the disordered circumferential model of peptidoglycan. The validated constructs illustrate how mesoscopic structure and behavior emerge naturally from the underlying atomic-scale properties and, furthermore, demonstrate the ability of all-atom simulations to reproduce a range of macroscopic observables for extended polymer meshes.  相似文献   

14.
Wei C  Lintilhac PM 《Plant physiology》2007,145(3):763-772
In this article we investigate aspects of turgor-driven plant cell growth within the framework of a model derived from the Eulerian concept of instability. In particular we explore the relationship between cell geometry and cell turgor pressure by extending loss of stability theory to encompass cylindrical cells. Beginning with an analysis of the three-dimensional stress and strain of a cylindrical pressure vessel, we demonstrate that loss of stability is the inevitable result of gradually increasing internal pressure in a cylindrical cell. The turgor pressure predictions based on this model differ from the more traditional viscoelastic or creep-based models in that they incorporate both cell geometry and wall mechanical properties in a single term. To confirm our predicted working turgor pressures, we obtained wall dimensions, elastic moduli, and turgor pressures of sequential internodal cells of intact Chara corallina plants by direct measurement. The results show that turgor pressure predictions based on loss of stability theory fall within the expected physiological range of turgor pressures for this plant. We also studied the effect of varying wall Poisson's ratio nu on extension growth in living cells, showing that while increasing elastic modulus has an understandably negative effect on wall expansion, increasing Poisson's ratio would be expected to accelerate wall expansion.  相似文献   

15.
Summary In the outer cap cells of roots of Zea mays, secretion is accompanied by hypertrophy of dictyosome cisternae with formation of large secretory vesicles. Vesicle contents are subsequently released from the protoplast by fusion of the vesicle membrane with the plasma membrane. The secreted material, a highly hydrated polysaccharide, was localized intracellularly by the periodic acid-Schiff reaction. Under appropriate conditions, the product moves outward through the cell wall after discharge from the protoplast, and appears as a droplet adhering to the root tip. Under conditions where the secretory product accumulates at the inner wall surfaces, no external droplet is formed.The secretory activity has an active phase that is sensitive to metabolic inhibitors and influenced by temperature (Q10>2), and a passive phase that is independent of temperature, insensitive to metabolic inhibitors but sensitive to osmotic agents. The active phase is characterized by a temperature-independent periodicity (3 hours). Sucrose supplied to the growth medium increases the amount of polysaccharide secreted. Polysaccharide synthesis, segregation into vesicles, and discharge from the protoplast are assumed to require active metabolism; the step involving extrusion of polysaccharide through the cell wall region appears to be a passive process influenced by the degree of hydration of the polysaccharide and by cell turgor.Purdue University Agricultural Experiment Station Journal Paper No. 2967; Charles F. Kettering Research Laboratory Contribution No. 261.  相似文献   

16.
Palin R  Geitmann A 《Bio Systems》2012,109(3):397-402
The presence of a polysaccharidic cell wall distinguishes plant cells from animal cells and is responsible for fundamental mechanistic differences in organ development between the two kingdoms. Due to the presence of this wall, plant cells are unable to crawl and contract. On the other hand, plant cell size can increase by several orders of magnitude and cell shape can change from a simple polyhedron or cube to extremely intricate. This expansive cellular growth is regulated by the interaction between the cell wall and the intracellular turgor pressure. One of the principal cell wall components involved in temporal and spatial regulation of the growth process is pectin. Through biochemical changes to pectin composition and biochemical configuration, the properties of this material can be altered to trigger specific developmental processes. Here, the roles of pectin in three systems displaying rapid growth - the elongation zone of the root, the tip region of the pollen tube, and organ primordia formation at the shoot apical meristem - are reviewed.  相似文献   

17.
Summary The marine algaValonia macrophysa an inhabitant of shallow subtropical waters, is subjected to sudden dilutions of external seawater during rain showers. This study describes the mechanisms involved in turgor pressure regulation following acute hyposmotic shock. Turgor regulation is 88% effective and complete within 4 hr following hyposmotic shocks of up to –10 bar. Loss of vacuolar K+, Na+ and Cl accounts for the decrease in vacuolar osmotic pressure associated with turgor regulation. A novel mechanism of turgor regulation is exhibited byValonia macrophysa given hyposmotic shocks greater than about –4 bar. Such an osmotic shock causes cell wall tension to increase above a critical value of about 6×105 dyne/cm, whereupon the protoplasm ruptures and the cell wall stretches irreversibly at a localized site. The protoplasm rupture is suggested by (1) a large abrupt increase in K+ efflux (as measured by86Rb+), (2) a rapid decrease in turgor pressure as measured with a pressure probe, and (3) sudden depolarization of the vacuole potential. Evidence for an increase in cell wall permeability includes efflux from the vacuole of dextran (mol wt 70,000), which normally has a very low cell wall permeability, and scanning electron micrographs which show a trabeculated scar area in the cell wall. This mechanism of turgor regulation is physiologically important because 98% of the cells regained normal growth rate and turgor following acute osmotic shock.  相似文献   

18.
Zhu GL  Boyer JS 《Plant physiology》1992,100(4):2071-2080
A new method, the turgor clamp, was developed to test the effects of turgor on cell enlargement. The method used a pressure probe to remove or inject cell solution and change the turgor without altering the external environment of the cell walls. After the injections, the cells were permanently at the new turgor and required no further manipulation. Internode cells of Chara corallina grew rapidly with the pressure probe in place when growth was monitored with a position transducer. Growth-induced water potentials were negligible and turgor effects could be studied simply. As turgor was decreased, there was a threshold below which no growth occurred, and only reversible elastic/viscoelastic changes could be seen. Above the threshold, growth was superimposed on the elastic/viscoelastic effects. The rate of growth did not depend on turgor. Instead, the rate was highly dependent on energy metabolism as shown by inhibitors that rapidly abolished growth without changing the turgor. However, turgors could be driven above the maximum normally attainable by the cell, and these caused growth to respond as though plastic deformation of the walls was beginning, but the deformation caused wounding. Growth was inhibited when turgor was changed with osmotica but not inhibited when similar changes were made with the turgor clamp. It was concluded that osmotica caused side effects that could be mistaken for turgor effects. The presence of a turgor threshold indicates that turgor was required for growth. However, because turgor did not control the rate, it appears incorrect to consider the rate to be determined by a turgor-dependent plastic deformation of wall polymers. Instead, above the turgor threshold, the rapid response to energy inhibitors suggests a control by metabolic reactions causing synthesis and/or extension of wall polymers.  相似文献   

19.
Olive fruits at the green, cherry and black stages were used to investigate the structural and microstructural changes in tissues during ripening. Scanning electron microscopy (SEM) tissue fracture of green olives resulted in cell wall breakage of epicarp and mesocarp cells. Tissue fracture resulted in fewer broken cells in cherry than in green olives and even less in black olive tissues. Cell separation occurred in the middle lamella region in some of the cells of the cherry fruit and in most of the black olive cells. Solubilization and loss of pectic polysaccharides, mainly the arabinan moiety, and glucuronoxylans occurred in the green to cherry stages. The pulp cell wall constituent polysaccharides, pectic polysaccharides, cellulose, glucuronoxylans and xyloglucans, were degraded and/or solubilized at the cherry to black ripening stages. The resultant depolymerization of the pectic polymers, especially those of the middle lamella region, was consistent with the progressive cell separation at the different ripening stages by SEM. This showed that partial solubilization of pectic, hemicellulosic and cellulosic polysaccharides within the cell wall matrix weakened the cell wall structures, preventing the breaking of cells when the tissues were fractured.  相似文献   

20.
Summary Cultivation ofFunaria protonemata under plasmolytic or slightly subplasmolytic conditions initially causes a cessation of growth which is accompanied by a transient disappearance (or strong reduction in frequency, respectively) of putative cellulose synthesizing particle rosettes in the plasma membrane. Simultaneously, the formation and exocytosis of cell wall materialsecreting Golgi vesicles is slowed down. The latter process does not become apparent for several hours, though the reduction in activity can be proved indirectly. As a consequence of the imbalance between exocytosis, cell wall material accumulates in the plasmolytic space, generally at the cell tip. This indicates that the pattern of local, polar deposition of cell wall formation and cell elongation, membrane debris as well as wall material is maintained for some time. Later, however, the whole protoplast may become covered by new wall layers. Potentially growing filament tips and the distal region of nontip cells increase in diameter after longer cultivation in subplasmolytic conditions. It is suggested that normal wall growth results from a softening of the existing wall, its stretching and simultaneous stabilization by the apposition of new wall layers. We believe that the swelling is caused by a change in the equilibrium between the obviously less affected softening process and the imperfect stabilization by new wall layers because the wall layers which are formed at reduced turgor pressure are looser than normal and may have a changed composition.Kinetin-induced buds do not develop under plasmolytic conditions. Instead, spiral filaments are formed which readily give rise to buds when the osmotic value of the (kinetin-containing) medium is normalized. The results show that plasmolysis affects the expression of the developmental program rather than its initiation or maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号