首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Uptake of D-alanine against a concentration gradient has been shown to occur with isolated luminal-membrane vesicles from pars convoluta or pars recta of rabbit proximal tubule. Renal D-alanine transport systems, displaying the following characteristics, were shown: (1) In vesicles from pars convoluta, the uptake of D-alanine was mediated by both Na+-dependent and Na+-independent transport processes. It was found that an inwardly directed H+-gradient could drive the transport of D-alanine into the vesicles both in the presence and absence of Na+. Thus, in addition to Na+, the transport of D-alanine is influenced by the H+-gradient. (2) In vesicles from pars recta, the transient accumulation of D-alanine was strictly dependent on Na+, since no 'overshoot' was ever observed in the absence of Na+. Although the Na+-dependent uptake of D-alanine was stimulated at acid pH, H+ did not substitute for Na+, as it apparently does in pars convoluta, but instead potentiated the Na+ effect. (3) Addition of L-alanine to vesicle preparations, both from pars convoluta and from pars recta, specifically inhibited renal uptake of D-alanine. A comparison between the transport characteristics of D- and L-alanine indicated that these two isomers of alanine probably share common transport systems located along the proximal tubule of rabbit kidney.  相似文献   

2.
The characteristics of L-alanine transport in luminal-membrane vesicles isolated either from whole cortex or from pars convoluta or pars recta of rabbit proximal tubules were studied by a rapid filtration technique and by a spectrophotometric method. Uptake of L-alanine by vesicles from whole cortex was mediated by both Na+-dependent and Na+-independent, but electrogenic, processes. The nature, mechanism and tubular localization of the transport systems were studied by the use of vesicles derived from pars convoluta and pars recta. In vesicles from pars recta transport of L-alanine was strictly dependent on Na+ and occurred via a dual transport system, namely a high-affinity (half-saturation 0.14 mM) and a low-affinity system (half-saturation 9.6 mM). The cation-dependent but Na+-unspecific transport system for L-alanine was exclusively localized to the pars convoluta, which also contained an Na+-preferring system of intermediate affinity (half saturation 2.1 mM). A closer examination of the mechanism of transport of L-alanine in vesicles from pars convoluta revealed that an H+ gradient (extravesicular greater than intravesicular) can drive the transport of L-alanine into the vesicles both in the presence and in the absence of Na+. The physiological importance of various L-alanine transporters is briefly discussed.  相似文献   

3.
The energetics and location of renal transport of acetoacetate, beta-hydroxybutyrate, alpha-hydroxybutyrate and gamma-hydroxybutyrate by luminal-membrane vesicles from either whole cortex or pars convoluta or pars recta of rabbit proximal tubule were studied. Addition of either acetoacetate or beta-hydroxybutyrate or its analogues to dye-membrane-vesicle suspensions in the presence of Na+ gradient (extravesicular greater than intravesicular) resulted in absorbance changes indicative of depolarizing event(s). Valinomycin enhanced the Na+-dependent uptake of monocarboxylic acids, provided a K+ gradient (intravesicular greater than extravesicular) was present. By contrast, Na+-dependent uptake of these compounds was nearly abolished by ionophores that permit Na+ to pass through the luminal-membrane via another channel, either electrogenically (e.g. gramicidin D) or electroneutrally (e.g. nigericin). These results established that the Na+-dependent transport of ketone bodies and analogues by luminal-membrane vesicles is an electrogenic process. Eadie-Hofstee analysis of saturation kinetic data suggested the presence of multiple transport systems in vesicles from whole cortex for these compounds. Tubular localization of the transport systems was studied by the use of vesicles derived from pars convoluta and pars recta. In pars recta uptake of all these compounds was mediated by means of a single high affinity common transport system. Uptake of these compounds by vesicles from pars convoluta was carried out via a relatively low affinity but common transport system. The physiological importance of the transport systems is discussed.  相似文献   

4.
The characteristics of D- and L-lactate transport in luminal-membrane vesicles derived from whole cortex, from the pars convoluta and from the pars recta of rabbit kidney proximal tubule were studied. It was found that uptake of both isomers in vesicles from whole cortex occurred by means of dual electrogenic transport systems, namely a low-affinity system and a high-affinity system. Uptake of both isomers in vesicles from the pars recta was strictly Na+-dependent and is mediated via a single high-affinity common transport system. Vesicles from the pars convoluta contained a cation-dependent but Na+-unspecific low-affinity common transport system for these compounds. The physiological importance of this system is briefly discussed.  相似文献   

5.
Na+-H+-exchanger activity of pars convoluta and pars recta luminal-membrane vesicles prepared from the proximal tubule of acidotic and control rabbits were assayed by a rapid-filtration technique and an Acridine Orange method. Both experimental approaches revealed the existence of an antiporter, sensitive to metabolic acidosis, in pars convoluta membrane vesicles. Kinetic data, obtained with the pH-sensitive dye, showed that the Km for Na+ transport was unchanged by acidosis, whereas Vmax. for exchanger activity was increased, on an average, by 44%. The fluorescence method, in contrast with the rapid-filtration technique, was able to detect exchanger activity in pars recta membrane vesicles. The Km value for the antiporter located in pars recta is comparable with that calculated for pars convoluta membrane vesicles. By contrast, the Vmax. of this exchanger is only about 25% of that found for pars convoluta. Furthermore, metabolic acidosis apparently does not increase Na+-H+-exchanger activity of pars recta luminal-membrane vesicles.  相似文献   

6.
The uptake of taurine by luminal membrane vesicles from pars convoluta and pars recta of rabbit proximal tubule was examined. In pars convoluta, the transport of taurine was characterized by two Na(+)-dependent (Km1 = 0.086 mM, Km2 = 5.41 mM) systems, and one Na(+)-independent (Km = 2.87 mM) system, which in the presence of an inwardly directed H(+)-gradient was able to drive the transport of taurine into these vesicles. By contrast, in luminal membrane vesicles from pars recta, the transport of taurine occurred via a dual transport system (Km1 = 0.012 mM, Km2 = 5.62 mM), which was strictly dependent on Na+. At acidic pH with or without a H(+)-gradient, the Na(+)-dependent flux of taurine was drastically reduced. In both kind of vesicles, competition experiments only showed inhibition of the Na(+)-dependent high-affinity taurine transporter in the presence of beta-alanine, whereas there was no significant inhibition with alpha-amino acids, indicating a beta-amino acid specific transport system. Addition of beta-alanine, L-alanine, L-proline and glycine, but not L-serine reduced the H(+)-dependent uptake of taurine to approx. 50%. Moreover, only the Na(+)-dependent high-affinity transport systems in both segments specifically required Cl-. Investigation of the stoichiometry indicated 1.8 Na+: 1 Cl-: 1 taurine (high affinity), 1 Na+: 1 taurine (low affinity) and 1 H+: 1 taurine in pars convoluta. In pars recta, the data showed 1.8 Na+: 1 Cl-: 1 taurine (high affinity) and 1 Na+: 1 taurine (low affinity).  相似文献   

7.
Characteristics of 22Na+ fluxes through Na+ channels in luminal-membrane vesicles isolated from either pars recta or pars convoluta of rabbit proximal tubule were studied. In NaCl-loaded vesicles from pars recta, transient accumulation of 22Na+ is observed, which is inhibited by amiloride. The isotope accumulation is driven by an electrical diffusion potential as shown in experiments using either these membrane vesicles loaded with different anions, or an outwardly directed K+ gradient with a K+ ionophore valinomycin. The vesicles containing the channel show a cation selectivity with the order Li+ greater than Na+ greater than K+. The amiloride-sensitive 22Na+ flux is dependent on intravesicular Ca2+. In NaCl-loaded vesicles from pars convoluta, no overshoot for 22Na+ uptake is observed. Furthermore, addition of amiloride to the incubation medium did not influence the uptake of 22Na+ in these vesicle preparations. It is concluded that Na+ channels are only present in pars recta of rabbit proximal tubule.  相似文献   

8.
The mechanisms of renal transport of short chain fatty acids by luminal membrane vesicles prepared from pars convoluta or pars recta of rabbit proximal tubule were studied by a Millipore filtration technique and by a spectrophotometric method using a potential-sensitive carbocyanine dye. Both luminal membrane vesicle preparations take up propionate and butyrate by strictly Na+-dependent transport systems, although with different characteristics. The uptake of short chain fatty acids by membrane vesicles from the pars convoluta was insensitive to changes in membrane potential, which is indicative of electroneutral transport of these compounds. Furthermore, kinetic studies showed that the Na+-dependent, but electrically silent transport of propionate is saturable (Km = 10.9 +/- 1.1 mM and Vmax = 3.6 +/- 0.2 nmol/mg protein per 20 s) and is unaffected by the presence of L- and D-lactate, indicating that these monocarboxylic acids did not share the same common transport system. In the luminal membrane vesicles from the pars recta, the uptake of propionate and butyrate was mediated by an Na+-dependent electrogenic transport process, since addition of the organic compounds to these vesicle/dye suspensions depolarized the membrane vesicles and the renal uptake of propionate and butyrate was enhanced by K+ diffusion potential induced by valinomycin. Competition experiments revealed that in contrast to the transport of propionate by vesicles from the pars convoluta, the Na+-dependent electrogenic transport of short chain fatty acids in vesicles from the pars recta occurred via the same transport system that is responsible for the reabsorption of L- and D-lactate in this region of rabbit kidney proximal tubule.  相似文献   

9.
The characteristics of renal transport of D-galactose by luminal membrane vesicles from either whole cortex, pars recta or pars convoluta of rabbit proximal tubule were investigated by a spectrophotometric method using a potential-sensitive carbocyanine dye. Uptake of D-galactose by luminal membrane vesicles prepared from whole cortex was carried out by an Na+-dependent and electrogenic process. Eadie-Hofstee analysis of saturation-kinetic data suggested the presence of multiple transport systems in vesicles from whole cortex for the uptake of D-galactose. Tubular localization of the transport systems was studied by the use of vesicles derived from pars recta and pars convoluta. In pars recta, Na+-dependent transport of D-galactose and D-glucose occurred by means of a high-affinity system (half-saturation: D-galactose, 0.15 +/- 0.02 mM; D-glucose, 0.13 +/- 0.02 mM). These results indicated that the "carrier' responsible for the uptake of these hexoses does not discriminate between the steric position of the C-4 hydroxyl group of these two isomers. This is further confirmed by competition experiments, which showed that D-galactose and D-glucose are taken up by the same and equal affinity transport system by these vesicle preparations. Uptake of D-galactose and D-glucose by luminal membrane vesicles isolated from pars convoluta was mediated by a low-affinity common transport system (half-saturation: D-galactose, 15 +/- 2 mM; D-glucose, 2.5 +/- 0.5 mM). These findings strongly suggested that the "carrier' involved in the transport of monosaccharides in vesicles from pars convoluta is specific for the steric position of the C-4 hydroxyl group of these sugars and presumably interacts only with D-glucose at normal physiological concentration.  相似文献   

10.
Active transport of dipeptides in rabbit renal brush-border membrane vesicles is energized by an inward-directed H+ gradient rather than a Na+ gradient. We examined the effects of treatment of membrane vesicles with diethylpyrocarbonate (DEP), a reagent specific for histidyl groups, on this H+ gradient-dependent dipeptide uptake. DEP inhibited the uptake of all three dipeptides studied, Gly-sarcosine, Gly-Gly, and Gly-Pro (Ki = 0.6-0.9 mM), and the inhibition was noncompetitive. The dipeptide transporter could be protected from DEP inhibition by the presence of dipeptide substrates during the treatment of the vesicles with the inhibitor, whereas leucine plus Na+ failed to offer the protection. Na+-dependent leucine uptake was also inhibited by DEP (Ki = 2.5 mM) and the amino acid transporter could be protected from the inhibition by leucine plus Na+, but not by dipeptides. Treatment of membrane vesicles with the thiol group-specific reagents, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole,3-bromopyruvate, p-chloromercuribenzenesulfonic acid, and N-ethylmaleimide, also inhibited the H+ gradient-dependent dipeptide uptake. The potency of their inhibition was in the order: 7-chloro-4-nitrobenz-2-oxa-1,3-diazol greater than p-chloromercuribenzenesulfonic acid greater than 3-bromopyruvate greater than N-ethylmaleimide. The inhibition could be reversed in some cases by treatment of the membrane vesicles with reducing agents such as 2,3-dimercaptopropanol following incubation with the inhibitors. Dipeptide substrates could protect the dipeptide transporter from the inhibition. We conclude that histidyl and thiol groups are present at or near the substrate-binding site of the rabbit renal dipeptide transporter.  相似文献   

11.
A procedure for isolation and separation of purified luminal-membrane and basolateral-membrane vesicles from adult and newborn rabbit renal cortex by using Ca2+/Mg2+ precipitation, differential centrifugation and a self-orienting Percoll-gradient centrifugation is described. The purity of the membrane-vesicle suspensions was examined by electron microscopy and by measuring the activity of several marker enzymes. The activity of Na+ + K+-stimulated ATPase in the fraction mainly containing adult rabbit basolateral-membrane vesicles was enriched 16-fold, and the activity of alkaline phosphatase in the fraction mainly containing luminal-membrane vesicles was increased 13-fold, compared with the homogenate. Similar results were obtained with kidneys from newborn rabbits. Uptake studies, with a rapid filtration technique and the spectrophotometric method described in an accompanying paper [Kragh-Hansen, Jørgensen & Sheikh (1982) Biochem. J. 208, 359-368], showed that both adult and newborn rabbit luminal-membrane vesicles, in contrast with the basolateral-membrane preparations, possess an Na+-dependent electrogenic transport system for L-proline. Adult rabbit luminal-membrane vesicles take up citrate and L-malate by Na+-dependent electrogenic processes, whereas adult rabbit basolateral membrane vesicles do not exhibit electrogenic uptake of citrate. By contrast, these vesicles show Na+-dependent electrogenic uptake of L-malate.  相似文献   

12.
We examined the effects of external H+ on the kinetics of Na+-H+ exchange in microvillus membrane vesicles isolated from the rabbit renal cortex. The initial rate of Na+ influx into vesicles with internal pH 6.0 was optimal at external pH 8.5 and was progressively inhibited as external pH was reduced to 6.0. A plot of 1/V versus [H+]o was linear and yielded apparent KH = 35 nM (apparent pK 7.5). In vesicles with internal pH 6.0 studied at external pH 7.5 or 6.6, apparent KNa was 13 or 54 mM, Ki for inhibition of Na+ influx by external Li+ was 1.2 or 5.2 mM, Ki for inhibition by external NH4+ was 11 or 50 mM, and Ki for inhibition by external amiloride was 7 or 25 microM, respectively. These findings were consistent with competition between each cation and H+ at a site with apparent pK 7.3-7.5. Lastly, stimulation of 22Na efflux by external Na+ (i.e. Na+-Na+ exchange) was inhibited as external pH was reduced from 7.5 to 6.0, also consistent with competition between external H+ and external Na+. Thus, in contrast with internal H+, which interacts at both transport and activator sites, external H+ interacts with the renal microvillus membrane Na+-H+ exchanger at a single site, namely the external transport site, where H+, Na+, Li+, NH4+, and amiloride all compete for binding.  相似文献   

13.
Rat liver basolateral plasma membrane (blLPM) vesicles resuspended in 5 mM Mg2(+)-, Ca2(+)-, Mn2(+)- or Co2(+)-containing media exhibited a markedly lower rate of Na(+)-stimulated L-alanine transport. Divalent cation inhibition of L-alanine uptake was dose dependent, and was observed only when the vesicles were pre-loaded with the divalent cations. The presence or absence of the metal ions in the extravesicular incubation media had no effect on L-alanine transport. Conversely, pretreatment of the vesicles with 0.2 mM of either EGTA or EDTA resulted in higher initial rates of L-alanine transport. This stimulation was overcome by addition of excess divalent cation to the vesicle suspension solution. Since these blLPM vesicles are primarily oriented right-side-out, the divalent cation inhibition of L-alanine transport appears to be a result of their interaction with cytosolic components of the cell membrane. Total Na+ flux as measured with 22Na+ was not affected by intravesicular 5 mM Mg2+ or Ca2+, indicating that the inhibition was not due to dissipation of the Na+ gradient. These observations suggest that intracellular divalent cations may serve to modulate L-alanine transport across the liver cell plasma membrane.  相似文献   

14.
The effect of Ca2+, Cd2+, Ba2+, Mg2+ and pH on the renal epithelial Na(+)-channel was investigated by measuring the amiloride-sensitive 22Na+ fluxes into luminal membrane vesicles from pars recta of rabbit proximal tubule. It was found that intravesicular Ca2+ as well as extravesicular Ca2+ substantially lowered the channel-mediated flux. Amiloride sensitive Na+ uptake was nearly completely blocked by 10 microM Ca2+ at pH 7.4. The inhibitory effect of Ca2+ was dependent on pH. Thus, 10 microM Ca2+ produced 90% inhibition of 22Na+ uptake at pH 7.4, and only 40% inhibition at pH 7.0. The tracer fluxes measured in the absence of Ca2+ were pH independent over the range from 7.0 to 7.4. All the cations Ca2+, Cd2+, Ba2+ except Mg2+ inhibited the 22Na+ influx drastically when added extravesicularly in millimolar concentrations. The cations Cd2+, Ba2+ and Mg2+ in the same concentrations intravesicularly inhibited the 22Na+ influx only slightly. A millimolar concentration of Ca2+ intravesicularly blocked the amiloride-sensitive 22Na+ flux completely. The data indicate that Ca2+ inhibits Na+ influx specifically by binding to sites composed of one or several deprotonated groups on the channel proteins.  相似文献   

15.
The characteristics of 86Rb+ fluxes through conductive channels in basolateral-membrane vesicles isolated from pars recta of rabbit kidney proximal tubule were investigated. In RbCl-, KCl- and NaCl-loaded vesicles a transient and almost equal accumulation of 86Rb+ was observed. The uptakes of 86Rb+ were inhibited to the same extent by 10 mM-BaCl2 in all loadings. The accumulation was driven by an electrical diffusion potential. The 86Rb+ flux was dependent on intravesicular Ca2+. Increasing concentrations of Ca2+ gradually decreased the 86Rb+ uptake. At 10 microM-Ca2+ the radioisotope flux was below 20% of control. The vesicles containing the channel showed very low selectivity among the univalent cations K+, Rb+, Li+, Na+ and choline+.  相似文献   

16.
The distribution and properties of the peptide-transport system in rabbit renal proximal tubule was examined with glycylsarcosine as the substrate and using brush-border-membrane vesicles derived from pars convoluta (outer cortex) and pars recta (outer medulla). The dipeptide was transported into these vesicles against a concentration gradient in the presence of an inward-directed H+ gradient, demonstrating the presence of a H+-coupled peptide-transport system in outer-cortical as well as outer-medullary brush-border membranes. Even though the transport was electrogenic and was energized by a H+ gradient in both membranes, the system was more active in outer medullary membranes than in outer cortical membranes. Kinetic analysis showed that, although the affinity of the transport system for glycylsarcosine was similar in both membrane preparations, the capacity of the system was significantly greater in outer medulla than in outer cortex. In addition, the pH profiles of the peptide-transport systems in these membrane preparations also showed dissimilarities. The greater dipeptide uptake in one membrane vis-à-vis the other may probably be due to the difference in the affinity of the transport system for H+ and/or the difference in peptide/H+ stoichiometry.  相似文献   

17.
This paper describes properties of 86Rb+ fluxes through a novel K+ channel in luminal-membrane vesicles isolated from pars convoluta of rabbit proximal tubule. The uptake of 86Rb+ into potassium salt loaded vesicles was specifically inhibited by Ba2+. The isotope accumulation is driven by an electrical diffusion potential as shown in experiments using these membrane vesicles loaded with anions of different membrane permeability and was as follows: gluconate greater than SO4(2-) greater than Cl-. Furthermore, the vesicles containing the channels show a cation selectivity with the order K+ greater than Rb+ greater than Li+ greater than Na+ = choline+.  相似文献   

18.
Uptake of 22Na+ by liver plasma membrane vesicles, reflecting Na+ transport by (Na+, K+)ATPase or Na+/H+ exchange was studied. Membrane vesicles were isolated from rat liver homogenates or from freshly prepared rat hepatocytes incubated in the presence of [Arg8]vasopressin or pervanadate and insulin. The ATP dependence of (Na+, K+)ATPase-mediated transport was determined from initial velocities of vanadate-sensitive uptake of 22Na+, the Na(+)-dependence of Na+/H+ exchange from initial velocities of amiloride-sensitive uptake. By studying vanadate-sensitive Na+ transport, high-affinity binding sites for ATP with an apparent Km(ATP) of 15 +/- 1 microM were observed at low concentrations of Na+ (1 mM) and K+ (1mM). At 90 mM Na+ and 60 mM K+ the apparent Km(ATP) was 103 +/- 25 microM. Vesiculation of membranes and loading of the vesicles prepared from liver homogenates in the presence of vasopressin increased the maximal velocities of vanadate-sensitive transport by 3.8-fold and 1.9-fold in the presence of low and high concentrations of Na+ and K+, respectively. The apparent Km(ATP) was shifted to 62 +/- 7 microM and 76 +/- 10 microM by vasopressin at low and high ion concentrations, respectively, indicating that the hormone reduced the influence of Na+ and K+ on ATP binding. In vesicles isolated from hepatocytes preincubated with 10 nM vasopression the hormone effect was conserved. Initial velocities of Na+ uptake (at high ion concentrations and 1 mM ATP) were increased 1.6-1.7-fold above control, after incubation of the cells with vasopressin or by affinity labelling of the cells with a photoreactive analogue of the hormone. The velocity of amiloride-sensitive Na+ transport was enhanced by incubating hepatocytes in the presence of 10 nM insulin (1.6-fold) or 0.3 mM pervanadate generated by mixing vanadate plus H2O2 (13-fold). The apparent Km(Na+) of Na+/H+ exchange was increased by pervanadate from 5.9 mM to 17.2 mM. Vesiculation and incubation of isolated membranes in the presence of pervanadate had no effect on the velocity of amiloride-sensitive Na+ transport. The results show that hormone receptor-mediated effects on (Na+, K+)ATPase and Na+/H+ exchange are conserved during the isolation of liver plasma membrane vesicles. Stable modifications of the transport systems or their membrane environment rather than ionic or metabolic responses requiring cell integrity appear to be involved in this regulation.  相似文献   

19.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

20.
The GTP-binding proteins on luminal and basolateral membrane vesicles from outer cortex (pars convoluta) and outer medulla (pars recta) of rabbit proximal tubule have been examined. The membrane vesicles were highly purified, as ascertained by electron microscopy, by measurements of marker enzymes, and by investigating segmental-specific transport systems. The [35S]GTP gamma S binding to vesicles, and to sodium cholate-extracted proteins from vesicles, indicated that the total content of GTP-binding proteins were equally distributed on pars convoluta, pars recta luminal and basolateral membranes. The membranes were ADP-ribosylated with [32P]NAD+ in the presence of pertussis toxin and cholera toxin. Gel electrophoresis revealed, for all preparations, the presence of cholera toxin [32P]ADP-ribosylated 42 and 45 kDa G alpha s proteins, and pertussis toxin [32P]ADP-ribosylated 41 kDa G alpha i1, 40 kDa G alpha i2 and 41 kDa G alpha i3 proteins. The 2D electrophoresis indicated that Go's were not present in luminal nor in basolateral membranes of pars convoluta or pars recta of rabbit proximal tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号