首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Movement patterns of invertebrates in temporary and permanent streams   总被引:4,自引:0,他引:4  
C. M. Delucchi 《Oecologia》1989,78(2):199-207
Summary Although it has been shown that invertebrates recolonize reflooded temporary streams from permanent refuges, e.g., the hyporheic zone, it has not been shown that they actively move into these refuges as streams dry. Substrate filled cages and drift nets were used to monitor invertebrate movement in two temporary streams and a permanent stream prior to and during drying to determine whether invertebrates leave drying riffles and enter flooded riffles. Invertebrate movement was essentially unidirectional in the permanent stream with downstream drift and with-in-substrate downstream movement dominating. In the temporary stream, movement vertically downward toward the hyporheic zone and upstream movement substantially contributed to a departure from a unidirectional pattern. In addition, prior to stream drying the relative colonization rate was higher and drift rate was lower in the temporary streams than in the permanent stream. During drying of the temporary stream, upstream movement continued to dominate but hyporheic movement was unimportant. Further, the upstream movement did not occur at the end of the riffle where it would lead to migration into non-drying riffles. Thus, even though movement patterns were different in permanent and temporary streams the pattern observed during stream drying would result in the concentration and subsequent death of invertebrates in drying riffles. This observation demonstrates that movement patterns of stream invertebrates do not necessarily result in behavioral avoidance of a dry period of temporary fiffles.  相似文献   

2.
Life-history theory predicts the occurrence of variation in the life-history traits of fish populations under different environmental conditions; however, most studies have focused on such variation between geographically separated populations. We compared breeding characteristics and life-history traits of the Japanese fluvial sculpin (Cottus pollux), a bottom-dwelling nest-holding fish, between two adjacent sites sub-divided by a weir along a stream course in central Japan. Males in the area with a lower abundance of nest sites reached sexual maturity at an earlier age and had a shorter life span than males in the area with sufficient nest abundance. Size-dependent male reproduction was found only in areas with a shortage of nest sites, supporting the assumption of competitive exclusion among males for nests. Females matured at the same age in both sites with no differences in age-specific growth rates and mortality. Our results provide evidence for life-history variation in age and size at maturity and age-specific mortality schedule of males in nest-holding fishes in a single stream population via different sexual selection regimes related to differences in nest abundance between sites.  相似文献   

3.
Life-history variation in a hybrid species complex ofDaphnia   总被引:3,自引:0,他引:3  
L. J. Weider  H. G. Wolf 《Oecologia》1991,87(4):506-513
Summary Life-history variation was examined among members of theDaphnia longispina group, which consists ofD. galeata, D. hyalina, D. cucullata, and hybrids. Factorial experiments were conducted at two temperatures (14° and 20° C) and two food concentrations (0.2 and 1.0 mg Cl−1). Differences in life-history features (size at maturity, age at first reproduction, size of first clutch, offspring size in first clutch) under the different environmental conditions were assessed among eightDaphnia clones, which represented members of this species complex. Significant differences between parentals and hybrids for most life-history features were observed under various treatments; generally, hybrid clones showed intermediate life-history traits when compared with parentals. When comparisons were made among clones within a given species (i.e.D. galeata, D. galeata xcucullata, D. cucullata), clonal differences were also noted for certain life-history traits. The data are discussed with reference to the formation and maintenance of hybrid species complexes in nature. This paper is dedicated to the memory of Hans Georg Wolf, who died suddenly in May 1990 at the age of 39 years.  相似文献   

4.
  1. In some regions, climate change is increasing the variability of rainfall and the frequency of extreme events such as drought. Consequently, non-flow periods have grown in length and frequency, both in temporary and in formerly permanent streams. Water abstraction for human use may further prolong these dry periods.
  2. We analysed the resistance and resilience of biofilms from permanent and temporary streams to non-flow conditions. This was achieved by exposing cobbles (collected from permanent and temporary streams) with intact biofilm to 31 days of non-flow, followed by 20 days of stream flow in artificial stream channels. Biofilm resistance and resilience were assessed at a structural (algal biomass, pigment composition, and algae and cyanobacteria composition) and functional level (photosynthetic efficiency and community metabolism).
  3. Algal taxa in biofilms from permanent and temporary streams differed throughout the experiment. Biofilms from permanent streams were less resistant to non-flow than those from temporary streams at structural level. Permanent stream biofilms also presented lower resilience at a structural level, but responded similarly to temporary stream biofilms at a functional level.
  4. Our investigation shows how the non-flow period disturbed permanent stream biofilms, and suggests that temporary stream biofilms will have greater adaptive capacity as hydroperiod becomes shorter due to climate change.
  相似文献   

5.
1. Environmental stress may have indirect positive effects on population size through modification of food‐web interactions, despite having negative effects on individuals. Here we evaluate the individual‐ and population‐level effects of acidification on crayfish (Cambarus bartonii) in headwater streams of the Allegheny Plateau (PA, U.S.A.) with field experiments and survey data. Median baseflow pH of 24 study reaches in nine streams varied from 4.4 to 7.4, with substantial variation found both among and within streams. 2. Two bioassays were conducted to evaluate the relationship between stream pH and crayfish growth rates. Growth rates were always higher in circumneutral reaches than in acidic reaches. Crayfish originating in acidic water grew less when transplanted into neutral water than did crayfish originating in neutral water, providing some evidence for a cost of acclimation to acidity. 3. Stream surveys showed that fish were less abundant and crayfish more abundant in acidified streams than in circumneutral streams. Crayfish density was sixfold higher in reaches with the lowest pH relative to circumneutral reaches. Large crayfish made up a higher proportion of crayfish populations at sites with high fish biomass, consistent with the hypothesis that fish predation on small individuals may be limiting crayfish population size at these sites. 4. Although individual crayfish suffered lower growth in acidified streams, increased acidity appeared to cause an increase in crayfish population size and shifts in size structure, possibly by relieving predation pressure by fish.  相似文献   

6.
Life-history variation was investigated using crosses within and among the laboratory-bred descendants of six geographic samples of the large milkweed bug, Oncopeltus fasciatus. These samples spanned the species' range, from permanent (year-round) populations on tropical islands to seasonal middle-latitude populations found in temperate North America. The seasonal populations must be refounded each year by colonists from more southern populations. Marked differences in life-history traits (particularly in age at first reproduction, clutch size, and rate of egg production) were observed among the six population samples, with tropical-island and west-coast populations being the most distinct. In the eastern and central United States, there was a marked north-south difference in life history. Crossing experiments demonstrated a genetic basis for these differences. F1 and F2 hybrids from crosses between continental populations tended to have intermediate phenotypes. The similarity of the seasonal middle-latitude populations' life histories and the consistency of the distribution of life-history characteristics among populations (across years) may indicate that the north-south difference in life history is due to selection on these traits during the annual northward movement or that migrants represent a distinct genetic form of this species.  相似文献   

7.
Life-history traits of two coexisting cladocerans, Daphnia magna Straus and Scapheloberis kingi Sars, inhabiting a temporary pond in north-eastern Algeria were monitored in 2013 under laboratory conditions. Their life histories were compared for differences in traits such as age and size at first reproduction, size of neonates, brood size, number of broods per female, total life span and intrinsic rate of increase (rm). Data were recorded during their entire life cycle. Daphnia magna, the larger species, could possibly be more successful in colonising temporary habitats than S. kingi because it allocates more energy to reproduction. Scapheloberis kingi, the smaller species, starts reproduction early, resulting in a smaller brood size and a shorter life span with fewer broods. Consequently, S. kingi produces a smaller number of neonates during its lifetime and has a lower rm. In contrast, D. magna delays reproduction but produces a larger brood size and, because it is longer-lived, produces more broods and so produces a greater number of neonates and has a higher rm over its lifetime.  相似文献   

8.
We have mapped genes causing life-history trade-offs, and they behave as predicted by ecological theory. Energetic and quantitative-genetic models suggest a trade-off between age and size at first reproduction. Natural selection favored plants that flower early and attain large size at first reproduction. Response to selection was opposed by a genetic trade-off between these two components of fitness. Two quantitative-trait loci (QTLs) influencing flowering time were mapped in a recombinant inbred population of Arabidopsis. These QTLs also influenced size at first reproduction, but did not affect growth rate (resource acquisition). Substitutions of small chromosomal segments, which may represent allelic differences at flowering time loci, caused genetic trade-offs between life-history components. One QTL explained 22% of the genetic variation in flowering time. It is within a few centiMorgans (cM) of the gigantea (GI) locus, and may be allelic with GI. Sixteen percent of the genetic variation was explained by another QTL, FDR1, near 18 cM on chromosome II, which does not correspond to any previously identified flowering-time locus. These life-history genes regulate patterns of resource allocation and life-history trade-offs in this population.  相似文献   

9.
Life-history theory predicts that traits involved in maturity, reproduction and survival correlate along a fast–slow continuum of life histories. Evolutionary theories and empirical results indicate that senescence-related traits vary along this continuum, with slow species senescing later and at a slower pace than fast species. Because senescence patterns are typically difficult to estimate from studies in the wild, here we propose to predict the associated trait values in the frame of life-history theory. From a comparative analysis based on 81 free-ranging populations of 72 species of birds and mammals, we find that a nonlinear combination of fecundity, age at first reproduction and survival over the immature stage can account for ca two-thirds of the variance in the age at the onset of actuarial senescence. Our life-history model performs better than a model predicting the onset based on generation time, and it only includes life-history traits during early life as explanatory variables, i.e. parameters that are both theoretically expected to shape senescence and are measurable within relatively short studies. We discuss the good-fit of our life-history model to the available data in the light of current evolutionary theories of senescence. We further use it to evaluate whether studies that provided no evidence for senescence lasted long enough to include the onset of senescence.  相似文献   

10.
Quantitative data on the habitat characteristics of stream crayfish have been generally lacking and competing demands on water resources has created a need to address this knowledge gap. We investigated day-time habitat relationships of stream crayfish (Paranephrops planifrons White) from 793 quadrats at 30 rivers and streams in the North Island, New Zealand to develop models of koura presence–absence and abundance. The model (stepwise GAM) included width, cover, median substrate size, edge location, velocity and depth, and correctly predicted presence–absence of crayfish (8–39 mm OCL) at 73.4% of quadrats and of young-of-the-year (YOY) ≤8 mm OCL at 83.4% of quadrats. Streams ranged from 1.6 to 11.5 m in width and the probability of finding both crayfish size classes reduced sharply as streams became wider than 6 m and as the substrate became large (i.e., boulder > 256 mm). Crayfish, particularly YOY, were most likely to be found in association with cover and at the stream edge. YOY were associated with shallow depths and fine substrates, whereas larger crayfish showed a preference for cobble substrate. Undercut banks, leaf litter, tree roots, and woody debris were strongly related to the presence–absence of crayfish. The model for crayfish abundance (log-linear Poisson GAM) explained 50% of the variation between quadrats with cover, velocity, edge location, depth, and the overall crayfish abundance at each particular stream being significant variables. Highest crayfish numbers were recorded in still or slow flowing water, with the majority occurring where velocities were below 0.4 m/s. Water depths up to 0.7 m were sampled, but highest numbers were found in depths of 0.2–0.3 m. Our presence–absence model determined variables that were significant over all streams, whereas our abundance model determined variables that were significant within streams. Use of the GAMs models enabled us to untangle the multiple factors contributing to habitat selection. Cover, velocity, and locations at the stream edge were important determinants of both presence–absence and abundance. Generally, substrate was important when comparing between streams, but not within streams, whereas depth was a significant determinant of abundance within streams, but not presence–absence between streams. Handling editor: K. Martens  相似文献   

11.
In temporary streams, the annual constriction of drying is associated with high local extinction risk. To survive in such habitats, organisms with no specific biological traits for coping with dry periods should experience high colonisation rates from permanent reaches of the same basin or from other basins. Hydropsyche siltalai is a widespread caddisfly common in permanent and temporary headwaters reaches in the Mediterranean climate region of the Iberian Peninsula. In this study, we used genetic analyses to test if populations of H. siltalai in temporary streams are resettled from populations of the same basin or from other basins. The geographical distribution of H. siltalai was surveyed in 97 temporary and permanent reaches across four basins; larvae were found in 22 reaches (12 temporary and 10 permanent). Population genetic analyses of 11 selected reaches (6 temporary and 5 permanent) revealed low genetic diversity and no genetic population structure among and within basins. Overall, H. siltalai appeared to disperse well among basins independent of stream temporality. Permanent reaches from different basins act as a source of the individuals that recolonise temporary reaches after local extinctions, indicating a metapopulation structure at regional scale. Moreover, our results support other studies that showed that dispersal among basins is a recurrent pattern in aquatic insects.  相似文献   

12.
Life-history theory predicts adaptive shifts in response to size-selective predation, namely earlier reproduction, smaller age/size at maturity, and higher relative investment into reproduction. Such shifts should bring about reduced lifespan of potential prey. We tested this prediction in life-table experiments with clones of Daphnia hyalina and Diaphanosoma brachyurum, two species of contrasting anti-predatory strategies. The clones were derived from seven lakes of different trophy and held in water with and without fish kairomone, under standard laboratory conditions. Exposure to the kairomone caused a decrease in age of first reproduction and an increase in early-life reproductive effort but also an about 20% decrease of longevity in both species. Although shortened lifespan did not result in significant decrease in fitness of the tested species (in terms of lifetime reproductive output) it should be taken into account in considerations of costs and benefits of inducible defenses in cladocerans.  相似文献   

13.
Long-term monitoring of life-history traits and the effects of density upon them were studied in an island population of the lizardEumeces okadae. Although life-history traits such as clutch size, egg size and the proportion of mature reproductive females varied little over 7 years in the intact population, manipulation of density to simulate decreased population density enhanced juvenile growth rate, age at first reproduction, frequency of female reproduction and size-specific clutch mass. In particular, the proportion of mature females reproducing annually increased almost 10 times from 5.6% to 53.8% after the removal of some lizards. However, body size at first reproduction and egg size were almost identical under both high and low density conditions. This study suggests that there were strong density-dependent effects on several life-history traits and thatE. okadae attained a density close to the carrying capacity of the environment.  相似文献   

14.
Life-history theoretical models show that a typical evolutionarily optimal response of a juvenile organism to high mortality risk is to reach reproductive maturity earlier. Experimental studies in a range of species suggest the existence of adaptive flexibility in reproductive scheduling to maximize fitness just as life-history theory predicts. In humans, supportive evidence has come from studies comparing neighbourhoods with different mortality rates, historical and cross-cultural data. Here, the prediction is tested in a novel way in a large (n = 9099), longitudinal sample using data comparing age at first reproduction in individuals with and without life-expectancy-reducing chronic disease diagnosed during childhood. Diseases selected for inclusion as chronic illnesses were those unlikely to be significantly affected by shifting allocation of effort away from reproduction towards survival; those which have comparatively large effects on mortality and life expectancy; and those which are not profoundly disabling. The results confirmed the prediction that chronic disease would associate with early age at first reproduction: individuals growing up with a serious chronic disease were 1.6 times more likely to have had a first child by age 30. Analysis of control variables also confirmed past research findings on links between being raised father-absent and early pubertal development and reproduction.  相似文献   

15.
Hoverman JT  Auld JR  Relyea RA 《Oecologia》2005,144(3):481-491
The last decade has seen an explosion in the number of studies exploring predator-induced plasticity. Recently, there has been a call for more comprehensive approaches that can identify functional relationships between traits, constraints on phenotypic responses, and the cost and benefits of alternative phenotypes. In this study, we exposed Helisoma trivolvis, a freshwater snail, to a factorial combination of three resource levels and five predator environments (no predator, one or two water bugs, and one or two crayfish) and examined ten traits including behavior, morphology, and life history. Each predator induced a unique suite of behavioral and morphological responses. Snails increased near-surface habitat use with crayfish but not with water bugs. Further, crayfish induced narrow and high shells whereas water bugs induced wide shells and wide apertures. In terms of life history, both predators induced delayed reproduction and greater mass at reproduction. However, crayfish induced a greater delay in reproduction that resulted in reduced fecundity whereas water bugs did not induce differences in fecundity. Resource levels impacted the morphology of H. trivolvis; snails reared with greater resource levels produced higher shells, narrower shells, and wider apertures. Resource levels also impacted snail life history; lower resources caused longer times to reproduction and reduced fecundity. Based on an analysis of phenotypic correlations, the morphological responses to each predator most likely represent phenotypic trade-offs. Snails could either produce invasion-resistant shells for defense against water bugs or crush-resistant shells for defense against crayfish, but not both. Our use of a comprehensive approach to examine the responses of H. trivolvis has provided important information regarding the complexity of phenotypic responses to different environments, the patterns of phenotypic integration across environments, and the potential costs and benefits associated with plastic traits.  相似文献   

16.
Grazer species effects on epilithon nutrient composition   总被引:3,自引:0,他引:3  
1. Field and laboratory experiments were conducted to investigate the excretion stoichiometry of nitrogen (N) and phosphorus (P) of two benthic macroinvertebrate grazers, the crayfish Orconectes propinquus and the snail Elimia livescens, that differ in body stoichiometry (mean body molar N : P 18 and 28, respectively). Crayfish excretion had a significantly higher ammonium : soluble reactive phosphorus (SRP) ratio in the laboratory and in three natural streams than did snails, as predicted by ecological stoichiometry theory. 2. In greenhouse recirculating artificial streams, treatments consisting of crayfish, snails, or no grazers were used to examine responses in dissolved nutrient concentrations and epilithon nutrient composition and limitation. SRP concentrations depended upon the grazer species, with the snail treatment having a higher SRP concentration than other treatments (P < 0.05). Dissolved inorganic N was not affected by grazers, but appeared to be rapidly incorporated in epilithon. 3. Epilithon N content was dependent upon the grazer species present, with the crayfish treatment having a significantly higher N content than other treatments (P = 0.001). No grazer species effects on epilithon P content were found. However, both grazer treatments had significantly lower epilithon P content than the no‐grazer treatment. 4. Traditionally, studies have focused on how grazer‐induced structural changes to epilithon can alter epilithon nutrient dynamics, but this structural mechanism could not solely explain differences in epilithon nutrient contents and ratios in the present study. Our results rather suggest that benthic grazers can alter epilithon nutrient composition and limitation via nutrient excretion. Consequently, macroinvertebrate grazers may serve as ‘nutrient pumps’ that partly regulate the availability of nutrients to algae in stream ecosystems.  相似文献   

17.
Life-history theory predicts an increasing rate of population growth among species arranged along a continuum from slow to fast life histories. We examine the effects of this continuum on density-feedback strength estimated using long-term census data from >700 vertebrates, invertebrates, and plants. Four life-history traits (Age at first reproduction, Body size, Fertility, Longevity) were related statistically to Gompertz strength of density feedback using generalized linear mixed-effects models and multi-model inference. Life-history traits alone explained 10 to 30% of the variation in strength across species (after controlling for time-series length and phylogenetic nonindependence). Effect sizes were largest for body size in mammals and longevity in birds, and density feedback was consistently stronger for smaller-bodied and shorter-lived species. Overcompensatory density feedback (strength <-1) occurred in 20% of species, predominantly at the fast end of the life-history continuum, implying relatively high population variability. These results support the idea that life history leaves an evolutionary signal in long-term population trends as inferred from census data. Where there is a lack of detailed demographic data, broad life-history information can inform management and conservation decisions about rebound capacity from low numbers, and propensity to fluctuate, of arrays of species in areas planned for development, harvesting, protection, and population recovery.  相似文献   

18.
We examined colonization by fishes and macro-invertebrates from permanent streams into an artificial freshwater stream simulating lotic temporary bodies of water that exist for only a limited period each year. After introducing water, invertebrates such as chironomid larvae in mud increased in numbers rapidly in the experimental stream, although they were rare in mud in the permanent streams. Eleven of 12 fish species present in the permanent streams colonized the experimental stream and preyed upon invertebrates, although fish composition differed significantly between the two streams. About 100 days after the initiation of the experiment, both species richness and diversity in the experimental stream reached almost the same level as that in the permanent streams. More diverse fishes colonized the complex section where habitat diversity was high compared to the simple section in the experimental stream. Our study strongly suggests that lotic temporary waters such as temporary streams around main rivers have unique ecological characteristics and serve as valuable foraging sites for fish.  相似文献   

19.
Life-history variation in annuals is known to be caused by size requirements for photoinduction of flowering, but the importance of germination date and injury was overlooked so far even though they may play an important role in disturbed habitats. To test the effect of germination date and timing of injury on life-history variation of an annual plant, we performed a 2-year pot experiment with the root-sprouting herb Rorippa palustris. Plants belonging to six different cohorts, and sown at monthly intervals from April to September, were injured (all stem parts removed) in three ontogenetic stages: vegetative rosettes, flowering plants and fruiting plants. Plants from the April, and partly from the May, cohort behaved as summer annuals: they started to bolt at the same time, resprouted and overwintered poorly. Plants from the June cohort flowered in the first season as well, but they entered the bolting stage a month later than the preceding cohorts, produced the least fruits, but overwintered successfully and flowered again the second year (polycarpic perennials). Cohorts germinating after the summer solstice did not flower during the first year and, with the exception of the September cohort, overwintered successfully and flowered the second year (winter annuals). After injury, the pattern of life-histories was the same as in control plants, although generative reproduction was interrupted by injury in the first year of the experiment. About one quarter of␣plants injured in the vegetative stage regenerated after injury irrespective of cohort, however, regeneration was enhanced in larger plants. Regeneration of plants in the flowering and fruiting stages depended on date of injury in relation to day length, being the most successful after the summer solstice. Life-history variation, together with the ability to resprout after severe injury in the pioneer wetland herb Rorippa palustris is caused by its ability to germinate throughout the season. Even the second tested factor, the effect of injury, is modified by germination time. The experiment points to a complex nature of factors affecting life-history variation as well as resprouting after severe injury in short lived plants. An erratum to this article can be found at  相似文献   

20.
Synopsis Fish populations may be affected by predation and competition from various types of organisms, among which crayfish have been suggested as important actors. We here present results from stream surveys, suggesting that neither native noble, Astacus astacus, nor introduced signal crayfish, Pacifastacus leniusculus, necessarily affect fish population densities in temperate stream communities. Comparisons of fish densities within stream sites between years with absence and presence of crayfish showed no effect of either crayfish species. A further analysis of changes in fish densities between periods without and with crayfish in low, intermediate and high densities revealed that crayfish density did neither have an effect on fish densities. Our study is one of exceptionally few that consider the above aspects in long-term perspectives in natural systems, and we discuss that previously reported divergent results of crayfish effects on fish may be highly dependent on specific species and methods used, and that the effects of crayfish on fish populations deserve further attention to enable reliable predictions of community processes in streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号