首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Electron paramagnetic resonance studies of the primary reactants of Photosystems I and II have been conducted at cryogenic temperatures after laser-flash activation with monochromatic light.P-700 photooxidation occurs irreversibly in chloroplasts and in Photosystem I fragments after activation with a 730 nm laser flash at a temperature of 35 degrees K. Flash activation of chloroplasts or Photosystem II chloroplast fragments with 660 nm light results in the production of a free-radical signal (g = 2.002, linewidth approximately 8 gauss) which decays with a half-time of 5.0 ms at 35 degrees K. The half-time of decay is independent of temperature in the range of 10-77 degrees K. This reversible signal can be eliminated by preillumination of the sample at 35 degrees K with 660 nm light (but not by 730 nm light), by preillumination with 660 nm light at room temperature in the presence of 3-(3',4'-dichlorophenyl)-1,1'-dimethylurea (DCMU) plus hydroxylamine, or by adjustment of the oxidation-reduction potential of the chloroplasts to - 150 mV prior to freezing. In the presence of ferricyanide (20-50 mM), two free-radical signals are photoinduced during a 660 nm flash at 35 degrees K. One signal decays with a half-time of 5 ms, whereas the second signal is formed irreversibly. These results are discussed in terms of a current model for the Photosystem II primary reaction at low temperature which postulates a back-reaction between P-680+ and the primary electron acceptor.  相似文献   

3.
Richard Malkin  Alan J. Bearden 《BBA》1975,396(2):250-259
Electron paramagnetic resonance studies of the primary reactants of Photosystems I and II have been conducted at cryogenic temperatures after laser-flash activation with monochromatic light.P-700 photooxidation occurs irreversibly in chloroplasts and in Photosystem I fragments after activation with a 730 nm laser flash at a temperature of 35 °;K. Flash activation of chloroplasts or Photosystem II chloroplast fragments with 660 nm light results in the production of a free-radical signal (g = 2.002, linewidth ~ 8 gauss) which decays with a half-time of 5.0 ms at 35 °;K. The half-time of decay is independent of temperature in the range of 10–77 °;K. This reversible signal can be eliminated by preillumination of the sample at 35 °;K with 660 nm light (but not by 730 nm light), by preillumination with 660 nm light at room temperature in the presence of 3-(3′, 4′-dichlorophenyl)-1,1′-dimethylurea (DCMU) plus hydroxylamine, or by adjustment of the oxidation-reduction potential of the chloroplasts to — 150 mV prior to freezing. In the presence of ferricyanide (20–50 mM), two free-radical signals are photoinduced during a 660 nm flash at 35 °;K. One signal decays with a half-time of 5 ms, whereas the second signal is formed irreversibly. These results are discussed in terms of a current model for the Photosystem II primary reaction at low temperature which postulates a back-reaction between P-680+ and the primary electron acceptor.  相似文献   

4.
A mass spectrometer with a special inlet was used to directly monitor the products evolved when hydroxylamine-treated chloroplasts were exposed to short saturating light flashes. We found that: 1. Molecular dinitrogen was the sole product of hydroxylamine photooxidation, and was formed in an amount equal to twice the O2 evolved during H2O photooxidation. 2. This reaction was driven by Photosystem II, and did not involve Photo-system I-generated superoxide or peroxide. 3. In the presence of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea, N2 was evolved only on the first flash. These results suggested that N2 was formed by the combination of two single-electron oxidation products of hydroxylamine.  相似文献   

5.
Ted Mar  John Brebner  Guy Roy 《BBA》1975,376(2):345-353
Induction curves of the delayed light emission in spinach chloroplasts were studied by measuring the decay kinetics after each flash of light. This study differs from previous measurements of the induction curves where only the intensities at one set time after each flash of light were recorded. From the decay kinetics after each flash of light, the induction curves of the delayed light emission measured 2 ms after a flash of light were separated into two components: one component due to the last flash only and one component due to all previous flashes before the last one. On comparing the delayed light induction curves of the two components with the fluorescence induction curves in chloroplasts treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea and in chloroplasts treated with hydroxylamine and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the component due to the last flash only is found to be dependent on the concentration of open reaction centers and the component due to all previous flashes except the last is dependent on the concentration of closed reaction centers. This implies that the yield of the fast decaying component of the delayed light emission is dependent on the concentration of open reaction centers and the yield of the slow decaying component is dependent on the concentration of closed reaction centers.  相似文献   

6.
Absorption changes at 820 or 515 nm after a short laser flash were studied comparatively in untreated chloroplasts and in chloroplasts in which oxygen evolution is inhibited. In chloroplasts pre-treated with Tris, the primary donor of Photosystem II (P-680) is oxidized by the flash it is re-reduced in a biphasic manner with half-times of 6 microseconds (major phase) and 22 microseconds. After the second flash, the 6 microseconds phase is nearly absent and P-680+ decays with half-times of 130 microseconds (major phase) and 22 microseconds. Exogenous electron donors (MnCl2 or reduced phenylenediamine) have no direct influence on the kinetics of P-680+. In untreated chloroplasts the 6 and 22 microseconds phases are of very small amplitude, either at the 1st, 2nd or 3rd flash given after dark-adaptation. They are observed, however, after incubation with 10 mM hydroxylamine. These results are interpreted in terms of multiple pathways for the reduction of P-680+: a rapid reduction (less than 1 microseconds) by the physiological donor D1; a slower reduction (6 and 22 microseconds) by donor D'1, operative when O2 evolution is inhibited; a back-reaction (130 microseconds) when D'1 is oxidized by the pre-illumination in inhibited chloroplasts. In Tris-treated chloroplasts the donor system to P-680+ has the capacity to deliver only one electron. The absorption change at 515 nm (electrochromic absorption shift) has been measured in parallel. It is shown that the change linked to Photosystem II activity has nearly the same magnitude in untreated chloroplasts or in chloroplasts treated with hydroxylamine or with Tris (first and subsequent flashes). Thus we conclude that all the donors (P-680, D1, D'1) are located at the internal side of the thylakoid membrane.  相似文献   

7.
B.R. Velthuys  J. Amesz 《BBA》1974,333(1):85-94
A study was made of the reactions between the primary and secondary electron acceptors of Photosystem 2 by measurements of the increase of chlorophyll fluorescence induced in darkness by dithionite or by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). The experiments were done either with chloroplasts to which hydroxylamine or carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) was added, or with chloroplasts treated with tris(hydroxymethyl)aminomethane (Tris) to which phenylenediamine and ascorbate were added as donor system. Under these conditions the fluorescence increase induced by dithionite or DCMU added after illumination with short light flashes was dependent on the flash number with a periodicity of two; it was large after an uneven number of flashes, and small after a long darktime or after an even number of flashes. The results are interpreted in terms of a model which involves a hypothetical electron carrier situated between Q and plastoquinone; this electron carrier is thought to equilibrate with plastoquinone in a two-electron transfer reaction; the results obtained with DCMU are explained by assuming that its midpoint potential is lowered by this inhibitor.  相似文献   

8.
Gerald T. Babcock  Kenneth Sauer 《BBA》1973,325(3):483-503
An analysis of electron paramagnetic resonance Signal II in spinach chloroplasts has been made using both continuous and flashing light techniques. In order to perform the experiments we developed a method which allows us to obtain fresh, untreated chloroplasts with low dark levels of Signal II. Under these conditions a single 10-μs flash is sufficient to generate greater than 80% of the possible light-induced increase in Signal II spin concentration. The risetime for this flash-induced increase in Signal II is approx. 1 s. The close association of Signal II with Photo-system II is confirmed by the observations that red light is more effective than is far red light in generating Signal II, and that 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) does not inhibit the formation of the radical. Single flash saturation curves for the flash-induced increase in Signal I and Signal II indicate that the quantum efficiency for Signal II formation is close to that for Signal I. While one or two flashes (spaced 10 ms apart) are quite efficient in generating Signal II, three or four flashes are much less effective. However, if this spacing is decreased to 100 μs, three or four flashes become as efficient as one or two flashes. From observations of a deficiency of O2 evolved during the initial flashes of dark-adapted chloroplasts, we conclude that the species which gives rise to Signal II is able to compete with water for oxidizing equivalents generated by Photosystem II. On the basis of these results we postulate a model in which Signal II arises from an oxidized radical which is produced by a slow electron transfer to the specific states S2 and S3 on the water side of Photo-system II.  相似文献   

9.
H. Conjeaud  P. Mathis  G. Paillotin 《BBA》1979,546(2):280-291
Absorption changes at 820 or 515 nm after a short laser flash were studied comparatively in untreated chloroplasts and in chloroplasts in which oxygen evolution is inhibited.In chloroplasts pre-treated with Tris, the primary donor of Photosystem II (P-680) is oxidized by the flash, as observed by an absorption increase at 820 nm. After the first flash it is re-reduced in a biphasic manner with half-times of 6 μs (major phase) and 22 μs. After the second flash, the 6 μs phase is nearly absent and P-680+ decays with half-times of 130 μs (major phase) and 22 μs. Exogenous electron donors (MnCl2 or reduced phenylenediamine) have no direct influence on the kinetics of P-680+.In untreated chloroplasts the 6 and 22 μs phases are of very small amplitude, either at the 1st, 2nd or 3rd flash given after dark-adaptation. They are observed, however, after incubation with 10 mM hydroxylamine.These results are interpreted in terms of multiple pathways for the reduction of P-680+: a rapid reduction (<1 μs) by the physiological donor D1; a slower reduction (6 and 22 μs) by donor D′1, operative when O2 evolution is inhibited; a back-reaction (130 μs) when D′1 is oxidized by the pre-illumination in inhibited chloroplasts. In Tris-treated chloroplasts the donor system to P-680+ has the capacity to deliver only one electron.The absorption change at 515 nm (electrochromic absorption shift) has been measured in parallel. It is shown that the change linked to Photosystem II activity has nearly the same magnitude in untreated chloroplasts or in chloroplasts treated with hydroxylamine or with Tris (first and subsequent flashes). Thus we conclude that all the donors (P-680, D1, D′1) are located at the internal side of the thylakoid membrane.  相似文献   

10.
P. Jursinic  A. Stemler 《BBA》1982,681(3):419-428
Broken chloroplasts depleted of bicarbonate (HCO?3) show 30–50% inhibition of the Hill reaction in low-intensity light. Also, photoreactions excited by repetitive flashes measured by oxygen evolution, ESR signal IIvf, and absorption changes at 680 and 334 nm show inhibition of 30–50%. An effect of HCO?3 was sought to explain these phenomena. The decay of chlorophyll a fluorescence yield in the millisecond and seconds range, following a single flash, was observed to be multiphasic with a very slow component of 1–2 s half-time. In HCO?3 -depleted samples this component is enhanced 2- or 3-fold. Since this occurs even after one flash, it is suggested that HCO?3 affects the Q? B → QB? reaction. In this work it is shown that 40% inhibition of oxygen flash yield is relieved to a great extent if the excitation flash rate is decreased from 2 to 0.33 Hz. A measurement of 520 nm absorption change in the presence of ferricyanide, which is proportional to Photosystem II charge separation, shows a similar inhibition that is dependent on flash rate. The maximum amplitude of variable fluorescence yield and 520 nm absorption change after a single flash are unaffected by HCO?3 depletion. The dark distribution of oxygen-evolution S-states is found to be shifted to a more reduced configuration in depleted samples. It is concluded that normal charge separation occurs in HCO?3 -depleted Photosystem II reaction centers but that a large fraction of Q? decays so slowly that not all Q? is reoxidized between flashes given at a rate of 1 or 2 Hz. Thus, a portion of the Photosystem II centers would be closed to photochemistry. There is a reversible effect of HCO?3 depletion on the oxygen-evolution system that is observed as a shift in the dark distribution of S-states.  相似文献   

11.
J. Amesz  M.P.J. Pulles  B.R. Velthuys 《BBA》1973,325(3):472-482

1. 1. Spinach chloroplasts were stored in the dark for at least 1 h, rapidly cooled to −40 °C, and illuminated with continuous light or short saturating flashes. In agreement with the measurements of Joliot and Joliot, chloroplasts that had been preilluminated with one or two flashes just before cooling showed a less efficient increase in the yield of chlorophyll a fluorescence upon illumination at −40 °C than dark-adapted chloroplasts. The effect disappeared below −150 °C, but reappeared again upon warming to −40 °C. Little effect was seen at room temperature in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), added after the preillumination.

2. 2. Light-induced absorbance difference spectra at −40 °C in the region 500–560 nm indicated the participation of two components, the socalled 518-nm change (P518) and C-550. After preillumination with two flashes the absorbance change at 518 nm was smaller, and almost no C-550 was observed. After four flashes, the bands of C-550 were clearly visible again.

3. 3. The fluorescence increase and the absorbance change at 518 nm showed the same type of flash pattern with a minimum after the second and a maximum at the fourth flash. In the presence of 100 μM hydroxylamine, the fluorescence response was low after the fourth and high again after the sixth flash, which confirmed the hypothesis that the flash effect was related to the so-called S-state of the electron transport pathway from water to Photosystem 2.

4. 4. The kinetics of the light-induced absorbance changes were the same at each wavelength, and, apart from the size of the deflection, they were independent of preillumination. Flash experiments indicated that the absorbance changes were a one-quantum reaction. This was also true for the fluorescence increase in dark-adapted chloroplasts, but with preilluminated chloroplasts several flashes were needed to approximately saturate the fluorescence yield.

5. 5. The results are discussed in terms of a mechanism involving two electron donors and two electron acceptors for System 2 of photosynthesis.

Abbreviations: DCMU, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea  相似文献   


12.
13.
P. Jursinic 《BBA》1981,635(1):38-52
The characteristics of double hitting in Photosystem II charge separation and oxygen evolution in algae and chloroplasts were investigated with saturating excitation flashes of 3 μs, 300 ns and 5 ns duration. Two types of double hitting or advancement in S-states were found to occur in oxygen evolution: a non-photochemical type found even with 5 ns flashes and a photochemical type seen only with microsecond-long flashes, which have extensive tails. The non-photochemical type, occurring with a probability of about 3%, is sensitive to the physiological condition of the sample, and is only present in algae or chloroplast samples that have been freshly prepared. In chloroplasts incubated with ferricyanide, a 3-fold increase in double advancement of S-states is observed with xenon-flash illumination but not with 300 ns or 5 ns laser illumination. However, double turnovers in Photosystem II reaction center charge separation are large with xenon flash or 300 ns laser illumination but not with 5 ns laser illumination. This indicates that quite different kinetic processes are involved in double advancement in S-states for oxygen evolution and double turnovers in charge separation. Various models of the Photosystem II reaction center are discussed. Also, based on experiments with chloroplasts incubated with ferricyanide, an unique solution to the oxygen S-state distribution in the dark suggested by Thibault (Thibault, P. (1978) C.R. Acad. Sci. Paris 287, 725–728) can be rejected.  相似文献   

14.
Stable light-induced absorbance changes in chloroplasts at −196 °C were measured across the visible spectrum from 370 to 730 nm in an effort to find previously undiscovered absorbance changes that could be related to the primary photochemical activity of Photosystem I or Photosystem II. A Photosystem I mediated absorbance increase of a band at 690 nm and a Photosystem II mediated absorbance increase of a band at 683 nm were found. The 690-nm change accompanied the oxidation of P700 and the 683-nm increase accompanied the reduction of C-550. No Soret band was detected for P700.

A specific effort was made to measure the difference spectrum for the photooxidation of P680 under conditions (chloroplasts frozen to −196 °C in the presence of ferricyanide) where a stable, Photosystem II mediated EPR signal, attributed to P680+ has been reported. The difference spectra, however, did not show that P680+ was stable at −196 °C under any conditions tested. Absorbance measurements induced by saturating flashes at −196 °C (in the presence or absence of ferricyanide) indicated that all of the P680+ formed by the flash was reduced in the dark either by a secondary electron donor or by a backreaction with the primary electron acceptor. We conclude that P680+ is not stable in the dark at −196 °C: if the normal secondary donor at −196 °C is oxidized by ferricyanide prior to freezing, P680+ will oxidize other substances.  相似文献   


15.
C.C. Schenck  B. Diner  P. Mathis  K. Satoh 《BBA》1982,680(2):216-227
Light excitation of chloroplasts at low temperature produces absorption changes (ΔA) with a large positive peak at 990 nm and a bleaching around 480 nm. ΔA at 990 nm rises with t12 = 0.6 ms at 20–77 K and remains largely stable. This signal is not observed when Photosystem II (PS II) photochemistry is blocked by reduction of the primary plastoquinone. It is observed also in purified PS II particles, in which case it could be shown that during a sequence of short flashes, the absorption at 990 nm rises in parallel with plastoquinone reduction measured at 320 nm. In chloroplasts the light-induced 990-nm ΔA at 77 K is increased under oxidizing conditions (addition of ferricyanide) and upon addition of 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene (ANT2p). At 21°C, flash excitation of chloroplasts or of PS II particles induces only a very small ΔA at 990 nm, even when this is measured with a 100-ns time resolution or when the material is preilluminated. In both materials, however, a large flash-induced ΔA takes place when various lipophilic anions are added. After a flash the signal rises in less than 100 μs and its decay varies with experimental conditions; the decay is strongly accelerated by benzidine. The difference spectrum measured in PS II particles includes a broad peak around 990 nm and a bleaching around 490 nm. These absorption changes are attributed to a carotenoid radical cation formed at the PS II reaction center. It is estimated that in the presence of lipophilic anions at room temperature, one cation can be formed by a single flash in 80% of the reaction centers. At cryogenic temperature approx. 8% of the PS II reaction centers can oxidize a carotenoid after a single flash.  相似文献   

16.
Bruce Diner 《BBA》1974,368(3):371-385
1. Spinach chloroplasts, but not whole Chlorella cells, show an acceleration of the Photosystem II turnover time when excited by non-saturating flashes (exciting 25 % of centers) or when excited by saturating flashes for 85–95 % inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Following dark adaptation, the turnover is accelerated after a non-saturating flash, preceded by none or several saturating flashes, and primarily after a first saturating flash for 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibition. A rapid phase (t12 approx. 0.75 s) is observed for the deactivation of State S2 in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.2. These accelerated relaxations suggest that centers of Photosystem II are interconnected at the level of the primary electron transfer and compete for primary oxidizing equivalents in a saturating flash. The model in best agreement with the experimental data consists of a paired interconnection of centers.3. Under the conditions mentioned above, an accelerated turnover may be observed following a flash for centers in S0, S1 or S2 prior to the flash. This acceleration is interpreted in terms of a shift of the rate-limiting steps of Photosystem II turnover from the acceptor to the donor side.  相似文献   

17.
Microwave induced transitions in zero magnetic field have been observed in the photoinduced triplet of chloroplasts treated with dithionite by monitoring changes in the intensity of the 735 nm fluorescence band at 2 degrees K. Similar results were obtained with chloroplasts treated with hydroxylamine plus 3-(3,4-dichlorophenyl)-1,1-dimethylurea and preillumination. The zero field parameters are D = 0.02794 +/- 0.00007 cm-1, E = 0.00382 +/- 0.00007 cm-1, i.e. equal to those of monomeric chlorophyll a to within the experimental error. The photoinduced triplet appears to be linked to Photosystem II. This indicates that the low temperatures 735 nm fluorescence band of chloroplasts is at least partly due to Photosystem II.  相似文献   

18.
19.
Triton-solubilized Photosystem I particles from spinach chloroplasts exhibit largely reversible P-700 absorption changes over the temperature range from 4.2 K to room temperature. For anaerobic samples treated with dithionite and neutral red at pH 10 and illuminated during cooling, a brief (1 microseconds) saturating flash produces absorption changes in the long wavelength region that decay in 0.95 +/- 0.2 ms from 4.2 to 50 K. Above 80 K a faster (100 +/- 30 microseconds) component dominates in the decay process, but this disappears again above about 180 K. The major decay at temperatures above 200 K occurs in about 1 ms. The difference spectrum of these absorption changes between 500 and 900 nm closely resembles that of P-700. Using ascorbate and 2.6-dichlorophenolindophenol as the reducing system with a sample of Photosystem I particles cooled in darkness to 4.2 K, a fully reversible signal is seen upon both the first and subsequent flashes. The decay time in this case is 0.9 +/- 0.3 ms.  相似文献   

20.
Steven W. McCauley  R. H. Ruby 《BBA》1981,638(2):268-274
We have studied the delayed fluorescence in spinach chloroplasts produced 0.5 ms after each of a pair of (sub)-microsecond flashes. We observe an increase in the delayed fluorescence from the second flash relative to that produced by the first. This increase is proportional to the product of the first and second flash irradiances, appearing as an I2 dependence if both flashes are increased together. The enhancement is observable at very weak flash levels (roughly 1 photon absorbed/100 PS II centers). If the irradiance of the first flash is increased, but the irradiance of the second held constant, the delayed fluorescence from the second flash is observed to increase, but then to saturate well below the first flash irradiance at which the delayed fluorescence from the first flash itself saturates. For most experiments, the dark time between flashes was 30 ms. If the dark time is varied, the enhancement changes, reaching a half-maximal value for a dark time of approx. 300 μs. The enhancement is stopped by hydroxylamine, but not by gramicidin, valinomycin, DCMU, or mild heating. These experiments are consistent with the notion that there are two different types of Photosystem II centers if we assume that only one type is responsible for the induction we see and has an optical cross-section about 4-times the size of the other type of center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号