首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of membrane potential in sonicated particles of an aerobic bacterium, Micrococcus lysodeikticus, and of pea chloroplasts has been demonstrated

To detect membrane potential, the responses of synthetic penetrating anions of phenyl dicarbaundecaborane (PCB), tetraphenyl boron and anilinonaphthalene-sulfonate (ANS) were studied. It was found that oxidation of NADH, succinate, malate, and lactate by oxygen in particles of M. lysodeikticus is coupled with anion uptake and ANS- fluorescence enhancement, the fact testifying to the formation of membrane potential (“plus” inside particles). Uncouplers, cyanide and heptyl-hydroxyquinoline N-oxide prevent and reverse respiration-induced anion responses. Cyanide-resistant oxygen uptake is not coupled with ion fluxes. Ion responses are inhibited by acceptors competing with oxygen for electrons, such as Q0, menadione, and also ferricyanide when malate or succinate (but not lactate) are oxidized. In cyanide-treated particles, reduction of ferricyanide by lactate, but not by malate, supports some anion transport. In contrast to respiration, ATP does not actuate ion fluxes in M. lysodeikticus particles competent in respiratory phosphorylation.

In sonicated particles of pea chloroplasts, light-induced anion uptake can be observed. Switching off light results in the efflux of anions accumulated on illumination. Again, ATP does not induce any anion response, although the system of photophosphorylation is active under the same conditions. It is concluded that formation of a membrane potential in particles of M. lysodeikticus and pea chloroplasts (plus inside) can be actuated by electron transfer but not ATP hydrolysis. The ineffectiveness of ATP seems to be a result of irreversibility, rather than damage, of the energy transfer chain; a property in which coupling mechanisms of M. lysodeikticus and chloroplasts differ from those of animal mitochondria and Rhodospirillum rubrum chromatophores.  相似文献   


2.
The fluorescent anion indicator 6-methoxy-N-(3-sulfopropyl)quinolinium was trapped in proteoliposomes reconstituted with purified 32-kDa uncoupling protein and used to detect GDP-sensitive uniports of Cl-, Br-, and I-. Transport of these halide anions was rapid and potential-dependent. F- and nitrate were found to inhibit Cl- uptake competitively, suggesting that these anions are also substrates for transport. This preparation also exhibited H+(OH-) transport, showing that the reconstituted uncoupling protein possesses both halide and H+ transport functions, as is observed in intact brown adipose tissue mitochondria. Cl- transport was inhibited to the residual level observed in liposomes without protein when GDP was present on both sides of the membrane. Cl- transport was inhibited by about 50% when GDP was present only on one side of the membrane. We infer that uncoupling protein reconstitutes into proteoliposomes with a 1:1 ratio of sidedness orientation. The Km values for Cl- uniport were 100 and 65 mM, respectively, in GDP-loaded and non-GDP-loaded vesicles. Participation of the inner membrane anion channel in the observed transport is rendered unlikely by the fact that this carrier is insensitive to GDP. A variety of additional experiments probing for inner membrane anion channel yielded uniformly negative results, confirming the absence of contamination by this protein. Our results therefore demonstrate that the uncoupling protein mediates anion translocation, a function previously reported as lacking in the reconstituted system.  相似文献   

3.
In phosphorylating submitochondrial particles, tetraphenylborate binds to the specific uncoupler binding site and inhibits oxidative phosphorylation, ATP-Pi exchange and ATP-driven reverse electron transport. In contrast, intact mitochondria are unaffected in uncoupler binding and energy transfer at the concentrations used in submitochondrial particles. The proton permeability of submitochondrial particles is only slightly increased (10–20%) at concentrations of tetraphenylborate which cause 50% uncoupling (4–8 μM). These results, and those obtained earlier with picrate, are consistent with a three-step mechanism of uncoupling which involves binding of uncoupler anions, protonation and dissociation of the resulting neutral uncoupler molecule.  相似文献   

4.
The effect of ATP/ADP-antiporter inhibitors on palmitate-induced uncoupling was studied in heart muscle mitochondria and inside-out submitochondrial particles. In both systems palmitate is found to decrease the respiration-generated membrane potential. In mitochondria, this effect is specifically abolished by carboxyatractylate (CAtr) a non-penetrating inhibitor of antiporter. In submitochondrial particles, CAtr does not abolish the palmitate-induced potential decrease. At the same time, bongkrekic acid, a penetrating inhibitor of the antiporter, suppresses the palmitate effect on the potential both in mitochondria and particles. Palmitoyl-CoA which is known to inhibit the antiporter in mitochondria as well as in particles decreases the palmitate uncoupling efficiency in both these systems. These data are in agreement with the hypothesis that the ATP/ADP-antiporter is involved in the action of free fatty acids as natural uncouplers of oxidative phosphorylation.  相似文献   

5.
Replacement of intracellular Cl- by impermeant anions, as well as treatment of insulinoma cells by the Cl- channel blocker, NPPB, leads to activation of ATP-dependent K+ (KATP) channels. Activation of KATP channels by C1- substitution is eliminated (i) when intracellular ATP is replaced by non-hydrolyzable ATP analogs, (ii) when the perfusion medium contains an ATP regenerating system, (iii) when the mitochondrial ATPase is blocked by oligomycin. Dinitrophenol and GDP have the same activating effects on KATP channels as NPPB or intracellular Cl- substitution. Our interpretation of the results is that NPPB and intracellular Cl- replacement produce an uncoupling of oxidative phosphorylation by acting on mitochondrial anion channels, which leads to rapid degradation of ATP and to activation of KATP channels. KATP channels are useful sensors of cytoplasmic ATP variations.  相似文献   

6.
Effect of an electrophilous inhibitor, chlorophenacyl, on energy-dependent functions of submitochondrial particles is studied. Chlorophenacyl at concentrations up to 1 mM is found practically not to affect the generation of membrane potential under NADH and succinate oxidation and ATP hydrolysis and to be a strong inhibitor of oxidative phosphorylation and reverse electron transport. The mechanism of the inhibition of energy-dependent functions of submitochondrial particles with chlorophenacyl is different from that of electron transport inhibitor, energy transport inhibitors and classical uncoupling agents--protonophors. The data obtained are suggested to be due to the existence of two ways of proton translocation in submitochondrial particle membrane, phosphorylating and non-phosphorylating, the effect of chlorophenacyl being directed on phosphorylating way only.  相似文献   

7.
Acridines were compared regarding their ability to be taken up by submitochondrial particles under energized conditions. pH dependence of uptake was explored, and it was found that acridines fell into three classes independently of their pKa value: acridines which are not taken up, acridines taken up at all pH values, and acridines taken up only at alkaline pH. Partition measurements between H2O and chloroform phase showed a similar pattern, and affinity for the organic phase seemed to parallel uptake. Acridines which are taken up by submitochondrial particles at acidic pH under energized conditions despite a high pKa value could also be extracted into chloroform at acidic pH, thus implying that the dye's uncharged form has a high affinity for the organic phase. By supplementing the aqueous medium with lipophilic anions, the dye may also be extracted in its charged form. The data support a mechanism for acridine uptake in which diffusion of the uncharged form across the membranes is an obligatory step. Some previously reported inhibitory anion effects on uptake may be explained by ion pair formation, which allows release of the accumulated charged form.  相似文献   

8.
A simple method for measuring the internal pH of chloroplasts during steady-state illuminations based on the stimulation of proton uptake by monofunctional amines was developed. Predictions of a mathematical derivation concerning the dependence of the stimulation on the amine concentration, the internal volume, the pK of the amine and the external pH have been verified experimentally. To circumvent uncoupling and swelling due to large internal accumulation of amines extrapolation of the stimulation to low amine concentrations was suggested and shown to lead to valid values. Alternatively, swelling could be largely reduced in a medium containing potassium aspartate and valinomycin.  相似文献   

9.
The interactions of long chain (greater than C7), alkyl compounds with tightly coupled, beef heart submitochondrial particles (SMP) have been investigated with respect to their effects upon respiratory chain-linked electron transfer and energy coupling capacity. Long chain alkyl alcohols, amines, free fatty acids, and methyl esters exhibit a general uncoupling effect, with stimulation of the succinate oxidase activity but inhibition of the NADH oxidase, in SMP. The degree of effectiveness is dependent on the nature of the functional group and the length of the alkyl chain. Submitochondrial particles depleted of F1 and the F1-inhibitor protein are similarly affected. Subsequent treatment with bovine serum albumin reverses the effects of free fatty acids and results in partial recovery of activity with alkyl amines, alcohols, and methyl esters. Differences between the effects of these alkyl compounds and those of sodium dodecyl sulfate, deoxycholate, palmitoyl carnitine, and palmitoyl CoA rule out detergent-like action as the explanation for these observations. These data suggest that specific lipophilic interactions with the membrane, modulated by the nature of the functional group, are responsible for the effects of these compounds on the energy transducing system of SMP. Analyses of the reduction kinetics of the cytochromes indicate that the sites of interaction of these compounds with the inner mitochondrial membrane are associated with the primary dehydrogenase of complex I and energy coupling site 2; alkyl amines possess an additional site of interaction in the region of complex III.  相似文献   

10.
H Rottenberg  C P Lee 《Biochemistry》1975,14(12):2675-2680
The fluorescence quenching of 9-aminoacridine (9AA) in suspension of beef heart EDTA submitochondrial particles was studied and was used to calculate the pH gradient between these particles and the medium. This pH gradient, which is energy dependent, is also dependent strongly on the presence of anion species in the medium. It is 2.2 pH units in acetate medium and can be as high as 3.6 units in the presence of other highly lyophilic anions. The anions tested were found to be effective in the following order: SCN- greater than I- greater than NO3- greater than Br- greater than Cl-. The validity of the deltapH calculations was confirmed by comparison with deltapH values calculated from NH4+ uptake. In contrast, calculations based on quinacrine (QA) fluorescence quenching under the same assumption used for 9AA did not agree with NH4+ measurements and show quantitative and in some cases even qualitative differences. Both carbonyl cyanide p-trifluoromethoxyphenylhydrazone and NH4+ decreased deltapH significantly. When the rate of electron transport is slow, i.e., with succinate as substrate or with NADH and low concentration of rotenone, very low concentration of nigericin (less than 20 ng/ml) decreased deltapH. Under these conditions, valinomycin antagonized the nigericin effect and restored deltapH to its original value. Upon increasing nigericin concentration (greater than 100 ng/ml) the valinomycin effect is gradually replaced by a slower response of further reduction of deltapH.  相似文献   

11.
Adenylyl imidodiphosphate (AMP-PNP), an analog of adenosine triphosphate (ATP), was found to be an effective inhibitor of adenine nucleotide translocation in rat liver mitochondria. Inhibition by AMP-PNP was shown to be competitive with ATP. Therefore, studies designed to evaluate the interaction of ATP with mitochondrial adenosine triphosphatase (ATPase) in the presence of AMP-PNP were carried out on submitochondrial particles which lack a membrane barrier between the enzyme and the test medium. The effect of AMP-PNP on the ATP-driven reversed electron transfer reaction in sonically prepared submitochondrial particles was further examined by using oligomycin to induce coupling. The ATPase of oligomycin treated particles did not show significantly different sensitivity to AMP-PNP. Submitochondrial particles which were sensitive to AMP-PNP were less efficient in driving energy-coupled reactions. Results from these studies indicate that uncoupling in mitochondria is not only due to a leaky membrane but may also result from an altered membrane-ATPase association.  相似文献   

12.
The effect of six long-chained aliphatic amines on 14CO2-reduction, electron transport and the 515 nm absorbance change and shrinkage in isolated intact and broken chloroplasts from spinach ( Spinacia oleracea L. cv. Weibulls Medania) was investigated. Five of the six investigated amines affected photosynthesis in intact chloroplasts by inhibiting 14CO2-reduction. In broken chloroplasts the same amines uncoupled electron transport. When added to intact chloroplasts the five amines induced a light-dependent oxygen uptake leading to (he formation of hydrogen peroxide. The oxygen uptake was not due to the amines acting as Mehler reactants. The mode of action, different from that of simple aliphatic amines, was an effect on membrane integrity, first affecting the membrane potential. At higher amine concentrations a more general effect on the ion conditions in the thylakoids was evident.  相似文献   

13.
In sodium-free buffer of low ionic strength, the uptake of chloride and sulfate in Vero cells was found to occur mainly by antiport which was very sensitive to inhibition by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid. Efflux of anions from the cells appeared to energize the uptake. While the uptake of Cl- occurred over a wide pH range, that of SO4(2-) showed a clear maximum at pH 6-7. The rate of efflux of 36Cl- and 35SO4(2-) was strongly increased by the presence of permeant anions in the efflux buffer. Preincubation of the cells at slightly alkaline pH strongly increased the rate of C1- efflux into buffers nominally free of permeant anions, as well as the efflux by exchange. This increase did not occur if the cells were depleted for ATP during the preincubation. Depolarization of the cells reduced the rate of efflux into buffers without permeant anions, indicating that the efflux is at least partly due to net, electrogenic, anion transport. The efflux by antiport was not affected by manipulations of the membrane potential, indicating electroneutral exchange. The uptake and efflux were increased to the same extent with increasing temperature, the activation energies were Ea = 25 kcal/mol of Cl- and Ea = 12 kcal/mol of SO4(2-). Similar anion antiport appears to occur in L, baby hamster kidney, and HeLa S3 cells.  相似文献   

14.
Isolated human neutrophils possess three distinct pathways by which Cl- crosses the plasma membrane of steady state cells: anion exchange, active transport, and electrodiffusion. The purpose of the present work was to investigate the selectivity of each of these separate processes with respect to other external halide ions. (a) The bulk of total anion movements represents transport through an electrically silent anion-exchange mechanism that is insensitive to disulfonic stilbenes, but which can be competitively inhibited by alpha-cyano-4-hydroxycinnamate (CHC; Ki approximately 0.3 mM). The affinity of the external translocation site of the carrier for each of the different anions was determined (i) from substrate competition between Cl- and either Br-, F-, or I-, (ii) from trans stimulation of 36Cl- efflux as a function of the external concentrations of these anions, (iii) from changes in the apparent Ki for CHC depending on the nature of the replacement anion in the bathing medium, and (iv) from activation of 82Br- and 125I- influxes by their respective ions. Each was bound and transported at roughly similar rates (Vmax values all 1.0-1.4 meq/liter cell water.min); the order of decreasing affinities is Cl- greater than Br- greater than F- greater than I- (true Km values of 5, 9, 23, and 44 mM, respectively). These anions undergo 1:1 countertransport for internal Cl-. (b) There is a minor component of total Cl- influx that constitutes an active inward transport system for the intracellular accumulation of Cl- [( Cl-]i approximately 80 meq/liter cell water), fourfold higher than expected for passive distribution. This uptake is sensitive to intracellular ATP depletion by 2-deoxy-D-glucose and can be inhibited by furosemide, ethacrynic acid, and CHC, which also blocks anion exchange. This active Cl- uptake process binds and transports other members of the halide series in the sequence Cl- greater than Br- greater than I- greater than F- (Km values of 5, 8, 15, and 41 mM, respectively). (c) Electrodiffusive fluxes are small. CHC-resistant 82Br- and 125I- influxes behave as passive leak fluxes through low-conductance ion channels: they are nonsaturable and strongly voltage dependent. These anions permeate the putative Cl- channel in the sequence I- greater than Br- greater than Cl- with relative permeability ratios of 2.2:1.4:1, respectively, where PCl approximately 5 X 10(-9) cm/s.  相似文献   

15.
1. The initial rapid phase of ATP hydrolysis by bovine heart submitochondrial particles or by soluble F1-ATPase is insensitive to anion activation (sulphite) or inhibition (azide). 2. The second slow phase of ATP hydrolysis is hyperbolically inhibited by azide (Ki approximately 10(-5) M); the inosine triphosphatase activity of submitochondrial particles or F1-ATPase is insensitive to azide or sulphite. 3. The rate of interconversion between rapid azide-insensitive and slow azide-sensitive phases of ATP hydrolysis does not depend on azide concentration, but strongly depends on ATP concentration. 4. Sulphite prevents the interconversion of the rapid initial phase of the reaction into the slower second phase, and also prevents and slowly reverses the inhibition by azide. 5. The presence of sulphite in the mixture when ADP reacts with ATPase of submitochondrial particles changes the pattern of the following activation process. 6. Azide blocks the activation of ATP-inhibited ATPase of submitochondrial particles by phosphoenolpyruvate and pyruvate kinase. 7. The results obtained suggest that the inhibiting effect of azide on mitochondrial ATPase is due to stabilization of inactive E*.ADP complex formed during ATP hydrolysis; the activation of ATPase by sulphite is also realized through the equilibrium between intermediate active E.ADP complex and inactive E*.ADP complex.  相似文献   

16.
Pick U  Zeelon O  Weiss M 《Plant physiology》1991,97(3):1226-1233
Amines at alkaline pH induce in cells of the halotolerant alga Dunaliella a transient stress that is manifested by a drop in ATP and an increase of cytoplasmic pH. As much as 300 millimolar NH4+ are taken up by the cells at pH 9. The uptake is not associated with gross changes in volume and is accompanied by K+ efflux. Most of the amine is not metabolized, and can be released by external acidification. Recovery of the cells from the amine-induced stress occurs within 30 to 60 minutes and is accompanied by massive swelling of vacuoles and by release of the fluorescent dye atebrin from these vacuoles, suggesting that amines are compartmentalized into acidic vacuoles. The time course of ammonia uptake into Dunaliella cells is biphasic—a rapid influx, associated with cytoplasmic alkalinization, followed by a temperature-dependent slow uptake phase, which is correlated with recovery of cellular ATP and cytoplasmic pH. The dependence of amine uptake on external pH indicates that it diffuses into the cells in the free amine form. Studies with lysed cell preparations, in which vacuoles become exposed but retain their capacity to accumulate amines, indicate that the permeability of the vacuolar membrane to amines is much higher than that of the plasma membrane. The results can be retionalized by assuming that the initial amine accumulation, which leads to rapid vacuolar alkalinization, activates metabolic reactions that further increase the capacity of the vacuoles to sequester most of the amine from the cytoplasm. The results indicate that acidic vacuoles in Dunaliella serve as a high-capacity buffering system for amines, and as a safeguard against cytoplasmic alkalinization and uncoupling of photosynthesis.  相似文献   

17.
The uptake of ethidium bromide by rat liver mitochondria and its effect on mitochondria, submitochondrial particles, and F1 were studied. Ethidium bromide inhibited the State 4-State 3 transition with glutamate or succinate as substrates. With glutamate, ethidium bromide did not affect State 4 respiration, but with succinate it induced maximal release of respiration. These effects appear to depend on the uptake and concentration of the dye within the mitochondrion. In submitochondrial particles, the aerobic oxidation of NADH is much more sensitive to ethidium bromide than that of succinate. Ethidium bromide partially inhibited the ATPase activity of submitochondrial particles and of a soluble F1 preparation. Ethidium bromide behaves as a lipophilic cation which is concentrated through an energy-dependent process within the mitochondria, producing its effects at different levels of mitochondrial function. The ability of mitochondria to concentrate ethidium bromide may be involved in the selectivity of the dye as a mitochondrial mutagen.  相似文献   

18.
Effect of anions on the ATPase activity of submitochondrial particles   总被引:1,自引:0,他引:1  
The effects of anions on the ATPase activity of submitochondrial particles from mouse liver cells were investigated. Thiocyanite decreased the ATP hydrolysis, acting as a competitive inhibitor with respect to sulfite. All the anions tested changed the ATPase activity noncompetitively towards Mg-ATP. The hydrolysis of CTP, GTP, ITP and UTP was insensitive to sulfite and thiocyanate. In the presence of Mn2+, Ca2+, Co2+, Zn2+ and Ba2+ an anion-dependent hydrolysis of ATP took place. It was assumed that the anions control the rate of the limiting step of the ATPase reaction, since sulfite and thiocyanate change the activation energy of ATP hydrolysis. The data obtained are discussed in terms of a previously proposed mechanism of the anions effect on the activity of mitochondrial ATPase.  相似文献   

19.
The accumulation of some organic anions in the space inaccessible to sucrose of rat liver mitochondria was measured. In untreated mitochondria anions were apparently concentrated from 1mm applied concentration by between five- and 22-fold, depending on their charge. After depletion of endogenous reserves either with uncoupling agent or with oligomycin uptakes were decreased. The accumulation of citrate was restored by combinations of a dicarboxylic acid (malate, succinate, maleate or meso-tartrate) and energy. The energy could either be provided by oxidation of a suitable dicarboxylic acid or from ascorbate in the presence of tetramethylphenylenediamine, or from ATP. The restoration of citrate uptake is not necessarily accompanied by a gain of K(+), but a cation- and energy-linked citrate uptake can be induced with valinomycin. When citrate is added to mitochondria in the presence of malate the latter is competitively displaced. The anion accumulation could arise from an internal energy-linked positive potential.  相似文献   

20.
Nicotinamide nucleotide transhydrogenase from bovine heart mitochondria was solubilized with cholate and partially purified by ammoniumsulphate fractionation and density gradient centrifugation. Compared to submitochondrial particles this preparation contained less than 10% of oligomycin-sensitive ATPase and cytochromes. When reconstituted with purified mitochondrial phosphatidylcholine, the enzyme catalyzed a reduction of NAD+ by NADPH that was stimulated by uncouplers and which showed a concomitent uncoupler-sensitive uptake of the lipophilic anion tetraphenylboron, indicating the generation of a membrane potential. It is concluded that transhydrogenase can energize the vesicles directly without the intervention of ATPase or cytochromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号