首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediated cell death. Ectopic expression of BiP in transgenic lines attenuated the leaf necrotic lesions that are caused by the ER stress inducer tunicamycin and also maintained shoot turgidity upon polyethylene glycol-induced dehydration. BiP-mediated attenuation of stress-induced cell death was confirmed by the decreased percentage of dead cell, the reduced induction of the senescence-associated marker gene GmCystP, and reduced DNA fragmentation in BiP-overexpressing lines. These phenotypes were accompanied by a delay in the induction of the cell death marker genes N-RICH PROTEIN-A (NRP-A), NRP-B, and GmNAC6, which are involved in transducing a cell death signal generated by ER stress and osmotic stress through the NRP-mediated signaling pathway. The prosurvival effect of BiP was associated with modulation of the ER stress- and osmotic stress-induced NRP-mediated cell death signaling, as determined in transgenic tobacco (Nicotiana tabacum) lines with enhanced (sense) and suppressed (antisense) BiP levels. Enhanced expression of BiP prevented NRP- and NAC6-mediated chlorosis and the appearance of senescence-associated markers, whereas silencing of endogenous BiP accelerated the onset of leaf senescence mediated by NRPs and GmNAC6. Collectively, these results implicate BiP as a negative regulator of the stress-induced NRP-mediated cell death response.  相似文献   

2.
The mammalian unfolded protein response (UPR) includes two major branches: one(s) specific to ER stress (Ire1/XBP-1 and ATF6-dependent), and one(s) shared by other cellular stresses (PERK/eIF-2alpha phosphorylation-dependent). Here, we demonstrate that the ER-localized protein Herp represents a second target, in addition to CHOP, that is dually regulated by both the shared and the ER stress-specific branches during UPR activation. For the first time, we are able to assess the contribution of each branch of the UPR in the induction of these targets. We demonstrate that activation of the shared branch of the UPR alone was sufficient to induce Herp and CHOP. ATF4 was not required during ER stress when both branches were used but did contribute significantly to their induction. Conversely, stresses that activated only the shared branch of the UPR were completely dependent on ATF4 for CHOP and Herp induction. Thus, the shared and the ER stress-specific branches of the UPR diverge to regulate two groups of targets, one that is ATF6 and Ire1/XBP-1-dependent, which includes BiP and XBP-1, and another that is eIF-2alpha kinase-dependent, which includes ATF4 and GADD34. The two branches also converge to maximally up-regulate targets like Herp and CHOP. Finally, our studies reveal that a PERK-dependent target other than ATF4 is contributing to the cross-talk between the two branches of the UPR that has previously been demonstrated.  相似文献   

3.
4.
5.
Cells respond to accumulation of misfolded proteins in the endoplasmic reticulum (ER) by activating the unfolded protein response (UPR) signaling pathway. The UPR restores ER homeostasis by degrading misfolded proteins, inhibiting translation, and increasing expression of chaperones that enhance ER protein folding capacity. Although ER stress and protein aggregation have been implicated in aging, the role of UPR signaling in regulating lifespan remains unknown. Here we show that deletion of several UPR target genes significantly increases replicative lifespan in yeast. This extended lifespan depends on a functional ER stress sensor protein, Ire1p, and is associated with constitutive activation of upstream UPR signaling. We applied ribosome profiling coupled with next generation sequencing to quantitatively examine translational changes associated with increased UPR activity and identified a set of stress response factors up-regulated in the long-lived mutants. Besides known UPR targets, we uncovered up-regulation of components of the cell wall and genes involved in cell wall biogenesis that confer resistance to multiple stresses. These findings demonstrate that the UPR is an important determinant of lifespan that governs ER stress and identify a signaling network that couples stress resistance to longevity.  相似文献   

6.
7.
未折叠蛋白在内质网(endoplasmic reticulum,ER)腔中累积造成ER应激,此时细胞启动未折叠蛋白响应(unfolded protein response,UPR)以恢复蛋白质稳态。目前已知有三种UPR感受器,即IRE1、PERK和ATF6,它们均为ER跨膜蛋白,在ER应激时被激活并启动下游UPR信号通路。虽然UPR感受器最早是在研究细胞如何应对ER应激时发现的,但它们如何感知ER应激至今未得到完满的回答。随着研究的深入,人们发现UPR的功能不仅限于维持蛋白质稳态,而UPR感受器也不是只对未折叠蛋白累积作出响应。本文对UPR的发现及其经典通路作一介绍,着重阐述目前已知的UPR感受器的激活机制,并就UPR和ER应激关系以及该领域存在的问题进行讨论。  相似文献   

8.
9.
10.
11.
ER stress contributes to ischemia-induced cardiomyocyte apoptosis   总被引:6,自引:0,他引:6  
Myocardial ischemia is a severe stress condition that leads to loss of cardiomyocytes. The cell loss is attributed to apoptosis, although the exact mechanisms involved are only partially defined, which limits therapeutic opportunities. Here, we show caspase activation and apoptosis in neonatal rat cardiomyocyte cultures subjected to simulated ischemia by serum, glucose, and oxygen deprivation (SGO). Caspase activation was preceded by endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR), detected by the induction of Grp78, induction and splicing of XBP1, and phosphorylation of eukaryotic initiation factor 2-alpha (eIF2alpha). At a later time the ER stress response switched from UPR and cytoprotective response to a pro-apoptotic response as demonstrated by the upregulation of CHOP and processing of pro-caspase-12. Thus, we provide evidence that the ER can generate and propagate apoptotic signals in response to ischemic stress and this pathway is therefore a novel target for prevention of ischemia-mediated cardiomyocyte loss.  相似文献   

12.
Continued exposure of endothelial cells to mechanical/shear stress elicits the unfolded protein response (UPR), which enhances intracellular homeostasis and protect cells against the accumulation of improperly folded proteins. Cells commit to apoptosis when subjected to continuous and high endoplasmic reticulum (ER) stress unless homeostasis is maintained. It is unknown how endothelial cells differentially regulate the UPR. Here we show that a novel Girdin family protein, Gipie (78 kDa glucose-regulated protein [GRP78]-interacting protein induced by ER stress), is expressed in endothelial cells, where it interacts with GRP78, a master regulator of the UPR. Gipie stabilizes the interaction between GRP78 and the ER stress sensor inositol-requiring protein 1 (IRE1) at the ER, leading to the attenuation of IRE1-induced c-Jun N-terminal kinase (JNK) activation. Gipie expression is induced upon ER stress and suppresses the IRE1-JNK pathway and ER stress-induced apoptosis. Furthermore we found that Gipie expression is up-regulated in the neointima of carotid arteries after balloon injury in a rat model that is known to result in the induction of the UPR. Thus our data indicate that Gipie/GRP78 interaction controls the IRE1-JNK signaling pathway. That interaction appears to protect endothelial cells against ER stress-induced apoptosis in pathological contexts such as atherosclerosis and vascular endothelial dysfunction.  相似文献   

13.
Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), an essential adaptive intracellular pathway that relieves the stress. Although the UPR is an evolutionarily conserved and beneficial pathway, its chronic activation contributes to the pathogenesis of a wide variety of human disorders. The fidelity of UPR activation must thus be tightly regulated to prevent inappropriate signaling. The nonsense-mediated RNA decay (NMD) pathway has long been known to function in RNA quality control, rapidly degrading aberrant mRNAs, and has been suggested to regulate subsets of normal mRNAs. Here, we report that the NMD pathway regulates the UPR. NMD increases the threshold for triggering the UPR in vitro and in vivo, thereby preventing UPR activation in response to normally innocuous levels of ER stress. NMD also promotes the timely termination of the UPR. We demonstrate that NMD directly targets the mRNAs encoding several UPR components, including the highly conserved UPR sensor, IRE1α, whose NMD-dependent degradation partly underpins this process. Our work not only sheds light on UPR regulation, but demonstrates the physiological relevance of NMD''s ability to regulate normal mRNAs.  相似文献   

14.
The unfolded protein response (UPR) regulates the protein-folding capacity of the endoplasmic reticulum (ER) according to cellular demand. In mammalian cells, three ER transmembrane components, IRE1, PERK, and ATF6, initiate distinct UPR signaling branches. We show that these UPR components display distinct sensitivities toward different forms of ER stress. ER stress induced by ER Ca2+ release in particular revealed fundamental differences in the properties of UPR signaling branches. Compared with the rapid response of both IRE1 and PERK to ER stress induced by thapsigargin, an ER Ca2+ ATPase inhibitor, the response of ATF6 was markedly delayed. These studies are the first side-by-side comparisons of UPR signaling branch activation and reveal intrinsic features of UPR stress sensor activation in response to alternate forms of ER stress. As such, they provide initial groundwork toward understanding how ER stress sensors can confer different responses and how optimal UPR responses are achieved in physiological settings.  相似文献   

15.
16.
17.
18.
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER overload, resulting in ER stress. To cope with ER stress, mammalian cells trigger a specific response known as the unfolded protein response (UPR). Although recent studies have indicated cross-talk between ER stress and oxidative stress, the mechanistic link is not fully understood. By using murine fibrosarcoma L929 cells, in which tumor necrosis factor (TNF) alpha induces accumulation of reactive oxygen species (ROS) and cell death, we show that TNFalpha induces the UPR in a ROS-dependent fashion. In contrast to TNFalpha, oxidative stresses by H2O2 or arsenite only induce eukaroytic initiation factor 2alpha phosphorylation, but not activation of PERK- or IRE1-dependent pathways, indicating the specificity of downstream signaling induced by various oxidative stresses. Conversely, the UPR induced by tunicamycin substantially suppresses TNFalpha-induced ROS accumulation and cell death by inhibiting reduction of cellular glutathione levels. Collectively, some, but not all, oxidative stresses induce the UPR, and pre-emptive UPR counteracts TNFalpha-induced ROS accumulation.  相似文献   

19.
The unfolded protein response (UPR) is a complex network of sensors and target genes that ensure efficient folding of secretory proteins in the endoplasmic reticulum (ER). UPR activation is mediated by three main sensors, which regulate the expression of hundreds of targets. UPR activation can result in outcomes ranging from enhanced cellular function to cell dysfunction and cell death. How this pathway causes such different outcomes is unknown. Fatty liver disease (steatosis) is associated with markers of UPR activation and robust UPR induction can cause steatosis; however, in other cases, UPR activation can protect against this disease. By assessing the magnitude of activation of UPR sensors and target genes in the liver of zebrafish larvae exposed to three commonly used ER stressors (tunicamycin, thapsigargin and Brefeldin A), we have identified distinct combinations of UPR sensors and targets (i.e. subclasses) activated by each stressor. We found that only the UPR subclass characterized by maximal induction of UPR target genes, which we term a stressed-UPR, induced steatosis. Principal component analysis demonstrated a significant positive association between UPR target gene induction and steatosis. The same principal component analysis showed significant correlation with steatosis in samples from patients with fatty liver disease. We demonstrate that an adaptive UPR induced by a short exposure to thapsigargin prior to challenging with tunicamycin reduced both the induction of a stressed UPR and steatosis incidence. We conclude that a stressed UPR causes steatosis and an adaptive UPR prevents it, demonstrating that this pathway plays dichotomous roles in fatty liver disease.KEY WORDS: Unfolded protein response, Steatosis, Zebrafish, Tunicamycin, Thapsigargin, ER stress, Fatty liver disease  相似文献   

20.
《Cellular signalling》2014,26(2):287-294
Apoptosis triggered by endoplasmic reticulum (ER) stress is associated with rapid attenuation of the IRE1α and ATF6 pathways but persistent activation of the PERK branch of the unfolded protein response (UPR) in cells. However, melanoma cells are largely resistant to ER stress-induced apoptosis, suggesting that the kinetics and durations of activation of the UPR pathways are deregulated in melanoma cells undergoing ER stress. We show here that the IRE1α and ATF6 pathways are sustained along with the PERK signaling in melanoma cells subjected to pharmacological ER stress, and that this is, at least in part, due to increased activation of the MEK/ERK pathway. In contrast to an initial increase followed by rapid reduction in activation of IRE1α and ATF6 signaling in control cells that were relatively sensitive to ER stress-induced apoptosis, activation of IRE1α and ATF6 by the pharmacological ER stress inducer tunicamycin (TM) or thapsigargin (TG) persisted in melanoma cells. On the other hand, the increase in PERK signaling lasted similarly in both types of cells. Sustained activation of IRE1α and ATF6 signaling played an important role in protecting melanoma cells from ER stress-induced apoptosis, as interruption of IRE1α or ATF6 rendered melanoma cells sensitive to apoptosis induced by TM or TG. Inhibition of MEK partially blocked IRE1α and ATF6 activation, suggesting that MEK/ERK signaling contributed to sustained activation of IRE1α and ATF6. Taken together, these results identify sustained activation of the IRE1α and ATF6 pathways of the UPR driven by the MEK/ERK pathway as an important protective mechanism against ER stress-induced apoptosis in melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号