首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial hemoglobins and flavohemoglobins share a common globin fold but differ otherwise in structural and functional aspects. The bases of these differences were investigated through kinetic studies on oxygen, carbon monoxide, and nitric oxide binding. The novel bacterial hemoglobins from Clostridium perfringens and Campylobacter jejuni and the flavohemoglobins from Bacillus subtilis and Salmonella enterica serovar Typhi have been analyzed. Examination of the biochemical and ligand binding properties of these proteins shows a clear distinction between the two groups. Flavohemoglobins show a much greater tendency to autoxidation compared to bacterial hemoglobins. The differences in affinity for oxygen, carbon monoxide, and nitric oxide between bacterial hemoglobins and flavohemoglobins are mainly due to differences in the association rate constants. The second-order rate constants for oxygen and carbon monoxide binding to bacterial hemoglobins are severalfold higher than those for flavohemoglobins. A similar trend is observed for NO association with the oxidized iron(III) form of the proteins. No major differences are observed among the values obtained for the dissociation rate constants for the two groups of bacterial proteins studied, and these constants are all rather similar to those for myoglobin. Taken together, our data suggest that differences exist between the mechanisms of ligand binding to bacterial hemoglobins and flavohemoglobins, suggesting different functions in the cell.  相似文献   

2.
The genome of the cold-adapted bacterium Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct monomeric hemoglobins exhibiting a 2/2 ??-helical fold. In the present work, one of these hemoglobins is studied by resonance Raman, electronic absorption and electronic paramagnetic resonance spectroscopies, kinetic measurements, and different bioinformatic approaches. It is the first cold-adapted bacterial hemoglobin to be characterized. The results indicate that this protein belongs to the 2/2 hemoglobin family, Group II, characterized by the presence of a tryptophanyl residue on the bottom of the heme distal pocket in position G8 and two tyrosyl residues (TyrCD1 and TyrB10). However, unlike other bacterial hemoglobins, the ferric state, in addition to the aquo hexacoordinated high-spin form, shows multiple hexacoordinated low-spin forms, where either TyrCD1 or TyrB10 can likely coordinate the iron. This is the first example in which both TyrCD1 and TyrB10 are proposed to be the residues that are alternatively involved in heme hexacoordination by endogenous ligands.  相似文献   

3.
Summary The striped seaperch,Embiotoca lateralis, is a viviparous teleost. The hemoglobins of adult and fetal seaperch are both tetrameric proteins which in their native state appear to be indistinguishable from one another by electrophoresis. However, differences in the subunit structure of maternal versus fetal seaperch hemoglobins can be detected by electrophoresis in urea with a reducing agent, amino acid analyses and peptide maps of the respective proteins. Furthermore, stripped adult and fetal hemoglobins have different oxygen binding affinities at all pH's tested between pH 6.8 and 8.0. Mid-gestation fetal hemoglobin has a higher oxygen affinity than late-gestation fetal hemoglobin which in turn has a higher affinity than that of the adult hemoglobin. All three stripped hemoglobins show a similar Bohr effect (=–0.9). These data suggest that a difference in oxygen affinities exists in vivo between the adult and fetal blood of the seaperchEmbiotoca lateralis and that it can be explained in part by the presence of a structurally unique fetal hemoglobin. This report is the first to provide evidence for a mechanism of maternal-fetal oxygen transfer in a teleost fish.Abbreviations A adult - LF late-gestation fetal - MF mid-gestation fetal (hemoglobins)  相似文献   

4.
Myoglobin was isolated from the radular muscle of the chitonLiolophura japonica, a primitive archigastropodic mollusc.Liolophura contains three monomeric myoglobins (I, II, and III), and the complete amino acid sequence of myoglobin I has been determined. It is composed of 145 amino acid residues, and the molecular mass was calculated to be 16,070 D. The E7 distal histidine, which is replaced by valine or glutamine in several molluscan globins, is conserved inLiolophura myoglobin. The autoxidation rate at physiological conditions indicated thatLiolophura oxymyoglobin is fairly stable when compared with other molluscan myoglobins. The amino acid sequence ofLiolophura myoglobin shows low homology (11–21%) with molluscan dimeric myoglobins and hemoglobins, but shows higher homology (26–29%) with monomeric myoglobins from the gastropodic molluscsAplysia, Dolabella, andBursatella. A phylogenetic tree was constructed from 19 molluscan globin sequences. The tree separated them into two distinct clusters, a cluster for muscle myoglobins and a cluster for erythrocyte or gill hemoglobins. The myoglobin cluster is divided further into two subclusters, corresponding to monomeric and dimeric myoglobins, respectively.Liolophura myoglobin was placed on the branch of monomeric myoglobin lineage, showing that it diverged earlier from other monomeric myoglobins. The hemoglobin cluster is also divided into two subclusters. One cluster contains homodimeric, heterodimeric, tetrameric, and didomain chains of erythrocyte hemoglobins of the blood clamsAnadara, Scapharca, andBarbatia. Of special interest is the other subcluster. It consists of three hemoglobin chains derived from the bacterial symbiont-harboring clamsCalyptogena andLucina, in which hemoglobins are supposed to play an important role in maintaining the symbiosis with sulfide bacteria.  相似文献   

5.
Astaxanthin has been widely used as a feed supplement in poultry and aquaculture industries. One challenge for astaxanthin production in bacteria is the low percentage of astaxanthin in the total carotenoids. An obligate methanotrophic bacterium Methylomonas sp. 16a was engineered to produce astaxanthin. Astaxanthin production appeared to be dramatically affected by oxygen availability. We examined whether astaxanthin production in Methylomonas could be improved by metabolic engineering through expression of bacterial hemoglobins. Three hemoglobin genes were identified in the genome of Methylomonas sp. 16a. Two of them, thbN1 and thbN2, belong to the family of group I truncated hemoglobins. The third one, thbO, belongs to the group II truncated hemoglobins. Heterologous expression of the truncated hemoglobins in Escherichia coli improved cell growth under microaerobic conditions by increasing final cell densities. Co-expression of the hemoglobin genes along with the crtWZ genes encoding astaxanthin synthesis enzymes in Methylomonas showed higher astaxanthin production than expression of the crtWZ genes alone on multicopy plasmids. The hemoglobins likely improved the activity of the oxygen-requiring CrtWZ enzymes for astaxanthin conversion. A plasmid-free production strain was constructed by integrating the thbN1–crtWZ cassette into the chromosome of an astaxanthin-producing Methylomonas strain. It showed higher astaxanthin production than the parent strain.  相似文献   

6.
Zhang  Huaiyuan  Kang  Xinxin  Wang  Ruixue  Xin  Feifei  Chang  Yufei  Zhang  Yingtong  Song  Yuanda 《Biotechnology letters》2022,44(4):595-604
Biotechnology Letters - Oxygen availability is a limiting factor for lipid biosynthesis in eukaryotic microorganisms. Two bacterial hemoglobins from Vitreoscilla sp. (VHb) and Shinorhizobium...  相似文献   

7.
Myoglobin was isolated from the radular muscle of the chitonLiolophura japonica, a primitive archigastropodic mollusc.Liolophura contains three monomeric myoglobins (I, II, and III), and the complete amino acid sequence of myoglobin I has been determined. It is composed of 145 amino acid residues, and the molecular mass was calculated to be 16,070 D. The E7 distal histidine, which is replaced by valine or glutamine in several molluscan globins, is conserved inLiolophura myoglobin. The autoxidation rate at physiological conditions indicated thatLiolophura oxymyoglobin is fairly stable when compared with other molluscan myoglobins. The amino acid sequence ofLiolophura myoglobin shows low homology (11–21%) with molluscan dimeric myoglobins and hemoglobins, but shows higher homology (26–29%) with monomeric myoglobins from the gastropodic molluscsAplysia, Dolabella, andBursatella. A phylogenetic tree was constructed from 19 molluscan globin sequences. The tree separated them into two distinct clusters, a cluster for muscle myoglobins and a cluster for erythrocyte or gill hemoglobins. The myoglobin cluster is divided further into two subclusters, corresponding to monomeric and dimeric myoglobins, respectively.Liolophura myoglobin was placed on the branch of monomeric myoglobin lineage, showing that it diverged earlier from other monomeric myoglobins. The hemoglobin cluster is also divided into two subclusters. One cluster contains homodimeric, heterodimeric, tetrameric, and didomain chains of erythrocyte hemoglobins of the blood clamsAnadara, Scapharca, andBarbatia. Of special interest is the other subcluster. It consists of three hemoglobin chains derived from the bacterial symbiont-harboring clamsCalyptogena andLucina, in which hemoglobins are supposed to play an important role in maintaining the symbiosis with sulfide bacteria.  相似文献   

8.
Three types of hemoglobins exist in higher plants, symbiotic, non-symbiotic, and truncated hemoglobins. Symbiotic (class II) hemoglobins play a role in oxygen supply to intracellular nitrogen-fixing symbionts in legume root nodules, and in one case ( Parasponia Sp.), a non-symbiotic (class I) hemoglobin has been recruited for this function. Here we report the induction of a host gene, dgtrHB1, encoding a truncated hemoglobin in Frankia-induced nodules of the actinorhizal plant Datisca glomerata. Induction takes place specifically in cells infected by the microsymbiont, prior to the onset of bacterial nitrogen fixation. A bacterial gene (Frankia trHBO) encoding a truncated hemoglobin with O (2)-binding kinetics suitable for the facilitation of O (2) diffusion ( ) is also expressed in symbiosis. Nodule oximetry confirms the presence of a molecule that binds oxygen reversibly in D. glomerata nodules, but indicates a low overall hemoglobin concentration suggesting a local function. Frankia trHbO is likely to be responsible for this activity. The function of the D. glomerata truncated hemoglobin is unknown; a possible role in nitric oxide detoxification is suggested.  相似文献   

9.
Plant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins have a lower oxygen affinity and they facilitate oxygen supply to developing tissues. Symbiotic hemoglobins in nodules have mostly evolved from class 2 hemoglobins. Class 3 hemoglobins are truncated and represent a clade with a very low similarity to class 1 and 2 hemoglobins. They may regulate oxygen delivery at high O2 concentrations. Depending on their physical properties, hemoglobins belong either to hexacoordinate non-symbiotic or pentacoordinate symbiotic groups. Plant hemoglobins are plausible targets for improving resistance to multiple stresses.  相似文献   

10.

Background

Globins occur in all three kingdoms of life: they can be classified into single-domain globins and chimeric globins. The latter comprise the flavohemoglobins with a C-terminal FAD-binding domain and the gene-regulating globin coupled sensors, with variable C-terminal domains. The single-domain globins encompass sequences related to chimeric globins and «truncated» hemoglobins with a 2-over-2 instead of the canonical 3-over-3 α-helical fold.

Results

A census of globins in 26 archaeal, 245 bacterial and 49 eukaryote genomes was carried out. Only ~25% of archaea have globins, including globin coupled sensors, related single domain globins and 2-over-2 globins. From one to seven globins per genome were found in ~65% of the bacterial genomes: the presence and number of globins are positively correlated with genome size. Globins appear to be mostly absent in Bacteroidetes/Chlorobi, Chlamydia, Lactobacillales, Mollicutes, Rickettsiales, Pastorellales and Spirochaetes. Single domain globins occur in metazoans and flavohemoglobins are found in fungi, diplomonads and mycetozoans. Although red algae have single domain globins, including 2-over-2 globins, the green algae and ciliates have only 2-over-2 globins. Plants have symbiotic and nonsymbiotic single domain hemoglobins and 2-over-2 hemoglobins. Over 90% of eukaryotes have globins: the nematode Caenorhabditis has the most putative globins, ~33. No globins occur in the parasitic, unicellular eukaryotes such as Encephalitozoon, Entamoeba, Plasmodium and Trypanosoma.

Conclusion

Although Bacteria have all three types of globins, Archaeado not have flavohemoglobins and Eukaryotes lack globin coupled sensors. Since the hemoglobins in organisms other than animals are enzymes or sensors, it is likely that the evolution of an oxygen transport function accompanied the emergence of multicellular animals.  相似文献   

11.
Several bird species add fresh fragments of plants which are rich in volatile secondary compounds to their nests. It has been suggested, although never tested, that birds use fresh plants to limit the growth of nest microorganisms. On Corsica, blue tits (Cyanistes caeruleus) incorporate fresh fragments of aromatic plants into their nests. These plants do not reduce infestation by nest ectoparasites, but have been shown to improve growth and condition of chicks at fledging. To understand the mechanisms underlying such benefits, we experimentally tested the effects of these plants on the bacteria living on blue tits. Aromatic plants significantly affected the structure of bacterial communities, in particular reducing bacterial richness on nestlings. In addition, in this population where there is a strong association between bacterial density and infestation by blood-sucking Protocalliphora blow fly larvae, these plants reduced bacterial density on the most infested chicks. Aromatic plants had no significant effect on the bacteria living on adult blue tits. This study provides the first evidence that fresh plants brought to the nests by adult birds limit bacterial richness and density on their chicks.  相似文献   

12.
Hemoglobins are ubiquitous in nature and among the best-characterized proteins. Genetics has revealed crucial roles for human hemoglobins, but similar data are lacking for plants. Plants contain symbiotic and nonsymbiotic hemoglobins; the former are thought to be important for symbiotic nitrogen fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins accumulate to millimolar concentrations in the cytoplasm of infected plant cells prior to nitrogen fixation and are thought to buffer free oxygen in the nanomolar range, avoiding inactivation of oxygen-labile nitrogenase while maintaining high oxygen flux for respiration. Although widely accepted, this hypothesis has never been tested in planta. Using RNAi, we abolished symbiotic leghemoglobin synthesis in nodules of the model legume Lotus japonicus. This caused an increase in nodule free oxygen, a decrease in the ATP/ADP ratio, loss of bacterial nitrogenase protein, and absence of SNF. However, LbRNAi plants grew normally when fertilized with mineral nitrogen. These data indicate roles for leghemoglobins in oxygen transport and buffering and prove for the first time that plant hemoglobins are crucial for symbiotic nitrogen fixation.  相似文献   

13.
Summary In order to study the cellular distribution of larval and adult hemoglobins during larval development ofPleurodeles waltlii a double specific immunofluorescent labelling technique was developed.Rabbit antibodies specific for larval and adult hemoglobin components were prepared and conjugated with tetramethyl-rhodamine isothiocyanate for the anti-larval antibodies and fluorescein isothiocyanate for the anti-adult hemoglobin antibodies.Both simultaneous and sequential staining with the two types of fluorescent antibodies indicated that larval and adult hemoglobins were never observed within the same erythrocyte during development. The results provide evidence that two distinct cell populations exist, one synthesizing exclusively larval hemoglobins which is progressively replaced by the other one synthesizing exclusively adult hemoglobins. It remains to be determined if these two populations arise from two distinct types of stem cells (adult and larval) or from the same stem cell type.  相似文献   

14.
Lytic bacteriophages and protozoan predators are the major causes of bacterial mortality in natural microbial communities, which also makes them potential candidates for biological control of bacterial pathogens. However, little is known about the relative impact of bacteriophages and protozoa on the dynamics of bacterial biomass in aqueous and biofilm phases. Here, we studied the temporal and spatial dynamics of bacterial biomass in a microcosm experiment where opportunistic pathogenic bacteria Serratia marcescens was exposed to particle‐feeding ciliates, surface‐feeding amoebas, and lytic bacteriophages for 8 weeks, ca. 1300 generations. We found that ciliates were the most efficient enemy type in reducing bacterial biomass in the open water, but least efficient in reducing the biofilm biomass. Biofilm was rather resistant against bacterivores, but amoebae had a significant long‐term negative effect on bacterial biomass both in the open‐water phase and biofilm. Bacteriophages had only a minor long‐term effect on bacterial biomass in open‐water and biofilm phases. However, separate short‐term experiments with the ancestral bacteriophages and bacteria revealed that bacteriophages crash the bacterial biomass dramatically in the open‐water phase within the first 24 h. Thereafter, the bacteria evolve phage‐resistance that largely prevents top‐down effects. The combination of all three enemy types was most effective in reducing biofilm biomass, whereas in the open‐water phase the ciliates dominated the trophic effects. Our results highlight the importance of enemy feeding mode on determining the spatial distribution and abundance of bacterial biomass. Moreover, the enemy type can be crucially important predictor of whether the rapid defense evolution can significantly affect top‐down regulation of bacteria.  相似文献   

15.
Wainwright LM  Wang Y  Park SF  Yeh SR  Poole RK 《Biochemistry》2006,45(19):6003-6011
Campylobacter jejuni is a food-borne bacterial pathogen that possesses two distinct hemoglobins, encoded by the ctb and cgb genes. The former codes for a truncated hemoglobin (Ctb) in group III, an assemblage of uncharacterized globins in diverse clinically and technologically significant bacteria. Here, we show that Ctb purifies as a monomeric, predominantly oxygenated species. Optical spectra of ferric, ferrous, O(2)- and CO-bound forms resemble those of other hemoglobins. However, resonance Raman analysis shows Ctb to have an atypical nu(Fe)(-)(CO) stretching mode at 514 cm(-)(1), compared to those of the other truncated hemoglobins that have been characterized so far. This implies unique roles in ligand stabilization for TyrB10, HisE7, and TrpG8, residues highly conserved within group III truncated hemoglobins. Because C. jejuni is a microaerophile, and a ctb mutant exhibits O(2)-dependent growth defects, one of the hypothesized roles of Ctb is in the detoxification, sequestration, or transfer of O(2). The midpoint potential (E(h)) of Ctb was found to be -33 mV, but no evidence was obtained in vitro to support the hypothesis that Ctb is reducible by NADH or NADPH. This truncated hemoglobin may function in the facilitation of O(2) transfer to one of the terminal oxidases of C. jejuni or, instead, facilitate O(2) transfer to Cgb for NO detoxification.  相似文献   

16.
Many heme proteins undergo covalent attachment of the heme group to a protein side chain. Such posttranslational modifications alter the thermodynamic and chemical properties of the holoprotein. Their importance in biological processes makes them attractive targets for mechanistic studies. We have proposed a reductively driven mechanism for the covalent heme attachment in the monomeric hemoglobins produced by the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 (GlbN) (Nothnagel et al. in J Biol Inorg Chem 16:539–552, 2011). These GlbNs coordinate the heme iron with two axial histidines, a feature that distinguishes them from most hemoglobins and conditions their redox properties. Here, we uncovered evidence for an electron exchange chain reaction leading to complete heme modification upon substoichiometric reduction of GlbN prepared in the ferric state. The GlbN electron self-exchange rate constants measured by NMR spectroscopy were on the order of 102–103 M−1 s−1 and were consistent with the proposed autocatalytic process. NMR data on ferrous and ferric Synechococcus GlbN in solution indicated little dependence of the structure on the redox state of the iron or cross-link status of the heme group. This allowed the determination of lower bounds to the cross-exchange rate constants according to Marcus theory. The observations illustrate the ability of bishistidine hemoglobins to undergo facile interprotein electron transfer and the chemical relevance of such transfer for covalent heme attachment.  相似文献   

17.
Binding of triethyltin to the cat hemoglobins (HbA and HbB) results in the “masking” of two of the freely reactive sulfhydryl groups (SH) within the hemoglobin tetramer. That the “masked” SH groups occur in position 13α of each α-subunit was demonstrated by the lack of labeling of cysteine 13α with [14C]N-ethylmaleimide when triethyltin is present. Studies with cat-human hybrid hemoglobins indicate that the α-subunit of the cat hemoglobins alone is involved in the formation of a complex with triethyltin. Using available data on the primary as well as three dimensional structures of animal hemoglobins, it is suggested the cysteine 13α and histidine 20α serve as axial ligands in the formation of a pentacoordinate triethyltin cat hemoglobin complex. The binding of triethyltin results in an increase in the oxygen affinity of the two cat hemoglobins.  相似文献   

18.
Tertiary structures of proteins are conserved better than their primary structures during evolution. Quaternary structures or subunit organizations, however, are not always conserved. A typical case is found in hemoglobin family. Although human, Scapharca, and Urechis have tetrameric hemoglobins, their subunit contacts are completely different from each other. We report here that only one or two amino acid replacements are enough to create a new contact between subunits. Such a small number of chance replacements is expected during the evolution of hemoglobins. This result explains why different modes of subunit interaction evolved in animal hemoglobins. In contrast, certain interactions between subunits are necessary for cooperative oxygen binding. Cooperative oxygen binding is observed often in dimeric and tetrameric hemoglobins. Conformational change of a subunit induced by the first oxygen binding to the heme group is transmitted through the subunit contacts and increases the affinity of the second oxygen. The tetrameric hemoglobins from humans and Scapharca have cooperativity in spite of their different modes of subunit contact, but the one from Urechis does not. The relationship between cooperativity and the mode of subunit contacts is not clear. We compared the atomic interactions at the subunit contact surface of cooperative and non-cooperative tetrameric hemoglobins. We show that heme-contact modules M3–M6 play a key role in the subunit contacts responsible for cooperativity. A module was defined as a contiguous peptide segment having compact conformation and its average length is about 15 amino acid residues. We show that the cooperative hemoglobins have interactins involving at least two pairs of modules among the four heme-contact modules at subunit contact. Received: 12 January 2001 / Accepted: 3 April 2001  相似文献   

19.
The proximal parts of the promoters of the genes for symbiotic-type hemoglobins are generally conserved, but the promoter of the lbI gene of lupine (LulbI) shows some unusual structural features. It lacks typical organ-specific elements characteristic of all the leghemoglobin gene promoters described thus far. We have analysed its functional activity in transgenic Lotus corniculatus. A fusion construct between the lbI promoter and the GUS reporter gene was expressed mainly in the central zone of the root nodule, but the product was also detected in the non-nodule root zone and in roots in tissue culture. In roots of transgenic tobacco, the activity of the promoter was only 24% lower than in Lotus nodules. LulbI promoter activity was also detected in tobacco leaves. Lupine hemoglobin I has a higher sequence identity to symbiotic-type hemoglobins and thus it groups within the “Class II” hemoglobins.  相似文献   

20.
Major hemoglobins of adult Papio cynocephalus, P. gelada, and P. hamadryas and of newborn P. cynocephalus were purified; globins were prepared; and α and β or α and γ chains were separated. The amino acid compositions and aminoterminal groups were determined. These were compared with analogous data for human hemoglobins, other baboon hemoglobins and macaque hemoglobins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号