首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
Origin of the sarcosine molecules of actinomycins   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Streptomyces V–187 produces on minimal medium a mixture composed mainly of actinomycin C1 (actinomycin D) and actinomycin A1 (actinomycin I). If sarcosine is added to the medium, the micro-organism produces, in addition to actinomycins C1 and A1, actinomycin F8 (actinomycin II) and actinomycin F9 (actinomycin (III), characterized by the substitution by sarcosine of one or both the proline molecules present in actinomycin C1. 2. Exogenous sarcosine seems to be incorporated as such by Streptomyces V–187 only in the sarcosine molecule(s) that replace proline in the actinomycins of the F group, whereas, for the synthesis of the other sarcosine molecules, the amino acid is first demethylated to glycine. 3. The incorporation of sarcosine and glycine into actinomycin by Streptomyces antibioticus appears to follow a similar pattern, except that a portion of the methyl group produced in the degradation of sarcosine is utilized as a source of the methyl groups of the antibiotic. This explains the previously reported lack of cross-dilution between glycine and sarcosine observed in the incorporation of these amino acids into actinomycin.  相似文献   

2.
3.
Actinomycin synthesis by washed mycelia of Streptomyces antibioticus has been conducted in the presence of 3-hydroxy-4-methylanthranilate-(carboxyl-14C). Incorporation of this compound into actinomycins has been observed, which constitutes further evidence that 3-hydroxy-4-methylanthranilate is an intermediate in actinomycin biosynthesis. The position of the incorporated label has been determined to be within the actinomycin chromophore, and the label appears to be equally distributed between both halves of the chromophore. Incidental to these findings was the observation that the 14C-labeled actinomycins were subject to rapid reabsorption by the organism with actinomycin V taken up preferentially to actinomycin IV.  相似文献   

4.
The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize de novo and accumulate β-glutamine, N-acetyl-β-lysine, and glycine betaine (betaine) as compatible solutes (osmolytes) when grown at elevated salt concentrations. Both in vivo and in vitro betaine formation assays in this study confirmed previous nuclear magnetic resonance 13C-labelling studies showing that the de novo synthesis of betaine proceeded from glycine, sarcosine, and dimethylglycine to form betaine through threefold methylation. Exogenous sarcosine (1 mM) effectively suppressed the intracellular accumulation of betaine, and a higher level of sarcosine accumulation was accompanied by a lower level of betaine synthesis. Exogenous dimethylglycine has an effect similar to that of betaine addition, which increased the intracellular pool of betaine and suppressed the levels of N-acetyl-β-lysine and β-glutamine. Both in vivo and in vitro betaine formation assays with glycine as the substrate showed only sarcosine and betaine, but no dimethylglycine. Dimethylglycine was detected only when it was added as a substrate in in vitro assays. A high level of potassium (400 mM and above) was necessary for betaine formation in vitro. Interestingly, no methylamines were detected without the addition of KCl. Also, high levels of NaCl and LiCl (800 mM) favored sarcosine accumulation, while a lower level (400 mM) favored betaine synthesis. The above observations indicate that a high sarcosine level suppressed multiple methylation while dimethylglycine was rapidly converted to betaine. Also, high levels of potassium led to greater amounts of betaine, while lower levels of potassium led to greater amounts of sarcosine. This finding suggests that the intracellular levels of both sarcosine and potassium are associated with the regulation of betaine synthesis in M. portucalensis.  相似文献   

5.
Actinomycins II and III, containing sarcosine residues in two adjacent sites of their peptide moieties were produced by Streptomyces antibioticus in the presence of exogenous sarcosine labeled with deuterium in the N-methyl group. Combined gas chromatography-mass spectrometry of the cyclodipeptides derived by thermal degradation of these actinomycins demonstrated specific incorporation of the labeled sarcosine into the 3-site, implicating some other biosynthetic precursor, presumably glycine, for the sarcosine in the 4-site. The same conclusion emerged from proton nuclear magnetic resonance spectroscopy of these deuterium-labeled actinomycins.  相似文献   

6.
7.
In rat liver mitochondria, swollen with phosphate and supplemented with NAD+, the oxidation of the methyl carbon of sarcosine to formate is enhanced by the addition of NADP+. No carbon dioxide is formed. Formaldehyde and serine, which are the only oxidation products of the methyl group in the absence of the pyridine nucleotides, are decreased by an amount equal to the formate produced. Carbon dioxide, as well as formate, is produced when the mitochondria are treated with EDTA, even without the addition of the pyridine nucleotides. When the mitochondria are exposed to pyrophosphate without added NAD+ and/or NADP+, all of the oxidized sarcosine-methyl can be recovered as formate, [3-C]serine, and carbon dioxide. Formaldehyde accumulates only if the system is supplemented with Mg2+. In the presence of NADP+ or the combined pyridine nucleotides, serine accumulation is depressed by an amount equal to the increase in carbon dioxide production. Both carbons of glycine and the 3-C of serine can also be oxidized to carbon dioxide in the pyrophosphate-treated mitochondria. The oxidation of the methyl carbon of S-adenosylmethionine to formaldehyde, [3-C]serine, formate, and carbon dioxide requires a whole homogenate supplemented with glycine. Neither exogenous formaldehyde nor formate is oxidized to carbon dioxide in any of the mitochondrial systems capable of converting sarcosine-methyl to carbon dioxide. Under conditions in which [N5,N10-14C-methylene]- and [N10-14C-formyl]tetrahydrofolate can be isolated as intermediate products of [14CH3]sarcosine, exogenous [N5,N10-14C-methylene]tetrahydrofolate can also be converted to [3-14C]serine, [14C]formate, and [14C]carbon dioxide.  相似文献   

8.
Protoplasts of Saccharomyces strain 1016 took up [3H]glucosamine in the presence of an energy source; mannose was chosen to minimize randomization. It accumulated in the soluble intracellular pool primarily as UDP-N-acetyl[3H]glucosamine along with a small amount of [3H]glucosamine 6-phosphate. The antibiotic tunicamycin (TM) at 10 μg/ml did not affect the levels of these metabolites or inhibit the formation of the Nacetylglucosamine polymer, chitin, but did prevent the incorporation of [3H]glucosamine into mannan peptides and the synthesis of invertase. In vitro incorporation of [14C]mannose from GDP-[14C]mannose into mannan in a membrane preparation was not sensitive to 100 μg of TM/ml. TM appears to inhibit an N-acetylglucosaminyl transferase essential for glycoprotein biosynthesis. Binding of [3H]TM reflects its association with the plasma membrane fraction. This material could be recovered in an unaltered form by extraction with chloroform/methanol. If 0.2% phosphatidyl choline or phosphatidyl serine was added simultaneously with the [3H]TM, the binding of [3H]TM was greatly reduced, and the inhibitory effects of TM on protoplasts were prevented; however, addition of phospholipid 20 min later did not eliminate the inhibition, although about 80% of the bound [3H]TM was removed. TM interacts with lipophilic membrane components as well as inhibiting glycoprotein synthesis.  相似文献   

9.
Abe S  Takeda J 《Plant physiology》1988,87(2):389-394
When dielectrophoresis and electrofusion of barley (Hordeum vulgare var Moor) leaf protoplasts were assayed in the presence of 0.1 to 1 millimolar lanthanum ion (La3+) in the basal medium (0.7 molar mannitol, 1 millimolar piperazine-N, N-bis[2-ethanesulfonic acid]-Na [pH 6.7], 0.1 millimolar CaCl2), dielectrophoresis and induction of electrofusion were strongly inhibited. The latter remained inhibited and the former recovered by about 60% after washing the La3+ -treated protoplasts without EDTA. These inhibitions were almost completely abolished by washing the La3+ -treated protoplasts with 1 millimolar EDTA. Inductively coupled plasma atomic emission spectroscopic analysis revealed that protoplasts retained a considerable amount of La3+ after washing without EDTA and released most of the bound La3+ by washing with 1 millimolar EDTA. This tightly bound La3+ seemed responsible for the inhibition of electrofusion and dielectrophoresis that was observed in the La3+ -treated protoplasts after washing. ζ-potentials of protoplasts were -39.0±3.2 millivolts, -16.7 ± 2.6 millivolts, and virtually zero in media containing 0, 0.1, and 0.3 millimolar La3+ (I = 7.2 millimolar), respectively, and had a positive value (+ 14.2 ± 2.2 millivolts) in the presence of 1 millimolar La3+. These effects of La3+ on ζ-potentials were easily abolished by washing without EDTA. This indicates that charged species located at the surface of plasma membrane of protoplasts cannot account for the sites at which La3+ exerts its inhibition of dielectrophoresis and electrofusion. In contrast, the promotion of spherical fusion and the reduction of broken fusion products observed in the presence of La3+ were almost completely abolished by washing without EDTA. Our results also indicate that the initial induction and development of electrofusion can be studied independently.  相似文献   

10.
After exposing a line of rat liver epithelial cells to a single dose of the carcinogen N-acetoxy-2-acetylaminofluorene (N-acetoxy-AAF), a dose-dependent decrease in [3H]uridine incorporation into total cellular RNA was found. Approx. 50% inhibition occurred with 0.5 μg/ml of the compound. The kinetics of the response, the effects of actinomycin D, and the fractionation of the newly synthesized RNA by polyacrylamide gel electrophoresis indicated preferential inhibition of the synthesis of 45S ribosomal RNA precursor and a relative sparing of the synthesis of heterogeneous nuclear RNA.  相似文献   

11.
Intact vacuoles were isolated from petals of Hippeastrum and Tulipa (Wagner G.J. and Siegelman, H.W. (1975) Science 190, (1298–1299). The ATPase activity of fresh vacuole suspensions was found to be 2–3 times that of protoplasts from the same tissue. 70–80% of the ATPase activity of intact vacuoles was recovered in tonoplast preparations. The antibiotic Dio-9 at 6 μg/106 vacuoles or protoplasts causes 40% inhibition. However, only the protoplast ATPase is sensitive to oligomycin. N,N′-dicyclohexylcarbodiimide (DCCD) slightly stimulates ATPase activity in both vacuole and protoplast suspensions, whereas ethyl-3-(3-dimethylaminopropyl carbodiimide) (EDAC) strongly inhibits.Spectrophotometric studies show that in the petal the vacuolar contents have a pH of 4.0 for Tulipa and 4.3 for Hippeastrum, whereas the intact isolated vacuole has an internal pH of 7.0 (in pH 8.0 buffer) for Tulipa and about 7.3 for Hippeastrum. Internal ion concentrations of 150, 46, 30, 30 and 6 mM were found for K+, Na+, Mg2+, Cl?, and Ca2+ respectively, which are about the same as those in protoplasts.  相似文献   

12.
An improved analytical method, based on high pressure liquid chromatography, has been developed for the simultaneous determination of the polyamines and S-adenosyl-containing compounds in extracts of plant protoplasts. The method involves simple procedures for sample preparation and permits quantification of 1 picomole or less for all the compounds. This method has been used to study the effects of dicyclohexylamine, an inhibitor of plant spermidine synthase (Sindhu, R. K., S. S. Cohen 1984 Plant Physiol 74: 645-649), on biosynthesis of polyamines and 1-aminocyclopropane-1-carboxylate in protoplasts derived from Chinese cabbage leaves. Dicyclohexylamine effectively inhibits spermidine synthase in vivo. Inhibition of the synthesis of spermidine by dicyclohexylamine resulted in a stimulation of spermine synthesis, without significant effect on the synthesis of 1-aminocyclopropane-1-carboxylate. Decarboxylated S-adenosylmethionine is present in control Chinese cabbage protoplasts at ~10−18 moles per cell, and dicyclohexylamine caused an increase of this metabolite of up to 10-fold in a 4-hour period. The increase in decarboxylated S-adenosylmethionine permitted an increased synthesis of spermine. These findings suggest that the availability of decarboxylated S-adenosylmethionine may be rate-limiting for the synthesis of spermine in plant protoplasts.  相似文献   

13.
Solid-state NMR has been used to examine the binding of N′-4-[(4-fluorophenyl)benzyl)]chloroeremomycin, a fluorinated analogue of oritavancin, to isolated protoplast membranes and whole-cell sucrose-stabilized protoplasts of Staphylococcus aureus, grown in media containing [1-13C]glycine and l-[?-15N]lysine. Rotational-echo double-resonance NMR was used to characterize the binding by estimating internuclear distances from 19F of oritavancin to 13C and 15N labels of the membrane-associated peptidoglycan and to the 31P of the phospholipid bilayer of the membrane. In isolated protoplast membranes, both with and without 1 M sucrose added to the buffer, the nascent peptidoglycan was extended away from the membrane surface and the oritavancin hydrophobic side chain was buried deep in the exposed lipid bilayer. However, there was no N′-4-[(4-fluorophenyl)benzyl)]chloroeremomycin binding to intact sucrose-stabilized protoplasts, even though the drug bound normally to the cell walls of whole cells of S. aureus in the presence of 1 M sucrose. As shown by the proximity of peptidoglycan-bridge 13C labels to phosphate 31P, the nascent peptidoglycan of the intact protoplasts was confined to the membrane surface.  相似文献   

14.
15.
Germination of microcysts of Polysphondylium pallidum is characterized by an immediate rapid increase in incorporation of [3H]leucine into protein which is cycloheximide-sensitive but unaffected by actinomycin D. Significant RNA synthesis, as measured by [3H]uridine incorporation, does not begin until approx. 2 h after the onset of germination. The increase in [3H]uridine incorporation is prevented by actinomycin D. Germination and the increase in alkaline phosphatase and β-glucosidase enzyme activities are prevented by cycloheximide but unaffected by actinomycin D. The data strongly imply the presence of stable RNA in dormant microcysts and indicate a requirement for a discrete period of protein synthesis for germination of microcysts of P. pallidum.  相似文献   

16.
The presence of auxin (2,4-D), in the culture medium of tobacco (Nicotiana tabacum var Maryland) mesophyll protoplasts is necessary both for cell wall regeneration and for passage of the cells from phase G0 to phase G1 of the cell cycle. Among about 250 proteins synthesized by protoplasts and characterized by their migration in a two-dimensional electrophoresis gel, 2,4-dichlorophenoxyacetic acid affects the synthesis of 11.

Nine proteins are synthesized at a reduced level in the presence of the hormone, of which three are rapidly labeled and short-lived, while the others, which are long-lived, become detectable only after 2 hours of radioactive labeling, suggesting that they undergo slow posttranslational maturation. These nine proteins are proline-rich but the proline radicals are not strongly hydroxylated. The synthesis of these proteins is no longer inhibited by auxin if dichlorobenzonitril, a weed-killer which inhibits cell wall reformation of tobacco protoplasts, is added to the culture medium.

Two proteins are only synthesized if protoplasts are cultivated in an auxin-containing medium. These polypeptides are rapidly labeled, and are long-lived. The inhibition of cell wall reformation by dichlorobenzonitril does not modify their synthesis.

These results suggest that proteins whose synthesis is reduced by auxin are related to cell wall reformation and that they do not play a role in the induction of the cell cycle. In contrast, proteins whose synthesis is stimulated in the presence of auxin are good candidates for a role in the induction of the cell cycle.

  相似文献   

17.
A high yield and rapid synthesis of enantiomerically pure N α -protected amino/peptide acid arylamides using n-propylphosphonic anhydride (T3P) in presence of N-methylmorpholine is described. The generality of the reaction has been studied for various N α -protected amino acids with diverse range of aromatic amines and coumarin derivatives.  相似文献   

18.
19.
The enzymes catalyzing the conversion of phosphatidylethanolamine to phosphatidylcholine were assayed by measuring the incorporation of label from [14C-CH3]-S-adenosyl-methionine into the endogenous phospholipids of particulate, cell-free preparations from S. cerevisiae grown in the presence of N-methylethanolamine, N,N-dimethylethanolamine, or choline. The results indicate that each base in the growth medium results in reduced levels of all the N-methyltransferase activity involved in the formation of the phosphatidyl ester of the given base. By following the conversion of exogenous [32P]-phosphatidyldimethylethanolamine to [32P]-phosphatidylcholine it has been shown that the activity of the third methyl transfer is 90% lower in particles prepared from choline grown cells than in particles prepared from cells grown without choline. The results suggest that there are at least two enzymes involved in the conversion of phosphatidylethanolamine to phosphatidylcholine and that their levels can be regulated individually.Supplementing the growth medium with any of the three methylated aminoethanols results in markedly increased cellular levels of their corresponding phosphatidyl esters and decreased levels of the precursor phosphatidyl esters. The fatty acid composition of phosphatidylcholine also changes when the medium is supplemented with choline suggesting that the proportions of the molecular species of this phosphatide depends on whether synthesis is via methylation of phosphatidylethanolamino or from the supplemented aminoethanol.  相似文献   

20.
W.R. Frisell  V.M. Randolph 《BBA》1973,292(2):360-365
In phosphorylating mitochondria, isolated in 0.25 M sucrose and suspended in a glycylglycine-KC1 medium at pH 7.4, the N-methyl group of sarcosine is oxidized to formaldehyde, formate, and CO2. The initial rate of O2 uptake in this system is only about half as great as with phosphate-washed mitochondria, in which the N-methyl carbon is oxidized only to the level of “active formaldehyde” and can be recovered as serine-β-carbon and/or formaldehyde. In the glycylglycine-KC1 medium, the O2 uptake with sarcosine occurs in a biphasic manner and the initial slower rate can be extended by the addition of Mg2+, and ADP, AMP, or ATP. O2 uptake is similarly restrained by ADP in mitochondria buffered with imidazole or pyrophosphate. The ADP effect is not observed in the presence of dinitrophenol. The patterns of O2 uptake obtained with ADP in these various media are not altered when the oxidation of the formaldehyde, derived from the N-methyl group, is suppressed by the addition of either semicarbazide or rotenone. With dimethylglycine, another component of the “1-C cycle”, the initial rate of oxidation in glycylglycine or imidazole is enhanced by ADP rather than being decreased. These results together with appropriate coenzyme analyses suggest that reactions of “one carbon compounds” can provide sensitive markers for assessing compartition of cofactors such as the pyridine nucleotides, flavins, and folates in the mitochondrial matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号