首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U. Kutschera  P. Schopfer 《Planta》1985,163(4):494-499
Three predictions of the acid-growth theory of fusicoccin (FC) action in inducing cell elongation were reinvestigated using abraded segments of maize (Zea mays L.) coleoptiles. i) Quantitative comparison of segment elongation and medium-acidification kinetics measured in the same sample of tissue shows that these FC-induced processes are strictly correlated in time and respond coordinately to cations present in the medium. ii) Fusicoccin (1 mol l-1) induces a rapid acidification of the cell-wall solution, reaching a final level of pH 3.8–4.0. Exogenous protons are able to substitute quantitatively for FC in causing segment elongation at pH 3.8–4.0. At pH 4, FC has no additional effect on cell elongation. iii) Neutral buffers (pH 7) completely abolish the FC-mediated growth response. iv) Cycloheximide (10 mg l-1) inhibits both FC-induced and acid-buffer(pH 4)-induced elongation after a lag of 40–45 min, and FC-induced H+ excretion after a lag of 2 h. Under the same conditions, indole-3-acetic acid-induced elongation and H+ excretion are inhibited without detectable lag. It is concluded that these results are fully compatible with the acid-growth theory of FC action.Abbreviations IAA indole-3-acetic acid - CHI cycloheximide - FC fusicoccin  相似文献   

2.
U. Kutschera  P. Schopfer 《Planta》1985,163(4):483-493
Four experimental predictions of the acid-growth theory of auxin (indole-3-acetic acid, IAA) action in inducing cell elongation were reinvestigated using abraded segments of maize (Zea mays L.) coleoptiles. i) Quantitative comparison of segment elongation and medium-acidification kinetics measured in the same sample of tissue reveals that these IAA-induced processes are neither correlated in time nor responding coordinately to cations present in the medium. ii) Exogenous protons are not able to substitute for IAA in causing segment elongation at the predicted pH of 4.5–5.0. Instead, external buffers induce significant segment elongation only below pH 4.5, reaching a maximal response at pH 1.75–2.5. Acid and IAA coact additively, and therefore independently, in the whole range of feasible pH values. iii) Neutral or alkaline buffers (pH 6–10) are unable to abolish the IAA-mediated growth response and have no effect on its lag-phase. iv) Fusicoccin, at a concentration producing the same H+ excretion as high concentrations of IAA, is ineffective in inducing segment elongation. Moreover, sucrose and other sugars can quantiatively substritute for IAA in inducing H+ excretion but are likewise ineffective in inducing elongation. It is concluded that these results are incompatible with the acid-growth theory of auxin action.Abbreviations IAA indole-3-acetic acid - FC fusicoccin  相似文献   

3.
Achim Hager  Ilse Moser 《Planta》1985,163(3):391-400
In Avena coleoptile segments a decrease of cytoplasmic pH activates energy-dependent H+ extrusion into the apoplast, thereby triggering extension growth. This sequence of events cannot be inhibited by cycloheximide and is induced by the following conditions and compounds. (i) A short anaerobic treatment of coleoptile segments results in the formation of lactic acid and an intracellular decrease of pH. For a period of 20 min after transfer to normal air, the growth rate is up to six times higher than the rate before anaerobiosis. (ii) Similarly, incubation of segments with CN (0.1 mM) in the presence of oxygen causes and accumulation of lactic acid and a fall in cell-sap pH. After removing CN a growth burst occurs. (iii) Higher concentrations of permeable acids (10 mM in buffer pH 5.8) induce extension growth. This growth is O2-dependent and therefore differs from the acid growth, which can be triggered under anaerobic conditions by acid buffers of pH5 via the direct increase of cell-wall plasticity. (iv) A short application of CO2-saturated buffer (pH 5.8) causes CO2-induced elongation growth; after a 3-min pulse the growth rate is enhanced for about 15 min. (v) Lipophilic esters of acetic acid or propionic acid, such as naphthylacetate, naphthylpropionate, phenylacetate, benzylacetate induce elongation growth. These compounds, when taken up into the cell, are hydrolized by esterases; the acids released lower the cytoplasmic pH (shown by the pH indicator, fluorescein). The highest esterase activity was found in a microsomal membrane fraction of coleoptiles. While the carboxyester-induced extension growth is completely inhibited under anoxia, the initial acidification of the bathing solution can still be observed. This decrease in external pH is obviously the result of ester hydrolysis, caused by damaged cells, and is not the result of pH changes within the cell-wall compartment. It is suggested that a fast uptake of carboxyesters and the shift in equilibrium caused by their internal hydrolysis leads to a continuous formation of acids which lowers the cytoplasmic pH and activates the ATP-dependent H+ extrusion. In most experiments fusicoccin (a diacetic acid ester) acts similarly to naphthylacetate and the other carboxyesters, although quantitative differences exist. Therefore, it is possible that fusicoccin is effective partly on the basis of its ester characteristic. The effects observed are discussed with regard to the very narrow pH optimum of plasma-membrane H+-ATPases exhibiting their highest levels of activity at pH 6.5 (Hager and Biber 1984, Z. Naturforsch. C 39, 927–937).Abbreviations CHM cycloheximide - DMO dimethadione (5.5-dimethyl-2,4-oxazolidinedione) - FC fusicoccin - IAA indole-3-acetic acid - Mes 2-(N-morpholino)ethanesulfonic acid - NA (or )-naphthylacetate (acetic acid-1(or-2-)naphthylester) - NAA (or )-naphthaleneacetic acid - PA phenylacetate (acetic acid phenylester)  相似文献   

4.
Jean-Marc Versel  Guy Mayor 《Planta》1985,164(1):96-100
The elongation rate, the gradient of the local elongation rate and the surface pH of maize roots were measured over 12 h. A data bank was constituted by storing these values. By sorting these results on the basis of different elongation rates, different classes of root were obtained. Two classes were chosen: the low-growth roots and the high-growth roots. The mean growth of these two root classes was stable with time and differed significantly from one another. The surface pH of the elongation zone was the same for the roots of these two classes, but the roots selected for their higher growth rate had a larger acid efflux in this zone.  相似文献   

5.
Robert E. Cleland 《Planta》1991,186(1):75-80
A controversy exists as to whether or not the outer epidermis in coleoptiles is a unique target for auxin in elongation growth. The following evidence indicates that the outer epidermis is not the only auxin-responsive cell layer in either Avena sativa L. or Zea mays L. coleoptiles. Coleoptile sections from which the epidermis has been removed by peeling elongate in response to auxin. The magnitude of the response is similar to that of intact sections provided the incubation solution contains both auxin and sucrose. The amount of elongation is independent of the amount of epidermis removed. Sections of oat coleoptiles from which the epidermis has been removed from one side are nearly straight after 22 h in auxin and sucrose, despite extensive growth of the sections. These data indicate that the outer epidermis is not a unique target for auxin in elongation growth, at least in Avena and maize coleoptiles.Abbreviations IAA indole-3-acetic acid - PCIB p-chlorophenoxyiso-butyric This research was supported by grants from the National Aeronautics and Space Administration and from the U.S. Department of Energy. The help of S. Ann Dreyer is gratefully acknowledged.  相似文献   

6.
R. E. Cleland  D. Cosgrove  M. Tepfer 《Planta》1987,170(3):379-385
When frozen-thawed Avena sativa L. coleoptile and Cucumis sativa L. hypocotyl sections, under tension, are acid-treated, they undergo rapid elongation (acid-extension). The acid-extension response consists of two concurrent phases: a burst of extension which decays exponentially over 1–2 h (ExE), and a constant rate of extension (CE) which can persist for at least 6 h. The extension (AL) is closely represented by the equation: L = aa · e kt + c · t where a is the total extension of the exponential phase, k is the rate constant for ExE, and c is the rate of linear extension (CE). Low pH and high tension increased a and c, whereas temperature influenced k. The magnitude of the CE (over 50% extension/10 h), the similarity in its time course to auxin-induced growth, and the apparent yield threshold for CE indicate that CE is more likely than ExE to be the type of extension which cell walls undergo during normal auxin-induced growth.Abbreviations and symbols CAWL capacity for acid-induced wall extension - CE linear phase of acid-extension - ExE exponential phase of acid-extension - IAA indole-3-acetic acid  相似文献   

7.
In-vitro translation products of polyadenylated RNA from untreated and indole-3-acetic acid (IAA)-treated elongating sections of maize (Zea mays L.) coleoptiles were analyzed by twodimensional polyacrylamide gel electrophoresis. Treatment with IAA results in an increased amount of at least four in-vitro translation products. The amounts of two of these translation products are increased within 10 min of IAA treatment.Abbreviation IAA indole-3-acetic acid  相似文献   

8.
The uptake of auxin by 1-mm slices of corn (Zea mays L.) coleoptiles, a tissue known to transport auxin polarly, depends on the pH of the medium. Short-term uptake of indole-3-acetic acid (IAA) in coleoptiles increases with decreasing pH of the buffer as would be expected if the undissociated weak acid, IAA·H, were more permeable than the auxin anion, IAA-, and IAA- accumulates in the tissues because of the higher pH of the cytoplasm. Although uptake of [3H]IAA is reduced in neutral buffers, it is greater than expected if it were limited to just the extracellular space of the tissue. The radioactivity accumulated by the tissue can be quantitatively extracted by organic solvents and identified as IAA by thin-layer chromatography. The tissue radioactivity is freely mobile and can efflux from the tissue. Thus these cells in pH 5 buffer are able to retain an average internal concentration of mobile IAA that is at least several times greater than the external concentration. A prominent feature of auxin uptake from acidic buffers is enhanced accumulation at high auxin concentration. This indicates that, in addition to fluxes of IAA·H, a saturable site is involved in auxin uptake. Whenever the auxin-anion gradient is directed outward, saturating the efflux of auxin anions increases accumulation. Furthermore, the observed slowing of short-term uptake of radioactive IAA by increasing concentrations of IAA or K+ indicates either an activation of the presumptive auxin leak or saturation of another carrier-mediated uptake system such as a symport of auxin anions with protons. By contrast in neutral buffers, effects of concentration on uptake rates disappear. This implies that at neutral pH the anion leak is decreased and influx depends on the symport.  相似文献   

9.
M. Hohl  P. Schopfer 《Planta》1992,187(4):498-504
Segments of maize (Zea mays L.) coleoptiles demonstrate plastic cell-wall extensibility (Epl) as operationally defined by the amount of irreversible strain elicited by stretching living or frozen-thawed tissue under constant load in an extensiometer (creep test). Changes of Epl are correlated with auxin- and abscisic-acid-dependent growth responses and have therefore been causally related to hormone-controlled cell-wall loosening. Auxin induces an increase of Epl specifically in the outer epidermal wall of maize coleoptiles which is considered as the growth-limiting wall of the organ. However, detailed kinetic measurements of load-induced extension of frozen-thawed coleoptile segments necessitates a revision of the view that Epl represents a true plastic (irreversible) wall deformation. Segments demonstrate no significant irreversible extension when completely unloaded between loading cycles. Moreover, Epl can be demonstrated repeatedly if the same segment is subjected to repeated loading cycles in the extensiometer. It is shown that these phenomena result from the hysteresis behaviour of the cell wall. Stress-strain curves for loading and unloading form a closed hysteresis loop, the width of which represents Epl at a particular load. Auxin-treatment of segments leads to a deformation of the hysteresis loop, thereby giving rise to an increase of Epl. These results show that the creep test estimates the viscoelastic (retarded elastic) properties rather than the plastic properties of the wall.Abbreviations Etot, Eel, Epl total, elastic, and plastic cell-wall extensibility as defined by the standard creep test - L loadSupported by Deutsche Forschungsgemeinschaft (SFB 206).  相似文献   

10.
Plant cell walls expand considerably during cell enlargement, but the biochemical reactions leading to wall expansion are unknown. McQueen-Mason et al. (1992, Plant Cell 4, 1425) recently identified two proteins from cucumber (Cucumis sativus L.) that induced extension in walls isolated from dicotyledons, but were relatively ineffective on grass coleoptile walls. Here we report the identification and partial characterization of an oat (Avena sativa L.) coleoptile wall protein with similar properties. The oat protein has an apparent molecular mass of 29 kDa as revealed by sodium dodecyl sulfate-polyacrylamide gel eletrophoresis. Activity was optimal between pH 4.5 and 5.0, which makes it a suitable candidate for acid growth responses of plant cell walls. The oat protein induced extension in walls from oat coleoptiles, cucumber hypocotyls and pea (Pisum sativum L.) epicotyls and was specifically recognized by an antibody raised against the 29-kDa wall-extension-inducing protein from cucumber hypocotyls. Contrary to the situation in cucumber walls, the acid-extension response in heat-inactivated oat walls was only partially restored by oat or cucumber wall-extension proteins. Our results show that an antigenically conserved protein in the walls of cucumber and oat seedlings is able to mediate a form of acid-induced wall extension. This implies that dicotyledons and grasses share a common biochemical mechanism for at least part of acid-induced wall extensions, despite the significant differences in wall composition between these two classes of plants.Abbreviations ConA concanavalin A - CM carboxymethyl - DEAE diethylaminoethyl - DTT dithiothreitol - Ex29 29-kDa expansin  相似文献   

11.
Morris G. Cline 《Planta》1979,145(4):389-391
Long-term pretreatments with cycloheximide (CH) caused inhibition of subsequent acidinduced growth of Avena coleoptile segments, but only after 6 or more h of CH treatment. These results together with previous, published evidence with frozen-thawed tissue are consistent with the hypothesis that there exists a wall-loosening enzyme responsible for acid-induced elongation and that it has a half-life of at least 7–8 h.  相似文献   

12.
13.
Horizontal primary roots of Zea mays L. were photographed during the course of their gravireaction and during a preceding growth period in the vertical orientation. The displacement, by root elongation, of marker particles on the root surface was recorded. The particle-displacement rates were used to estimate the distribution of elemental elongation rates along opposite sides of the growing root apex. In the temperature range 21–25°C there was a stimulation of local elongation rates along the upper side of a gravireacting root and a reduction (and sometimes a cessation) of elongation along the lower side. Elemental elongation rates have been related to the development of root curvature, and the magnitude of the differential growth between upper and lower sides required for a particular rate of bending has also been estimated. The results complement, and are compatible with, findings relating to the distribution of certain endogenous growth regulators believed to participate in the gravireaction.Abbreviation RELEL relative elemental rate of elongation  相似文献   

14.
Summary The influence of exogenous potassium hexacyanoferrate (III) (HCF III) on elongation of maize (Zea mays L.) coleoptile segments was investigated. Addition of HCF III led to a strong stimulation of growth both in the presence and absence of indole-3-acetic acid (IAA). The magnitude of growth stimulation was dependent on the presence of IAA, HCF III concentration, incubation time, and phase growth. The reduced form, potassium hexacyanoferrate (II), was without effect on growth. In the presence of HCF III, elongation was suppressed when coleoptile segments were treated with N,N-dicyclohexylcarbodiimide, cycloheximide or atebrine (quinacrine). The addition of HCF III stimulated the IAA-induced proton extrusion, and the e/H+ ratio decreased with incubation time. HCF III also strongly stimulated elongation ofAvena saliva L. coleoptile segments andGlycine max L. hypocotyl segments. These results suggested that a plasma membrane redox system (NADH oxidase type I) may be involved in the regulation of growth through the activity of the plasma membrane-bound ATPase.Abbreviations CH cycloheximide - DCCD N,N-dicyclohexylcarbodiimide - HCF III potassium hexacyanoferrate (III) (potassium ferricyanide) - HCF II potassium hexacyanoferrate (II) (potassium ferrocyanide) - IAA indole-3-acetic acid  相似文献   

15.
Temperature dependence of intracellular pH in higher plant cells   总被引:3,自引:0,他引:3  
The recent introduction of 31P nuclear magnetic resonance spectroscopy offers a new approach to the problem of obtaining a simultaneous and direct evaluation of both the cytoplasmic and vacuolar pH in higher plant cells (J. K. M. Roberts, P.M. Ray, N. Waderlardetzky and O. Sardetzky, 1980, Nature 283, 870–872; 1981, Planta 152, 74–78). Using this method we have been able to detect a selective pH decrease of about 0.5 units at the level of the cytoplasmic compartment of maize root tips when the temperature was increased from 4 to 28°C. This effect was completely reversible with temperature. No pH variation could be detected at the level of the vacuolar compartment.  相似文献   

16.
The effect of red (R) and far-red (FR) light on stem elongation and indole-3-acetic acid (IAA) levels was examined in dwarf and tall Pisum sativum L. seedlings. Red light reduced the extension-growth rate of etiolated seedlings by 70–90% after 3 h, and this inhibition was reversible by FR. Inhibition occurred throughout the growing zone. After 3 h of R, the level of extractable IAA in whole stem sections from the growing zone of etiolated plants either increased or showed no change. By contrast, extractable IAA from epidermal peels consistently decreased 3 h after R treatments. Decreases of 40% were observed for epidermal peels from the top 1 cm of tall plants receiving 3 h R. Brief R treatments resulted in smaller decreases in epidermal IAA levels and these decreases were not as great when FR followed R. In lightgrown plants, end-of-day FR stimulated growth during the following dark period in a photoreversible manner. The uppermost 1 cm of expanding third internodes was most responsive to the FR. Extractable IAA from epidermal peels from the upper 1 cm of third internodes increased by 30% or more 5 h after FR. When R followed the FR the increases were smaller. Levels of IAA in whole stem sections did not change and were twofold greater than in dark-grown plants. In both dark- and light-grown tall plants, IAA levels were lower in epidermal peels than in whole stem segments. These results provide evidence that IAA is compartmentalized at the tissue level within the growing stem and that phytochrome regulation of stem elongation rates may be partly based on modulating the level of IAA within the epidermis.Abbreviations IAA indole-3-acetic acid - R red light - FR farred light We thank Yu-Xian Zhu for helping to develop methods for IAA analysis, James Reid for supplying the genetic lines of Pisum and Richard Cyr for the use of microscopy equipment. This work was supported by NSF grant DCB-8801880 and by Hatch funds from the College of Agriculture and Life Sciences at Cornell University. The gas chromatograph-mass spectrometer was funded by NSF grant DMB-8505974 and funds from the College of Agriculture and Life Sciences at Cornell University. A preliminary report of some of these experiments has appeared in Plant Growth Substances, 1991 (Behringer et al. 1992 b).  相似文献   

17.
U. Kutschera 《Planta》1990,181(3):316-323
The relationship between growth and increase in cell-wall material (wall synthesis) was investigated in hypocotyls of sunflower seedlings (Helianthus annuus L.) that were either grown in the dark or irradiated with continuous white light (WL). The peripheral three to four cell layers comprised 30–50% of the entire wall material of the hypocotyl. The increase in wall material during growth in the dark and WL, respectively, was larger in the inner tissues than in the peripheral cell layers. The wall mass per length decreased continuously, indicating that wall thinning occurs during growth of the hypocotyl. When dark-grown seedlings were transfered to WL, a 70% inhibition of growth was observed, but the increase in wall mass was unaffected. Likewise, the composition of the cell walls (cellulose, hemicellulose, pectic substances) was not affected by WL irradiation. Upon transfer of dark-grown seedlings into WL a drastic increase in wall thickness and a concomitant decrease in cell-wall plasticity was measured. The results indicate that cell-wall synthesis and cell elongation are independent processes and that, as a result, WL irradiation of etiolated hypocotyls leads to a thickening and mechanical stiffening of the cell walls.  相似文献   

18.
M. Hohl  P. Schopfer 《Planta》1992,188(3):340-344
Plant organs such as maize (Zea mays L.) coleoptiles are characterized by longitudinal tissue tension, i.e. bulk turgor pressure produces unequal amounts of cell-wall tension in the epidermis (essentially the outer epidermal wall) and in the inner tissues. The fractional amount of turgor borne by the epidermal wall of turgid maize coleoptile segments was indirectly estimated by determining the water potential * of an external medium which is needed to replace quantitatively the compressive force of the epidermal wall on the inner tissues. The fractional amount of turgor borne by the walls of the inner tissues was estimated from the difference between -* and the osmotic pressure of the cell sap (i) which was assumed to represent the turgor of the fully turgid tissue. In segments incubated in water for 1 h, -* was 6.1–6.5 bar at a i of 6.7 bar. Both -* and i decreased during auxin-induced growth because of water uptake, but did not deviate significantly from each other. It is concluded that the turgor fraction utilized for the elastic extension of the inner tissue walls is less than 1 bar, i.e. less than 15% of bulk turgor, and that more than 85% of bulk turgor is utilized for counteracting the high compressive force of the outer epidermal wall which, in this way, is enabled to mechanically control elongation growth of the organ. This situation is maintained during auxin-induced growth.Abbreviations and Symbols i osmotic pressure of the tissue - 0 external water potential - * water potential at which segment length does not change - IAA indole-3-acetic acid - ITW longitudinal inner tissue walls - OEW outer epidermal wall - P turgor Supported by Deutsche Forschungsgemeinschaft (SFB 206).  相似文献   

19.
Peter J. Watson  Harry Smith 《Planta》1982,154(2):128-134
Phytochrome in the far-red light absorbing form (Pfr) was observed to disappear in vivo more rapidly from the non-cation-requiring pelletable phytochrome population than from the supernantant phytochrome population of oat seedlings given an increasing dark incubation after red irradiation. The amount of pelletable phytochrome in the red light absorbing form (Pr) remained relatively stable while supernatant Pr was lost. These observations indicated that supernant Pfr was subject to loss during the incubation, while pelletable Pfr was subject to both dark reversion and loss.During the incubation, the ability of far-red irradiation to reverse the red-induced increase in phytochrome pelletability was lost, with kinetics similar to those of the loss of pelletable Pfr.Far-red reversibility of the red-induced increase in coleoptile elongation correlated with the change intotal Pfr in both supernatant and pelletable phytochrome populations, but with the change in the ratio of Pfr to total phytochrome only in the pelletable phytochrome population.The possible significance of these results is discussed with reference to the action of phytochrome in the photocontrol of physiological growth responses.Abbreviations Pfr phytochrome in the far-red light absorbing form - Pr phytochrome in the red absorbing form - Ptot total phytochrome  相似文献   

20.
Several indoleacetic acids, substituted in the benzene ring, were compared in the Avena straight growth bioassay. 4-Chloroindoleacetic acid, a naturally occurring plant hormone, is one of the strongest hormones in this bioassay. With an optimum at 10-6 mol l-1, it is more active than indoleacetic acid, 2,4-dichlorphenoxyacetic acid and naphthaleneacetic acid. 5-Chloro- and 6-chloroindoleacetic acids are very strong auxins as well. Other derivatives tested have a lower activity. 5,7-Dichloro- and 5-hydroxyindoleacetic acids have very low auxin activity at 10-4 mol l-1 and may be anti-auxins. Some of the derivatives were compared for their effect on pH decline in stem protoplast suspensions of Helianthus annuus L. and Pisum sativum L. The change of pH occurs without a lag period or with only a very short one. Derivatives which are very active in the Avena straight growth assay cause a larger pH decline than indoleacetic acid, while inactive derivatives cause effectively no pH decline.Abbreviations IAA Indoleacetic acid - 4-Cl-IAA 4-chloroindoleacetic acid - 5,7-Cl2-IAA etc 5,7-dichloroindoleacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号