首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
To examine the role of the mitochondrial polymerase (Pol gamma) in clinically observed toxicity of nucleoside analogs used to treat AIDS, we examined the kinetics of incorporation catalyzed by Pol gamma for each Food and Drug Administration-approved analog plus 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouracil (FIAU), beta-L-(-)-2',3'-dideoxy-3'-thiacytidine (-)3TC, and (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA). We used recombinant exonuclease-deficient (E200A), reconstituted human Pol gamma holoenzyme in single turnover kinetic studies to measure K(d) (K(m)) and k(pol) (k(cat)) to estimate the specificity constant (k(cat)/K(m)) for each nucleoside analog triphosphate. The specificity constants vary more than 500,000-fold for the series ddC > ddA (ddI) > 2',3'-didehydro-2',3'-dideoxythymidine (d4T) > (+)3TC > (-)3TC > PMPA > azidothymidine (AZT) > Carbovir (CBV). Abacavir (prodrug of CBV) and PMPA are two new drugs that are expected to be least toxic. Notably, the higher toxicities of d4T, ddC, and ddA arose from their 13-36-fold tighter binding relative to the normal dNTP even though their rates of incorporation were comparable with PMPA and AZT. We also examined the rate of exonuclease removal of each analog after incorporation. The rates varied from 0.06 to 0.0004 s(-1) for the series FIAU > (+)3TC approximately equal to (-)3TC > CBV > AZT > PMPA approximately equal to d4T > ddA (ddI) > ddC. Removal of ddC was too slow to measure (<0.00002 s(-1)). The high toxicity of dideoxy compounds, ddC and ddI (metabolized to ddA), may be a combination of high rates of incorporation and ineffective exonuclease removal. Conversely, the more effective excision of (-)3TC, CBV, and AZT may contribute to lower toxicity. FIAU is readily extended by the next correct base pair (0.13 s(-1)) faster than it is removed (0.06 s(-1)) and, therefore, is stably incorporated and highly mutagenic. We define a toxicity index for chain terminators to account for relative rates of incorporation versus removal. These results provide a method to rapidly screen new analogs for potential toxicity.  相似文献   

6.
7.
8.
Abstract

Antiretroviral nucleoside drugs used against the human immunodeficiency virus (HIV) infection have been analyzed using negative ion electrospray ionization (ESI) mass spectrometry and collision-induced dissociation (CID-MS/MS). Mass fragmentation of azidothymidine (AZT), didanosine (ddI), dideoxycytidine (ddC) and dideoxythiacytidine (3TC) were obtained at different cone voltages and collision energies. Fragmentation of purines and pyrimidines occurred by different pathways. For purines (ddI), the fragmentation was similar to those found in endogenous nucleosides; mainly the pseudo molecular ion is present (M-H) and a cleavage through the glycosidic bond forming (B) was observed. For pyrimidines (AZT, ddC, 3TC), the fragmentation pathways were different from endogenous nucleosides; for AZT, the fragmentation occurred primarily through the elimination of the azido group in the 3′-position (M-H2-N3), whereas ddC and 3TC presented more complex fragmentation patterns. For ddC, fragmentation appeared to be dominated by a retro Diels-Alder mechanism (M-CONH). For 3TC, the sulfur atom in the sugar moiety provided greater stability to the charge, producing fragments where the charge resided initially in the dideoxyribose (M-C2O2H6).  相似文献   

9.
10.
11.
In the present study, one has determined the relative role of plasma membrane equilibrative (Na+-independent) ENT nucleoside transport proteins (particularly ENT2) in the uptake of antiviral nucleoside analogues for comparison with the previously reported drug transport properties of concentrative (Na+-dependent) CNT nucleoside transport proteins. The human and rat nucleoside transport proteins hENT1, rENT1, hENT2 and rENT2 were produced in Xenopus oocytes and investigated for their ability to transport three 3'-deoxy-nucleoside analogues, ddC (2'3'-dideoxycytidine), AZT (3'-azido-3'-deoxythymidine) and ddI (2'3'-dideoxyinosine), used in human immunodeficiency virus (HIV) therapy. The results show, for the first time, that the ENT2 transporter isoform represents a mechanism for cellular uptake of these clinically important nucleoside drugs. Recombinant h/rENT2 transported ddC, ddI and AZT, whilst h/rENT1 transported only ddC and ddI. Relative to uridine, h/rENT2 mediated substantially larger fluxes of ddC and ddI than h/rENT1. Transplanting the amino-terminal half of rENT2 into rENT1 rendered rENT1 transport-positive for AZT and enhanced the uptake of both ddC and ddI, identifying this region as a major site of 3'-deoxy-nucleoside drug interaction.  相似文献   

12.
13.
14.
15.
16.
Since the discovery of human immunodeficiency virus (HIV) as a pathogenic retrovirus linked to acquired immunodeficiency syndrome (AIDS), a number of potentially useful strategies for antiretroviral therapy of AIDS and its related diseases have emerged. One such strategy involves use of the broad family of 2',3'-dideoxynucleosides, to which 3'-azido-2',3'-dideoxythymidine (AZT) belongs. AZT has been shown to reduce the replication of HIV in vivo and to confer significant clinical benefits in patients in both early and advanced stages of infection. Other members of the family, 2',3'-dideoxycytidine (ddC), 2',3'-dideoxyinosine (ddI), and 2',3'-didehydro-2',3'-dideoxythymidine (d4T), have also been reported to be active against HIV in short-term clinical trials. The armamentarium of antiretroviral agents is rapidly growing. Various nonnucleoside agents have recently been identified to be active against HIV in vitro. HIV-1 protease inhibitors are notable as possible new therapies for HIV-1-related diseases. However, we have faced several new challenges in the antiretroviral therapy in AIDS. These include long-term drug-related toxicities; emergence of drug-resistant HIV variants; and development of various cancers, particularly as effective therapies prolong survival. Progress in understanding structure-activity relations and clinical effectiveness will continue with dideoxynucleoside analogs. However, it seems certain that a variety of nonnucleoside analogs affecting multiple steps in viral replication will become available before long, and combination therapies using multiple antiretroviral drugs will be available. Such therapies will exert major effects against the moribidity and mortality caused by HIV.  相似文献   

17.
The peptide derivative Ro 31-8959 is a potent and selective inhibitor of the aspartic proteinases encoded by HIV-1 and HIV-2 and it arrests the growth of both viruses in cell culture. We have demonstrated similar effects against the simian immunodeficiency virus SIVmac251 in the human T-cell line, C8166 (ED50 = 6nM) with a therapeutic index of 4,500. The antiviral activity of Ro 31-8959 was 250 and 22 times greater than that of ddI and ddC, respectively. The mode of action was confirmed by accumulation of the polyprotein p55 with concomitant reduction of the cleavage product, p27, and by the production of immature virions.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号