首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motor center activity and reflexes from contracting muscle have been shown to be important for mobilization of free fatty acids (FFA) during exercise. We studied FFA metabolism in the absence of these mechanisms: during involuntary, electrically induced leg cycling in individuals with complete spinal cord injury (SCI). Healthy subjects performing voluntary cycling served as controls (C). Ten SCI (level of injury: C5-T7) and six C exercised for 30 min at comparable oxygen uptake rates (approximately 1 l/min), and [1-14C]palmitate was infused continuously to estimate FFA turnover. From femoral arteriovenous differences, blood flow, muscle biopsies, and indirect calorimetry, leg substrate balances as well as concentrations of intramuscular substrates were determined. Leg oxygen uptake was similar in the two groups during exercise. In SCI, but not in C, plasma FFA and FFA appearance rate fell during exercise, and plasma glycerol increased less than in C (P < 0.05). Fractional uptake of FFA across the working legs decreased from rest to exercise in all individuals (P < 0.05) but was always lower in SCI than in C (P < 0.05). From rest to exercise, leg FFA uptake increased less in SCI than in C subjects (14 +/- 3 to 57 +/- 20 vs. 41 +/- 13 to 170 +/- 57 micromol x min(-1) x leg(-1); P < 0.05). Muscle glycogen breakdown, leg glucose uptake, carbohydrate oxidation, and lactate release were higher (P < 0.05) in SCI than in C during exercise. Counterregulatory hormonal changes were more pronounced in SCI vs. C, whereas insulin decreased only in C. In conclusion, FFA mobilization, delivery, and fractional uptake are lower and muscle glycogen breakdown and glucose uptake are higher in SCI patients during electrically induced leg exercise compared with healthy subjects performing voluntary exercise. Apparently, blood-borne mechanisms are not sufficient to elicit a normal increase in fatty acid mobilization during exercise. Furthermore, in exercising muscle, FFA delivery enhances FFA uptake and inhibits carbohydrate metabolism, while carbohydrate metabolism inhibits FFA uptake.  相似文献   

2.
Regional substrate exchange was studied in 12 healthy males during 90 min of bicycle exercise at 30% of maximal O2 consumption with a 20-min recovery. Six subjects received an intravenous fructose infusion (8.5 mmol/min) from 40 min of exercise to the end of recovery. Splanchnic glucose output, muscle glucose uptake, arterial glucose, and insulin were uninfluenced by the infusion. The respiratory exchange ratio rose to 0.93 +/- 0.04, and arterial free fatty acids fell by 50% (P less than 0.05). Fructose was taken up by splanchnic tissues (45% of administered load), leg muscle (28%), and resting muscle (28%). During infusion, arterial lactate and pyruvate rose two- to threefold, and these substrates were released from splanchnic tissues and taken up by exercising and resting muscle. Splanchnic release of lactate, pyruvate, and glucose accounted for 78% of fructose uptake at 90 min of exercise. Uptake of fructose, lactate, and pyruvate accounted for 55% and together with glucose for 103% of the total oxidative metabolism by exercising muscle. The regional fructose uptakes and lactate exchanges persisted throughout recovery. The present results indicate that fructose infusion during leg exercise 1) results in increased carbohydrate oxidation from fructose, lactate, and pyruvate in exercising muscle, 2) exerts a glycogenic effect in resting muscle and liver during exercise and in liver and muscle recovering from exercise, and 3) does not interfere with glucose metabolism, and that fructose transport into muscle differs from that of glucose.  相似文献   

3.
Increased availability of circulating free fatty acids (FFA) inhibits the rate of glycolysis in heart and resting skeletal muscle (Randle effect). Whether elevated FFA may play a role in decreasing carbohydrate oxidation during prolonged exercise in humans is more controversial. Using respiratory exchange measurements, we measured substrate utilization during 2.5 h of exercise at approximately 44 +/- 1% maximal O2 uptake (VO2 max) in the presence or absence of elevated FFA levels. After 30 min of base-line determinations, 1,000 U heparin was given intravenously and a 3-h constant infusion of Intralipid 10% (150 g/h) and heparin (500 U/h) was started. After an additional 30 min of rest, subjects exercised for 2.5 h (study 1, n = 6). In another five subjects (study 2) 100 g glucose was ingested after 30 min of exercise. The same protocols (studies 1 and 2) were also performed during a 0.9%-saline infusion. During exercise, without glucose ingestion, higher FFA concentrations prevailed during the Intralipid infusion (1,122 +/- 40 vs. 782 +/- 65 mumol/l), but the relative contributions of carbohydrate (49 +/- 4 vs. 50 +/- 4%) or lipid (49 +/- 4 vs. 47 +/- 6%) oxidation to the total energy expenditure were different only during the first 30 min of exercise. Similarly, higher FFA levels (1,032 +/- 62 vs. 568 +/- 46 mumol/l) did not alter the relative contributions of carbohydrate (62 +/- 4 vs. 69 +/- 2%) or lipid (36 +/- 4 vs. 29 +/- 2%) oxidation to the total energy expenditure after glucose feeding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate R(a) during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.  相似文献   

5.
To examine the effect of acute plasma volume expansion (PVE) on substrate selection during exercise, seven untrained men cycled for 40 min at 72 +/- 2% peak oxygen uptake (VO(2 peak)) on two occasions. On one occasion, subjects had their plasma volume expanded by 12 +/- 2% via an intravenous infusion of the plasma substitute Haemaccel, whereas on the other occasion no such infusion took place. Muscle samples were obtained before and immediately after exercise. In addition, heart rate and pulmonary gas and venous blood samples were obtained throughout exercise. No differences in oxygen uptake or heart rate during exercise were observed between trials, whereas respiratory exchange ratio, blood glucose, and lactate were unaffected by PVE. Muscle glycogen and lactate concentrations were not different either before or after exercise. In addition, there was no difference in total carbohydrate oxidation between trials (control: 108 +/- 2 g; PVE group: 105 +/- 2 g). Plasma catecholamine levels were not affected by PVE. These data indicate that substrate metabolism during submaximal exercise in untrained men is unaltered by acute hypervolemia.  相似文献   

6.
To study the effect of increasing amounts of exercising muscle mass on the relationship between glucose mobilization and peripheral glucose uptake, seven young men (23-28 yr) bicycled for 70 min at a work load of 55-60% VO2max. From minute 30 to 50, arm cranking was added and total work load increased to 82 +/- 4% VO2max. During leg exercise, hepatic glucose production (Ra) increased in parallel with peripheral glucose uptake (Rd) and euglycemia was maintained. During arm + leg exercise, Ra increased more than Rd and accordingly plasma glucose increased from 5.11 +/- 0.22 to 8.00 +/- 0.66 mmol/l (P less than 0.05). Plasma catecholamines increased three- to four-fold more during arm + leg exercise than during leg exercise. Leg glucose uptake increased with time regardless of arm cranking. Net leg lactate release during leg exercise was reverted to a net leg lactate uptake during arm + leg exercise. The rate of glycogen breakdown in exercising leg muscle was not altered by addition of arm cranking. In conclusion, when large amounts of muscle mass are active, plasma catecholamines increase sharply and mobilization of glucose exceeds peripheral glucose uptake. This indicates that mechanisms other than feedback regulation to maintain euglycemia are involved in hormonal and substrate mobilization during intense exercise in humans.  相似文献   

7.
The effects of dietary supplementation of dihydroxyacetone and pyruvate (DHAP) on metabolic responses and endurance capacity during leg exercise were determined in eight untrained males (20-30 yr). During the 7 days before exercise, a high-carbohydrate diet was consumed (70% carbohydrate, 18% protein, 12% fat; 35 kcal/kg body weight). One hundred grams of either Polycose (placebo) or dihydroxyacetone and pyruvate (treatment, 3:1) were substituted for a portion of carbohydrate. Dietary conditions were randomized, and subjects consumed each diet separated by 7-14 days. After each diet, cycle ergometer exercise (70% of peak oxygen consumption) was performed to exhaustion. Biopsy of the vastus lateralis muscle was obtained before and after exercise. Blood samples were drawn through radial artery and femoral vein catheters at rest, after 30 min of exercise, and at exercise termination. Leg endurance was 66 +/- 4 and 79 +/- 2 min after placebo and DHAP, respectively (P less than 0.01). Muscle glycogen at rest and exhaustion did not differ between diets. Whole leg arteriovenous glucose difference was greater (P less than 0.05) for DHAP than for placebo at rest (0.36 +/- 0.05 vs. 0.19 +/- 0.07 mM) and after 30 min of exercise (1.06 +/- 0.14 vs. 0.65 +/- 0.10 mM) but did not differ at exhaustion. Plasma free fatty acids, glycerol, and beta-hydroxybutyrate were similar during rest and exercise for both diets. Estimated total glucose oxidation during exercise was 165 +/- 17 and 203 +/- 15 g after placebo and DHAP, respectively (P less than 0.05). It is concluded that feeding of DHAP for 7 days in conjunction with a high carbohydrate diet enhances leg exercise endurance capacity by increasing glucose extraction by muscle.  相似文献   

8.
There has been recent interest in the potential performance and metabolic effects of carbohydrate ingestion during exercise lasting approximately 1 h. In this study, 13 well-trained men ingested in randomized order either a 6% glucose solution (CHO trial) or a placebo (Con trial) during exercise to exhaustion at 83+/-1% peak oxygen uptake. In six subjects, vastus lateralis muscle was sampled at rest, at 32 min, and at exhaustion, and in six subjects, glucose kinetics was determined by infusion of [6,6-(2)H]glucose in both trials and ingestion of [6-(3)H]glucose in the CHO trial. Of the 84 g of glucose ingested during exercise in the CHO trial, only 22 g appeared in the peripheral circulation. This resulted in a small (12 g) but significant (P<0.05) increase in glucose uptake without influencing carbohydrate oxidation, muscle glycogen use, or time to exhaustion (CHO: 68.1+/-4.1 min; Con: 69.6+/-5.5 min). Decreases in muscle phosphocreatine content and increases in muscle inosine monophosphate and lactate content during exercise were similar in the two trials. Although endogenous glucose production during exercise was partially suppressed in the CHO trial, it remained significantly above preexercise levels throughout exercise. In conclusion, only 26% of the ingested glucose appeared in the peripheral circulation. Glucose ingestion increased glucose uptake and partially reduced endogenous glucose production but had no effect on carbohydrate oxidation, muscle metabolism, or time to exhaustion during exercise at 83% peak oxygen uptake.  相似文献   

9.
Compared with women, men use proportionately more carbohydrate and less fat during exercise at the same relative intensity. Estrogen and progesterone have potent effects on substrate use during exercise in women, but the role of testosterone (T) in mediating substrate use is unknown. The purpose of this investigation was to assess how large variations in the concentration of blood T would impact substrate use during exercise in men. Nine healthy, active men were studied in three distinct hormonal conditions: physiological T (no intervention), low T (pharmacological suppression of endogenous T with a gonadotrophin-releasing hormone antagonist), and high T (supplementation with transdermal T). Total carbohydrate oxidation, blood glucose rate of disappearance, and estimated muscle glycogen use were assessed by using stable isotope dilution and indirect calorimetry at rest and while bicycling at approximately 60% of peak O2 consumption for 90 min. Relative to the physiological condition (T = 5.5 +/- 0.5 ng/ml), total plasma T was considerably suppressed in low T (0.8 +/- 0.1) and elevated in high T (10.9 +/- 1.1). Despite the large changes in plasma T, carbohydrate oxidation, glucose rate of disappearance, and estimated muscle glycogen use were very similar across the three conditions. There were also no differences in plasma concentrations of glucose, insulin, lactate, or free fatty acids. Plasma estradiol (E) concentrations were elevated in high T, but correlations between substrate use and plasma concentrations of T, E, or the T-to-E ratio were very weak (r2 < 0.20). In conclusion, unlike the effect of acute elevation in E to constrain carbohydrate use in women, acute changes in circulating T concentrations do not appear to alter substrate use during exercise in men.  相似文献   

10.
We examined 1) the effect of L-carnitine supplementation on free fatty acid (FFA) utilization during exercise and 2) exercise-induced alterations in plasma levels and skeletal muscle exchange of carnitine. Seven moderately trained human male subjects serving as their own controls participated in two bicycle exercise sessions (120 min, 50% of VO2max). The second exercise was preceded by 5 days of oral carnitine supplementation (CS; 5 g daily). Despite a doubling of plasma carnitine levels, with CS, there were no effects on exercise-induced changes in arterial levels and turnover of FFA, the relation between leg FFA inflow and FFA uptake, or the leg exchange of other substrates. Heart rate during exercise after CS decreased 7-8%, but O2 uptake was unchanged. Exercise before CS induced a fall from 33.4 +/- 1.6 to 30.8 +/- 1.0 (SE) mumol/l in free plasma carnitine despite a release (2.5 +/- 0.9 mumol/min) from the leg. Simultaneously, acylated plasma carnitine rose from 5.0 +/- 1.0 to 14.2 +/- 1.4 mumol/l, with no evidence of leg release. Consequently, total plasma carnitine increased. We concluded that in healthy subjects CS does not influence muscle substrate utilization either at rest or during prolonged exercise and that free carnitine released from muscle during exercise is presumably acylated in the liver and released to plasma.  相似文献   

11.
The purpose of the present study was to use the microdialysis technique to determine skeletal muscle interstitial glucose and lactate concentrations during dynamic incremental exercise in humans. Microdialysis probes were inserted into the vastus lateralis muscle, and subjects performed knee extensor exercise at workloads of 10, 20, 30, 40, and 50 W. The in vivo probe recoveries determined at rest by the internal reference method for glucose and lactate were 28.7 +/- 2.5 and 32.0 +/- 2.7%, respectively. As exercise intensity increased, probe recovery also increased, and at the highest workload probe recovery for glucose (61.0 +/- 3.9%) and lactate (66. 3 +/- 3.6%) had more than doubled. At rest the interstitial glucose concentration (3.5 +/- 0.2 mM) was lower than both the arterial (5.6 +/- 0.2 mM) and venous (5.3 +/- 0.3 mM) plasma water glucose levels. The interstitial glucose levels remained lower (P < 0.05) than the arterial and venous plasma water glucose concentrations during exercise at all intensities and at 10, 20, 30, and 50 W, respectively. At rest the interstitial lactate concentration (2.5 +/- 0.2 mM) was higher (P < 0.05) than both the arterial (0.9 +/- 0. 2 mM) and venous (1.1 +/- 0.2 mM) plasma water lactate levels. This relationship was maintained (P < 0.05) during exercise at workloads of 10, 20, and 30 W. These data suggest that interstitial glucose delivery at rest is flow limited and that during exercise changes in the interstitial concentrations of glucose and lactate mirror the changes observed in the venous plasma water compartments. Furthermore, skeletal muscle contraction results in an increase in the diffusion coefficient of glucose and lactate within the interstitial space as reflected by an elevation in probe recovery during exercise.  相似文献   

12.
We hypothesized that the increased blood glucose disappearance (Rd) observed during exercise and after acclimatization to high altitude (4,300 m) could be attributed to net glucose uptake (G) by the legs and that the increased arterial lactate concentration and rate of appearance (Ra) on arrival at altitude and subsequent decrease with acclimatization were caused by changes in net muscle lactate release (L). To evaluate these hypotheses, seven healthy males [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg], on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-D2]glucose (Brooks et al., J. Appl. Physiol. 70: 919-927, 1991) and [3-13C]lactate (Brooks et al., J. Appl. Physiol. 71:333-341, 1991) and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 uptake (65 +/- 2% of both acute altitude and acclimatization peak O2 uptake). Glucose and lactate arteriovenous differences across the legs and arms and leg blood flow were measured. Leg G increased during exercise compared with rest, at altitude compared with sea level, and after acclimatization. Leg G accounted for 27-36% of Rd at rest and essentially all glucose Rd during exercise. A shunting of the blood glucose flux to active muscle during exercise at altitude is indicated. With acute altitude exposure, at 5 min of exercise L was elevated compared with sea level or after acclimatization, but from 15 to 45 min of exercise the pattern and magnitude of L from the legs varied and followed neither the pattern nor the magnitude of responses in arterial lactate concentration or Ra. Leg L accounted for 6-65% of lactate Ra at rest and 17-63% during exercise, but the percent Ra from L was not affected by altitude. Tracer-measured lactate extraction by legs accounted for 10-25% of lactate Rd at rest and 31-83% during exercise. Arms released lactate under all conditions except during exercise with acute exposure to high altitude, when the arms consumed lactate. Both active and inactive muscle beds demonstrated simultaneous lactate extraction and release. We conclude that active skeletal muscle is the predominant site of glucose disposal during exercise and at high altitude but not the sole source of blood lactate during exercise at sea level or high altitude.  相似文献   

13.
Blood and muscle substrates and metabolites were investigated in six healthy males (ranging in age from 19 to 23 yr) during three consecutive days of supramaximal exercise training. Muscle biopsies from the vastus lateralis and arterialized blood samples from a hand vein were extracted before the exercise and at selected times during the intermittent (1 min work to 4 min rest) cycling. The results indicated that blood glucose concentration was significantly depressed (P less than 0.05) on both days 2 and 3 of the training, whereas plasma free fatty acids and blood glycerol, pyruvate, alanine, and lactate were unaffected. At the muscle level, glucose and lactate concentrations were depressed on days 2 and 3, whereas ATP and glycogen were reduced only on the final day of training. No training-induced alterations were noted for muscle glucose 6-phosphate or muscle ADP. These results indicate that the approximate 10-11% reduction in O2-carrying capacity accompanying the short-term training does not directly and negatively influence muscle energy metabolism during the exercise. Rather, the explanation for the altered muscle and blood constituents must be sought from other effects of the training such as impaired carbohydrate repletion.  相似文献   

14.
Eight endurance-trained men cycled to volitional exhaustion at 69 +/- 1% peak oxygen uptake on two occasions to examine the effect of carbohydrate supplementation during exercise on muscle energy metabolism. Subjects ingested an 8% carbohydrate solution (CHO trial) or a sweet placebo (Con trial) in a double-blind, randomized order, with vastus lateralis muscle biopsies (n = 7) obtained before and immediately after exercise. No differences in oxygen uptake, heart rate, or respiratory exchange ratio during exercise were observed between the trials. Exercise time to exhaustion was increased by approximately 30% when carbohydrate was ingested [199 +/- 21 vs. 152 +/- 9 (SE) min, P < 0.05]. Plasma glucose and insulin levels during exercise were higher and plasma free fatty acids lower in the CHO trial. No differences between trials were observed in the decreases in muscle glycogen and phosphocreatine or the increases in muscle lactate due to exercise. Muscle ATP levels were not altered by exercise in either trial. There was a small but significant increase in muscle inosine monophosphate levels at the point of exhaustion in both trials, and despite the subjects in CHO trial cycling 47 min longer, their muscle inosine monophosphate level was significantly lower than in the Con trial (CHO: 0.16 +/- 0.08, Con: 0.23 +/- 0.09 mmol/kg dry muscle). These data suggest that carbohydrate ingestion may increase endurance capacity, at least in part, by improving muscle energy balance.  相似文献   

15.
To examine the effect of attenuated epinephrine and elevated insulin on intramuscular hormone sensitivity lipase activity (HSLa) during exercise, seven men performed 120 min of semirecumbent cycling (60% peak pulmonary oxygen uptake) on two occasions while ingesting either 250 ml of a 6.4% carbohydrate (GLU) or sweet placebo (CON) beverage at the onset of, and at 15 min intervals throughout, exercise. Muscle biopsies obtained before and immediately after exercise were analyzed for HSLa. Blood samples were simultaneously obtained from a brachial artery and a femoral vein before and during exercise, and leg blood flow was measured by thermodilution in the femoral vein. Net leg glycerol and lactate release and net leg glucose and free fatty acid (FFA) uptake were calculated from these measures. Insulin and epinephrine were also measured in arterial blood before and throughout exercise. During GLU, insulin was elevated (120 min: CON, 11.4 +/- 2.4, GLU, 35.3 +/- 6.9 pM, P < 0.05) and epinephrine suppressed (120 min: CON, 6.1 +/- 2.5, GLU, 2.1 +/- 0.9 nM; P < 0.05) compared with CON. Carbohydrate feeding also resulted in suppressed (P < 0.05) HSLa relative to CON (120 min: CON, 1.71 +/- 0.18, GLU, 1.27 +/- 0.16 mmol.min-1.kg dry mass-1). There were no differences in leg lactate or glycerol release when trials were compared, but leg FFA uptake was lower (120 min: CON, 0.29 +/- 0.06, GLU, 0.82 +/- 0.09 mmol/min) and leg glucose uptake higher (120 min: CON, 3.16 +/- 0.59, GLU, 1.37 +/- 0.37 mmol/min) in GLU compared with CON. These results demonstrate that circulating insulin and epinephrine play a role in HSLa in contracting skeletal muscle.  相似文献   

16.
This study examined the effect of epinephrine on glucose disposal during moderate exercise when glycogenolytic flux was limited by low preexercise skeletal muscle glycogen availability. Six male subjects cycled for 40 min at 59 +/- 1% peak pulmonary O2 uptake on two occasions, either without (CON) or with (EPI) epinephrine infusion starting after 20 min of exercise. On the day before each experimental trial, subjects completed fatiguing exercise and then maintained a low carbohydrate diet to lower muscle glycogen. Muscle samples were obtained after 20 and 40 min of exercise, and glucose kinetics were measured using [6,6-2H]glucose. Exercise increased plasma epinephrine above resting concentrations in both trials, and plasma epinephrine was higher (P < 0.05) during the final 20 min in EPI compared with CON. Muscle glycogen levels were low after 20 min of exercise (CON, 117 +/- 25; EPI, 122 +/- 20 mmol/kg dry matter), and net muscle glycogen breakdown and muscle glucose 6-phosphate levels during the subsequent 20 min of exercise were unaffected by epinephrine infusion. Plasma glucose increased with epinephrine infusion (i.e., 20-40 min), and this was due to a decrease in glucose disposal (R(d)) (40 min: CON, 33.8 +/- 3; EPI, 20.9 +/- 4.9 micromol. kg(-1). min(-1), P < 0.05), because the exercise-induced rise in glucose rate of appearance was similar in the trials. These results show that glucose R(d) during exercise is reduced by elevated plasma epinephrine, even when muscle glycogen availability and utilization are low. This suggests that the effect of epinephrine does not appear to be mediated by increased glucose 6-phosphate, secondary to enhanced muscle glycogenolysis, but may be linked to a direct effect of epinephrine on sarcolemmal glucose transport.  相似文献   

17.
Nitric oxide synthase (NOS) inhibition has been shown in humans to attenuate exercise-induced increases in muscle glucose uptake. We examined the effect of infusing the NO precursor L-arginine (L-Arg) on glucose kinetics during exercise in humans. Nine endurance-trained males cycled for 120 min at 72+/-1% Vo(2 peak) followed immediately by a 15-min "all-out" cycling performance bout. A [6,6-(2)H]glucose tracer was infused throughout exercise, and either saline alone (Control, CON) or saline containing L-Arg HCL (L-Arg, 30 g at 0.5 g/min) was confused in a double-blind, randomized order during the last 60 min of exercise. L-Arg augmented the increases in glucose rate of appearance, glucose rate of disappearance, and glucose clearance rate (L-Arg: 16.1+/-1.8 ml.min(-1).kg(-1); CON: 11.9+/- 0.7 ml.min(-1).kg(-1) at 120 min, P<0.05) during exercise, with a net effect of reducing plasma glucose concentration during exercise. L-Arg infusion had no significant effect on plasma insulin concentration but attenuated the increase in nonesterified fatty acid and glycerol concentrations during exercise. L-Arg infusion had no effect on cycling exercise performance. In conclusion, L-Arg infusion during exercise significantly increases skeletal muscle glucose clearance in humans. Because plasma insulin concentration was unaffected by L-Arg infusion, greater NO production may have been responsible for this effect.  相似文献   

18.
This study examined the effects of elevated free fatty acid (FFA) provision on the regulation of pyruvate dehydrogenase (PDH) activity and malonyl-CoA (M-CoA) content in human skeletal muscle during moderate-intensity exercise. Seven men rested for 30 min and cycled for 10 min at 40% and 10 min at 65% of maximal O(2) uptake while being infused with either Intralipid and heparin (Int) or saline (control). Muscle biopsies were taken at 0, 1 (rest-to-exercise transition), 10, and 20 min. Exercise plasma FFA were elevated (0.99 +/- 0.11 vs. 0.33 +/- 0.03 mM), and the respiratory exchange ratio was reduced during Int (0.87 +/- 0.02) vs. control (0.91 +/- 0.01). PDH activation was lower during Int at 1 min (1.33 +/- 0.19 vs. 2.07 +/- 0.14 mmol. min(-1). kg(-1) wet muscle) and throughout exercise. Muscle pyruvate was reduced during Int at rest [0.17 +/- 0.03 vs. 0.25 +/- 0.03 mmol/kg dry muscle (dm)] but increased above control during exercise. NADH was higher during Int vs. control at rest and 1 min of exercise (0.122 +/- 0.016 vs. 0.102 +/- 0.005 and 0.182 +/- 0.016 vs. 0.150 +/- 0.016 mmol/kg dm), but not at 10 and 20 min. M-CoA was lower during Int vs. control at rest and 20 min of exercise (1.12 +/- 0.22 vs. 1.43 +/- 0.17 and 1.33 +/- 0.16 vs. 1.84 +/- 0.17 micromol/kg dm). The reduced PDH activation with elevated FFA during the rest-to-exercise transition was related to higher mitochondrial NADH at rest and 1 min of exercise and lower muscle pyruvate at rest. The decreased M-CoA may have increased fat oxidation during exercise with elevated FFA by reducing carnitine palmitoyltransferase I inhibition and increasing mitochondrial FFA transport.  相似文献   

19.
To determine the influence of a diuretic-induced reduction in plasma volume (PV) on substrate turnover and oxidation, 10 healthy young males were studied during 60 min of cycling exercise at 61% peak oxygen uptake on two separate occasions > or =1 wk apart. Exercise was performed under control conditions (CON; placebo), and after 4 days of diuretic administration (DIU; Novotriamazide; 100 mg triamterene and 50 mg hydrochlorothiazide). DIU resulted in a calculated reduction of PV by 14.6 +/- 3.3% (P < 0.05). Rates of glucose appearance (R(a)) and disappearance (R(d)) and glycerol R(a) were determined by using primed constant infusions of [6,6-(2)H]glucose and [(2)H(5)]glycerol, respectively. No differences in oxygen uptake during exercise were observed between trials. Main effects for condition (P < 0.05) were observed for plasma glucose and glycerol, such that the values observed for DIU were higher than for CON. No differences were observed in plasma lactate and serum free fatty acid concentrations either at rest or during exercise. Hypohydration led to lower (P < 0.05) glucose R(a) and R(d) at rest and at 15 and 30 min of exercise, but by 60 min, the effects were reversed (P < 0. 05). Hypohydration had no effect on rates of whole body lipolysis or total carbohydrate or fat oxidation. A main effect for condition (P < 0.05) was observed for plasma glucagon concentrations such that larger values were observed for DIU than for CON. A similar decline in plasma insulin occurred with exercise in both conditions. These results indicate that diuretic-induced reductions in PV decreases glucose kinetics during moderate-intensity dynamic exercise in the absence of changes in total carbohydrate and fat oxidation. The specific effect on glucose kinetics depends on the duration of the exercise.  相似文献   

20.
Epinephrine increases glycogenolysis in resting skeletal muscle, but less is known about the effects of epinephrine on exercising muscle. To study this, epinephrine was given intraarterially to one leg during two-legged cycle exercise in nine healthy males. The epinephrine-stimulated (EPI) and non-stimulated (C) legs were compared with regard to glycogen, glucose, glucose 6-phosphate (G6P), alpha-glycerophosphate (alpha-GP), and lactate contents in muscle biopsies taken before and after the 45-min submaximal exercise, as well as brachial arterial-femoral venous (a-fv) differences for epinephrine, norepinephrine, lactate, glucose, and O2 during exercise. During exercise the arterial plasma epinephrine concentration was 4.8 +/- 0.8 nmol/l and the femoral venous epinephrine concentrations were 10.3 +/- 2.1 and 3.9 +/- 0.6 nmol/l, respectively, in the EPI and C leg. During exercise the a-fv difference for lactate was greater (-0.41 +/- 0.14 vs. -0.21 +/- 0.14 mmol/l; P less than 0.001), and the a-fv difference for glucose was smaller (0.07 +/- 0.12 vs. 0.24 +/- 0.12 mmol/l; P less than 0.01) in the EPI than in the C leg, but the a-fv differences for O2 were similar. Muscle glycogen depletion (137 +/- 63 vs. 99 +/- 43 mmol/kg dry muscle; P less than 0.1) and the muscle concentrations of glucose (P less than 0.05), alpha-GP (P less than 0.1), G6P (P greater than 0.1), and lactate (P greater than 0.1) tended to be higher in the EPI than the C leg after exercise. These findings suggest that physiological concentrations of epinephrine may enhance muscle glycogenolysis during submaximal exercise in male subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号