首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
1. Conservation planning is often hampered by the lack of causal quantitative links between landscape characteristics, restoration actions and habitat conditions that impact the status of imperilled species. Here we present a first step toward linking actions on the landscape to the population status of endangered stream‐type Chinook salmon (Oncorhynchus tshawytscha). 2. We developed relationships between land use, landscape characteristics and freshwater habitat of spring Chinook salmon in the Wenatchee River basin. Available data allowed us to find relationships that described water temperatures at several life stages (prespawning, egg incubation and summer rearing) and substratum characteristics, including fine sediments, cobble and embeddedness. Predictors included altitude, gradient, mean annual precipitation, total and riparian forest cover, road density, impervious surface and alluvium. We used a model averaging approach to account for parameter and model selection uncertainty. Key predictors were total forest cover and impervious surface area for prespawning and summer rearing temperatures; precipitation and stream gradients were important predictors of the percent of fine sediments in stream substrata. 3. We estimated habitat conditions using these relationships in three alternative landscape scenarios: historical, no restoration and one that included a set of restoration actions from local conservation planning. We found that prespawning and summer temperatures were estimated to be slightly higher historically relative to current conditions in dry sparsely forested areas, but lower in some important Chinook salmon spawning and rearing areas and lower in those locations under the restoration scenario. Fine sediments were lower in the historical scenario and were reduced as a consequence of restoration actions in two areas currently unoccupied by Chinook salmon that contain reaches with some potential for high quality spawning and rearing. Cobble and embeddedness in general were predicted to be higher historically and changed little as a result of restoration actions relative to current conditions. 4. This modelling framework converts suites of restoration actions into changes in habitat condition, thereby enabling restoration planners to evaluate alternative combinations of proposed actions. It also provides inputs to models linking habitat conditions to population status. This approach represents a first step in estimating impacts of restoration strategies, and can provide key information for conservation managers and planners.  相似文献   

2.
River restoration plans often propose multiple rehabilitation actions to address key habitat impairments, but they rarely attempt to quantify the potential benefits of alternative sets of actions for targeted biota. We use geomorphic and biological analyses to estimate restoration potential under three alternative scenarios for a 64‐km section of the Trinity River, California, between the North Fork Trinity River and Lewiston Dam, which is the focus of habitat rehabilitation efforts under the Trinity River Restoration Program. The three scenarios are (1) increasing habitat quality by wood additions and alcove construction, (2) increasing habitat quantity by increasing sinuosity and side‐channel length, and (3) increasing both habitat quality and quantity. For each scenario, we used existing stream habitat and juvenile salmonid data from previous studies to estimate potential improvements in fry or pre‐smolt production. The potential increase in Oncorhynchus tshawytscha (Chinook salmon) and O. mykiss (steelhead) fry rearing capacity was 62 and 67%, respectively, for Scenario 1 (increasing habitat quality), and 36 and 44% for Scenario 2 (increasing habitat quantity). Only the most optimistic Scenario 3 (increasing both habitat quality and quantity) more than doubles potential juvenile salmonid production (112% increase in Chinook fry capacity and 107% increase in steelhead fry capacity). These quantitative predictions are useful in developing realistic restoration targets and evaluating whether proposed restoration actions can achieve the aims of a restoration program.  相似文献   

3.
Diel variation in habitat use of subyearling Chinook salmon (Oncorhynchus tshawytscha), subyearling coho salmon (O. kisutch), yearling steelhead (O. mykiss), and yearling Atlantic salmon (Salmo salar) was examined during the spring in two tributaries of Lake Ontario. A total of 1318 habitat observations were made on juvenile salmonids including 367 on steelhead, 351 on Chinook salmon, 333 on Atlantic salmon, and 261 on coho salmon. Steelhead exhibited the most diel variation in habitat use and Chinook the least. Juvenile salmonids were generally associated with more cover and larger substrate during the day in both streams. Interspecific differences in habitat use in both streams occurred with Atlantic salmon (fast velocities) and coho salmon (pools) using the least similar habitat. Chinook salmon and Atlantic salmon used similar habitat in both streams. These findings should help guide future management actions specific to habitat protection and restoration of Atlantic salmon in Lake Ontario tributaries.  相似文献   

4.
1. Smallmouth bass (Micropterus dolomieu) have been widely introduced to fresh waters throughout the world to promote recreational fishing opportunities. In the Pacific Northwest (U.S.A.), upstream range expansions of predatory bass, especially into subyearling salmon‐rearing grounds, are of increasing conservation concern, yet have received little scientific inquiry. Understanding the habitat characteristics that influence bass distribution and the timing and extent of bass and salmon overlap will facilitate the development of management strategies that mitigate potential ecological impacts of bass. 2. We employed a spatially continuous sampling design to determine the extent of bass and subyearling Chinook salmon (Oncorhynchus tshawytscha) sympatry in the North Fork John Day River (NFJDR), a free‐flowing river system in the Columbia River Basin that contains an upstream expanding population of non‐native bass. Extensive (i.e. 53 km) surveys were conducted over 2 years and during an early and late summer period of each year, because these seasons provide a strong contrast in the river’s water temperature and flow condition. Classification and regression trees were applied to determine the primary habitat correlates of bass abundance at reach and channel‐unit scales. 3. Our study revealed that bass seasonally occupy up to 22% of the length of the mainstem NFJDR where subyearling Chinook salmon occur, and the primary period of sympatry between these species was in the early summer and not during peak water temperatures in late summer. Where these species co‐occurred, bass occupied 60–76% of channel units used by subyearling Chinook salmon in the early summer and 28–46% of the channel units they occupied in the late summer. Because these rearing salmon were well below the gape limitation of bass, this overlap could result in either direct predation or sublethal effects of bass on subyearling Chinook salmon. The upstream extent of bass increased 10–23 km (2009 and 2010, respectively) as stream temperatures seasonally warmed, but subyearling Chinook salmon were also found farther upstream during this time. 4. Our multiscale analysis suggests that bass were selecting habitat based on antecedent thermal history at a broad scale, and if satisfactory temperature conditions were met, mesoscale habitat features (i.e. channel‐unit type and depth) played an additional role in determining bass abundance. The upstream extent of bass in the late summer corresponded to a high‐gradient geomorphic discontinuity in the NFJDR, which probably hindered further upstream movements of bass. The habitat determinants and upstream extent of bass were largely consistent across years, despite marked differences in the magnitude and timing of spring peak flows prior to bass spawning. 5. The overriding influence of water temperature on smallmouth bass distribution suggests that managers may be able limit future upstream range expansions of bass into salmon‐rearing habitat by concentrating on restoration activities that mitigate climate‐ or land‐use‐related stream warming. These management activities could be prioritised to capitalise on survival bottlenecks in the life history of bass and spatially focused on landscape knick points such as high‐gradient discontinuities to discourage further upstream movements of bass.  相似文献   

5.
After decades of suppression, fire is returning to forests of the western United States through wildfires and prescribed burns. These fires may aid restoration of vegetation structure and processes, which could improve conditions for wildlife species and reduce severe wildfire risk. Understanding response of wildlife species to fires is essential to forest restoration because contemporary fires may not have the same effects as historical fires. Recent fires in the Chiricahua Mountains of southeastern Arizona provided opportunity to investigate long‐term effects of burn severity on habitat selection of a native wildlife species. We surveyed burned forest for squirrel feeding sign and related vegetation characteristics to frequency of feeding sign occurrence. We used radio‐telemetry within fire‐influenced forest to determine home ranges of Mexican fox squirrels, Sciurus nayaritensis chiricahuae, and compared vegetation characteristics within home ranges to random areas available to squirrels throughout burned conifer forest. Squirrels fed in forest with open understory and closed canopy cover. Vegetation within home ranges was characterized by lower understory density, consistent with the effects of low‐severity fire, and larger trees than random locations. Our results suggest that return of low‐severity fire can help restore habitat for Mexican fox squirrels and other native wildlife species with similar habitat affiliations in forests with a historical regime of frequent, low‐severity fire. Our study contributes to an understanding of the role and impact of fire in forest ecosystems and the implications for forest restoration as fire returns to the region.  相似文献   

6.
In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out‐migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post‐restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density‐dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.  相似文献   

7.
Concurrent, distribution-wide abundance declines of some Pacific salmon species, including Chinook salmon (Oncorhynchus tshawytscha), highlights the need to understand how vulnerability at different life stages to climate stressors affects population dynamics and fisheries sustainability. Yukon River Chinook salmon stocks are among the largest subarctic populations, near the northernmost extent of the species range. Existing research suggests that Yukon River Chinook salmon population dynamics are largely driven by factors occurring between the adult spawner life stage and their offspring's first summer at sea (second year post-hatching). However, specific mechanisms sustaining chronic poor productivity are unknown, and there is a tremendous sense of urgency to understand causes, as declines of these stocks have taken a serious toll on commercial, recreational, and indigenous subsistence fisheries. Therefore, we leveraged multiple existing datasets spanning parent and juvenile stages of life history in freshwater and marine habitats. We analyzed environmental data in association with the production of offspring that survive to the marine juvenile stage (juveniles per spawner). These analyses suggest more than 45% of the variability in the production of juvenile Chinook salmon is associated with river temperatures or water discharge levels during the parent spawning migration. Over the past two decades, parents that experienced warmer water temperatures and lower discharge in the mainstem Yukon River produced fewer juveniles per spawning adult. We propose the adult spawner life stage as a critical period regulating population dynamics. We also propose a conceptual model that can explain associations between population dynamics and climate stressors using independent data focused on marine nutrition and freshwater heat stress. It is sobering to consider that some of the northernmost Pacific salmon habitats may already be unfavorable to these cold-water species. Our findings have immediate implications, given the common assumption that northern ranges of Pacific salmon offer refugia from climate stressors.  相似文献   

8.
To combat decades of anthropogenic degradation, restoration programs seek to improve ecological conditions through habitat enhancement. Rapid assessments of condition are needed to support adaptive management programs and improve the understanding of restoration effects at a range of spatial and temporal scales. Previous attempts to evaluate restoration practices on large river systems have been hampered by assessment tools that are irreproducible or metrics without clear connections to population responses. We modified a demonstration flow assessment approach to assess the realized changes in habitat quantity and quality attributable to restoration effects. We evaluated the technique's ability to predict anadromous salmonid habitat and survey reproducibility on the Trinity River in northern California. Fish preference clearly aligned with a priori designations of habitat quality: the odds of observing rearing Chinook or coho salmon within high‐quality habitats ranged between 10 and 16 times greater than low qualities, and in all cases the highest counts were associated with highest quality habitat. In addition, the technique proved to be reproducible with “substantial” to “almost perfect” agreement of results from independent crews, a considerable improvement over a previous demonstration flow assessment. These results support the use of the technique for assessing changes in habitat from restoration efforts and for informing adaptive management decisions.  相似文献   

9.
Using acoustic telemetry methods on large numbers of tagged fish, we studied how the holding behavior of Chinook salmon and steelhead smolts could be related to habitat features and spatial and temporal variables on a highly altered section of the Sacramento River. We viewed downstream migration as a process in which fish transition between moving and holding states, and used a binomial and negative binomial Generalized Linear Model to analyze two aspects of holding: 1) probability of holding, and 2) holding time. For Chinook salmon, the probability of holding increased as wood size and fine substrates increased; holding time increased as overhead shade increased. For steelhead, holding behavior was only weakly related to habitat variables, in contrast to the strong relationships with spatial and temporal variables. For both species, the probability of holding increased when distance from the release location decreased and instream flows decreased. We found support for three main findings: 1) spatial and temporal factors have considerably greater influence on Chinook salmon and steelhead smolt holding behavior than nearshore habitat features; 2) holding behaviors of Chinook salmon smolts are influenced more strongly by habitat features than steelhead smolts; and 3) incorporation of habitat features such as large woody material and overhead shade should be considered when conducting nearshore bank rehabilitation projects to increase cover from predators and provide velocity refuge, improving holding habitat during downstream migration.  相似文献   

10.
Spawning site selection by female salmon is based on complex and poorly understood tradeoffs between the homing instinct and the availability of appropriate habitat for successful reproduction. Previous studies have shown that hatchery-origin Chinook salmon (Oncorhynchus tshawytscha) released from different acclimation sites return with varying degrees of fidelity to these areas. To investigate the possibility that homing fidelity is associated with aquatic habitat conditions, we quantified physical habitat throughout 165?km in the upper Yakima River basin (Washington, USA) and mapped redd and carcass locations from 2004 to 2008. Principal components analysis identified differences in substrate, cover, stream width, and gradient among reaches surrounding acclimation sites, and canonical correspondence analysis revealed that these differences in habitat characteristics were associated with spatial patterns of spawning (p?<?0.01). These analyses indicated that female salmon may forego spawning near their acclimation area if the surrounding habitat is unsuitable. Evaluating the spatial context of acclimation areas in relation to surrounding habitat may provide essential information for effectively managing supplementation programs and prioritizing restoration actions.  相似文献   

11.
Restoration of estuarine habitats is essential for the conservation and recovery of depressed Pacific salmon populations. However, assessing the functions of recently restored habitat poses a number of problems because of the transitory occurrence of salmonids in any one location. We propose assessment criteria and metrics that are based on the habitat’s capacity, opportunity, and realized function to enhance survivability of juvenile salmon. Because of the paucity of data relating capacity and opportunity attributes to realized function (e.g. growth, consumption rate, survival), there continues to be a need for manipulative experiments to assess the developmental status of restoration sites. Such a self-monitoring approach of letting the fish diagnose the ecological state of restoration would effectively address the small-scale, site-specific assessment goals and criteria, but ignores the larger-scale issues relating to the ability of diverse salmon species and life histories to occupy estuarine habitat landscapes. If coastal restoration is going to contribute the recovery of anadromous salmonid populations, a landscape perspective is fundamental to restoration planning, implementation, and particularly assessment.  相似文献   

12.
We sought to identify those in‐site habitat characteristics that best predict distributions of woodland birds in the box–ironbark region of central Victoria, Australia. Our focus was on comparing and melding outcomes from several forms of ensemble modelling methods, which account for uncertainty in model structure and allow assessments of variable importance. We used boosted regression trees (BRT), Bayesian additive regression trees (BART) and random forests (RF) to model bird occurrences for 47 species using 43 predictor variables measured at 184 2‐ha sites. The majority of predictor variables were in‐site habitat variables, but vegetation cover in the surrounding landscape (500 m radius) and geographic coordinates were included to account for known effects of habitat fragmentation and of geographic clines. A consensus model also was developed, built from averaged predictions from the three techniques. We subdivided the avifauna into guilds and other categories (e.g. conservation status) to examine whether there were differences among such subdivisions. Based on cross validation, the consensus model and RF performed best, followed by BART and then BRT. Of the in‐site habitat variables, the basal area of red‐ironbark trees and groundstorey characteristics such as fine‐ and coarse‐litter cover and litter depth had greatest influence on bird occurrences. These results can inform on‐site restoration actions (what to restore) and, therefore, complement strategic landscape planning (where and when to restore).  相似文献   

13.
The relationships between habitat variables and population densities of masu salmon (Oncorhynchus masou), rosyface dace (Leuciscus ezoe), Siberian stone loach (Noemacheilus barbatulus) and wrinklehead sculpin (Cottus nozawae) were examined by data collected at 55 reaches in forest and grassland streams in northern Hokkaido, Japan. Regression analysis suggested that salmon and dace densities were affected by water temperature (negative for salmon, positive for dace) and structural habitat factors (woody debris for salmon, pools for dace). Salmon density was higher in forest reaches than in grassland reaches, whereas dace density was higher in grassland reaches, suggesting that the removal of riparian forest had raised water temperature and allowed upstream invasions by dace. In contrast to salmon and dace, neither the density of loach nor sculpin differed between the forest and grassland reaches. For their densities, a negative effect of each on the other was most important, suggesting a strong effect of interspecific competition between loach and sculpin on their distributions. However, regression models also suggested that substrate heterogeneity mediated the outcome of their interspecific competition. On the basis of the results, a scenario is predicted for a fish-assemblage change with a typical land-development process in Hokkaido, and the importance of leaving or restoring riparian buffer for conservation and restoration of stream habitat is emphasized.  相似文献   

14.
We investigated habitat use by juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (O. kisutch) to identify environmental characteristics that may define their optimal marine habitat. We utilized physical and biological data from four cruises in the northern California Current system from Newport, Oregon, to Crescent City, California, in June and August 2000 and 2002. A non-parametric statistical method was used to analyze and select environmental parameters that best defined ocean habitat for each species. Regression trees were generated for all cruises combined to select the most important habitat variables. Chlorophyll a concentration best defined habitat of yearling Chinook salmon, while decapod larvae, salinity, and neuston biovolume defined habitat of yearling coho salmon. Using criteria from the regression tree analysis, GIS maps were produced to show that the habitat of yearling Chinook salmon was widespread over the continental shelf and the habitat of yearling coho salmon was variable and mainly north of Cape Blanco.  相似文献   

15.
Gravel augmentation is often applied to rivers and streams to rehabilitate salmonid spawning and incubation habitat. However, the effect of gravel size on salmon spawning utilization and embryo survival during incubation is not well understood. We conducted an experiment on a regulated and previously mined Northern California salmonid‐bearing stream in which different sized gravel (small, medium, and large) patches were placed into the stream's degraded spawning reach. We documented Oncorhynchus tshawytscha (Chinook salmon) spawning activity within the three gravel sizes for two seasons. In addition, we deployed Chinook salmon embryos into each gravel size patch and allowed them to incubate until estimated emergence time. Although all experimental gravel sizes were predicted to be within the spawning population's mobilization capabilities, model results indicated the probability of salmon building redds decreased as substrate size increased. Conversely, embryo survival increased as gravel size increased. A possible mechanism of disparate Chinook salmon embryo survival is provided by an observed decrease in embryo survival correlating with greater presence of embryo predators (leeches), which are associated with smaller gravel. Our results indicate a parent‐offspring conflict in optimal spawning gravel size for Chinook salmon, and suggest that an intermediate gravel size would maximize overall reproductive success across both spawning and incubation life stages.  相似文献   

16.
Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi‐national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.  相似文献   

17.
We examined the assumption that landscape heterogeneity similarly influences the spatial distribution of genetic diversity in closely related and geographically overlapping species. Accordingly, we evaluated the influence of watershed affiliation and nine habitat variables from four categories (spatial isolation, habitat size, climate, and ecology) on population divergence in three species of Pacific salmon (Oncorhynchus tshawytscha, O. kisutch, and O. keta) from three contiguous watersheds in subarctic North America. By incorporating spatial data we found that the three watersheds did not form the first level of hierarchical population structure as predicted. Instead, each species exhibited a broadly similar spatial pattern: a single coastal group with populations from all watersheds and one or more inland groups primarily in the largest watershed. These results imply that the spatial scale of conservation should extend across watersheds rather than at the watershed level which is the scale for fishery management. Three independent methods of multivariate analysis identified two variables as having influence on population divergence across all watersheds: precipitation in all species and subbasin area (SBA) in Chinook. Although we found general broad-scale congruence in the spatial patterns of population divergence and evidence that precipitation may influence population divergence in each species, we also found differences in the level of population divergence (coho > Chinook and chum) and evidence that SBA may influence population divergence only in Chinook. These differences among species support a species-specific approach to evaluating and planning for the influence of broad-scale impacts such as climate change.  相似文献   

18.
1. The effects of woody debris on stream habitat of juvenile masu salmon ( Oncorhynchus masou ) were examined at two spatial scales, stream reach and channel unit, for first to thirdorder tributaries of the Teshio River in northern Hokkaido, Japan. The fortyeight study reaches were classified into three distinct types: coarsesubstrate steppool (CSP), coarsesubstrate poolriffle (CPR) and finesubstrate poolriffle (FPR) reaches. Each reach type included reaches with different riparian settings, broadly classified as forest (relatively undisturbed forest and secondary forest after fires) or grassland (bamboo bushland and pasture).
2. The reachscale analyses showed that neither total pool volume nor pooltopool spacing was correlated with woody debris abundance in any of the three reach types. Masu salmon density was positively correlated with both woodydebris cover area and total cover area, but not with total pool volume in the reaches.
3. Channelunitscale analyses revealed that woody debris reduced nonpool velocity, increased pool depth and retained fine sediment in pools in FPR reaches, where the size of woody debris was very large relative to the substrate material size. However, woody debris did not influence any of the hydraulic variables (depth, velocity, substrate) in either nonpools or pools of CSP and CPR reaches. Habitat use by masu salmon in nonpools or pools was affected by woodydebris cover area or total cover area rather than by hydraulic variables in any of the reach types.
4. The effects of woody debris on habitat at the reach and channelunit scales in the study area were less than those indicated by previous work in the Pacific Northwest, North America, owing to the relatively small size of the riparian trees. However, the overall results suggested that woody debris in the study area contributed to masu salmon habitat by providing cover at the smaller, microhabitat scale.  相似文献   

19.
Experiences of migratory species in one habitat may affect their survival in the next habitat, in what is known as carryover effects. These effects are especially relevant for understanding how freshwater experience affects survival in anadromous fishes. Here, we study the carryover effects of juvenile salmon passage through a hydropower system (Snake and Columbia rivers, northwestern United States). To reduce the direct effect of hydrosystem passage on juveniles, some fishes are transported through the hydrosystem in barges, while the others are allowed to migrate in‐river. Although hydrosystem survival of transported fishes is greater than that of their run‐of‐river counterparts, their relative juvenile‐to‐adult survival (hereafter survival) can be less. We tested for carryover effects using generalized linear mixed effects models of survival with over 1 million tagged Chinook salmon, Oncorhynchus tshawytscha (Walbaum) (Salmonidae), migrating in 1999–2013. Carryover effects were identified with rear‐type (wild vs. hatchery), passage‐type (run‐of‐river vs. transported), and freshwater and marine covariates. Importantly, the Pacific Decadal Oscillation (PDO) index characterizing cool/warm (i.e., productive/nonproductive) ocean phases had a strong influence on the relative survival of rear‐ and passage‐types. Specifically, transportation benefited wild Chinook salmon more in cool PDO years, while hatchery counterparts benefited more in warm PDO years. Transportation was detrimental for wild Chinook salmon migrating early in the season, but beneficial for later season migrants. Hatchery counterparts benefited from transportation throughout the season. Altogether, wild fish could benefit from transportation approximately 2 weeks earlier during cool PDO years, with still a benefit to hatchery counterparts. Furthermore, we found some support for hypotheses related to higher survival with increased river flow, high predation in the estuary and plume areas, and faster migration and development‐related increased survival with temperature. Thus, pre‐ and within‐season information on local‐ and broad‐scale conditions across habitats can be useful for planning and implementing real‐time conservation programs.  相似文献   

20.
In the spring and summer of 2019–2020, the ‘Black Summer’ bushfires burned more than 97 000 km2 of predominantly Eucalyptus dominated forest habitat in eastern Australia. The Black Summer bushfires prompted great concern that many species had been imperilled by the fires. Here, we investigate the effects that fire severity had on the habitat and abundance of a cool climate lizard Eulamprus tympanum that was identified as a species of concern because 37% of its habitat was burnt in the Black Summer bushfires. We quantified habitat structure and the abundance of E. tympanum at sites which were unburnt, burnt at low severity and at high severity 10, 15 and 23 months after the fires. Our classification of fire severity based on scorch height and canopy status corresponded well with the Australian Government Google Earth Engine Burnt Area Map (AUS GEEBAM) fire severity layer. Ten months after the fires, sites burnt at high severity had less canopy cover, more bare ground and less fine fuel than sites burnt at low severity or unburnt sites. The abundance of E. tympanum varied with survey occasion and was greatest during the warmest sampling period and lowest during the coolest sampling period. The abundance of E. tympanum was consistently lower on sites burnt at high severity than sites burnt at low severity or unburnt sites. Our findings show that higher severity fires had a greater effect on E. tympanum than low severity fires. Our results suggest that E. tympanum were likely to have persisted in burnt sites, with populations in low severity and unburnt sites facilitating population recovery in areas burnt at high severity. Our results also suggest that wildfire impacts on E. tympanum populations will increase because the frequency and extent of severe fires are expected to increase due to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号