首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Several members of the genus Methanosarcina were investigated by room-temperature and low-temperature difference spectroscopy for the presence of cytochromes. In combination with potentiometric titrations two membrane-bound b-cytochromes and one membrane-bound c-cytochrome could be detected in cells grown on methanol or trimethylamine. Very probably acetate-grown cells contained an additional cytochrome b. The midpoint potentials of the two b-type cytochromes were Em1 = -325 mV and Em2 = -183 mV, respectively. The additional b cytochrome formed during growth on acetate exhibited a midpoint potential of Em3 = -250 mV.  相似文献   

3.
4.
Kelemen BR  Schultz LW  Sweeney RY  Raines RT 《Biochemistry》2000,39(47):14487-14494
Ribonuclease A (RNase A) catalyzes the cleavage of RNA after pyrimidine nucleotides. When bound in the active site, the base of a pyrimidine nucleotide forms hydrogen bonds with the side chain of Thr45. Here, the role of Thr45 was probed by using the wild-type enzyme, its T45G variant, X-ray diffraction analysis, and synthetic oligonucleotides as ligands and substrates. Catalytic specificity was determined with the fluorogenic substrate: 6-carboxyfluorescein approximately dArXdAdA approximately 6-carboxytetramethylrhodamine (6-FAM approximately dArXdAdA approximately 6-TAMRA), where X = C, U, A, or G. Wild-type RNase A cleaves 10(6)-fold faster when X = C than when X = A. Likewise, its affinity for the non-hydrolyzable oligonucleotide 6-FAM approximately d(CAA) is 50-fold greater than for 6-FAM approximately d(AAA). T45G RNase A cleaves 6-FAM approximately dArAdAdA approximately 6-TAMRA 10(2)-fold faster than does the wild-type enzyme. The structure of crystalline T45G RNase A, determined at 1.8-A resolution by X-ray diffraction analysis, does not reveal new potential interactions with a nucleobase. Indeed, the two enzymes have a similar affinity for 6-FAM approximately d(AAA). The importance of pentofuranosyl ring conformation to nucleotide specificity was probed with 6-FAM approximately d(AU(F)AA), where U(F) is 2'-deoxy-2'-fluorouridine. The conformation of the pentofuranosyl ring in dU(F) is known to be more similar to that in rU than dU. The affinity of wild-type RNase A for 6-FAM approximately d(AU(F)AA) is 50-fold lower than for 6-FAM approximately d(AUAA). This discrimination is lost in the T45G enzyme. Together, these data indicate that the side chain of Thr45 plays multiple roles-interacting favorably with pyrimidine nucleobases but unfavorably with purine nucleobases. Moreover, a ribose-like ring disfavors the interaction of Thr45 with a pyrimidine nucleobase, suggesting that Thr45 enhances catalysis by ground-state destabilization.  相似文献   

5.
6.
The affinity labelling of bovine pancreatic ribonuclease A with 6-chloropurine 5' ribonucleotide allowed us to postulate the existence of a new phosphate-binding subsite, P2, adjacent to the main purine-binding subsite. The study of this reaction in greater detail together with the study of a complex of the enzyme with the pentanucleotide pApUpApApG by means of model building and computer graphics indicate that at least five phosphate groups of the RNA molecule can interact with five positive regions of the enzyme. In each one a lysine residue is present: Lys-104, -66, -41, -7 and -37 appear sequentially in the 5'----3' direction. The distance between each lysine is 0.7-0.8 nm, the same distance as that found between the phosphate groups on the RNA molecule. The study also enabled many amino acid residues of the enzyme to be described as forming part of, or being near, the different binding subsites.  相似文献   

7.
A unique resonance in the 13C NMR spectrum of [13C]methylated ribonuclease A has been assigned to a N epsilon, N-dimethylated active site residue, lysine 41. The chemical shift of this resonance was studied over the pH range 3 to 11, and the titration curve showed two inflection points, at pH 5.7 and 9.0. The higher pKa, designated pKa1, was assigned to the ionization of the lysyl residue itself while the pKa of 5.7, designated pKa2, was assigned on the basis of its pKa to the ionization of a histidyl residue which is somehow coupled to lysine 41. Both pKa values are measurably perturbed by the binding of active site ligands including nucleotides, nucleosides, phosphate, and sulfate. In most cases, the alterations in pKa values induced by the ligands were larger for pKa2. The ligand-induced perturbations in pKa2 generally paralleled those reported for histidine 12, another active site residue (Griffin, J. H., Schechter, A. N., and Cohen, J. S. (1973) Ann. N. Y. Acad. Sci. 222, 693-708). The sensitivity of the N epsilon, N-dimethylated lysine 41 resonance to the histidyl ionization may result from a conformational change in the active site region of ribonuclease which is coupled to the histidyl ionization. This coupling between lysine 41 and another ribonuclease residue, which has not been documented previously, offers new insight into the interrelationship between residues in the active site of this well characterized enzyme.  相似文献   

8.
9.
The crystal structure of aryl-alcohol oxidase (AAO), a flavoenzyme involved in lignin degradation, reveals two active-site histidines, whose role in the two enzyme half-reactions was investigated. The redox state of flavin during turnover of the variants obtained show a stronger histidine involvement in the reductive than in the oxidative half-reaction. This was confirmed by the k(cat)/K(m(Al)) and reduction constants that are 2-3 orders of magnitude decreased for the His546 variants and up to 5 orders for the His502 variants, while the corresponding O(2) constants only decreased up to 1 order of magnitude. These results confirm His502 as the catalytic base in the AAO reductive half-reaction. The solvent kinetic isotope effect (KIE) revealed that hydroxyl proton abstraction is partially limiting the reaction, while the α-deuterated alcohol KIE showed a stereoselective hydride transfer. Concerning the oxidative half-reaction, directed mutagenesis and computational simulations indicate that only His502 is involved. Quantum mechanical/molecular mechanical (QM/MM) reveals an initial partial electron transfer from the reduced FADH(-) to O(2), without formation of a flavin-hydroperoxide intermediate. Reaction follows with a nearly barrierless His502H(+) proton transfer that decreases the triplet/singlet gap. Spin inversion and second electron transfer, concomitant with a slower proton transfer from flavin N5, yields H(2)O(2). No solvent KIE was found for O(2) reduction confirming that the His502 proton transfer does not limit the oxidative half-reaction. However, the small KIE on k(cat)/K(m(Ox)), during steady-state oxidation of α-deuterated alcohol, suggests that the second proton transfer from N5H is partially limiting, as predicted by the QM/MM simulations.  相似文献   

10.
Nuclear magnetic resonances of the C-2 protons of the three histidine residues in ribonuclease T1 have been studied at 360 MHz as a function of pH to discuss the structure of the active site. Comparison of the order of deuterium exchange of the histidine peaks with tritium incorporation rates into individual histidines of the enzyme leads to the unambigous assignment of one of the C-2 proton peaks to histidne-40. It has been concluded that histidine-40 is in the active site, interacting with a charged group of pK 4.1, which is replaced by the phosphate group of guanosine-3′-monophosphate in the enzyme-inhibitor complex. Histidine-92 is most likely a binding site for the complex, where the existence of a hydrogen bond between N-7 of the inhibitor and the ring NH proton of the histidine is suggested on the basis of NMR data.  相似文献   

11.
A histidine residue with a pKa of 7 has been inferred to act as a general acid-base catalyst for the reaction of creatine kinase (CK), catalyzing the reversible phosphorylation of creatine by ATP. The chicken sarcomeric muscle mitochondrial isoenzyme Mib-CK contains several histidine residues that are conserved throughout the family of creatine kinases. By X-ray crystal structure analysis, three of them (His 61, His 92, and His 186) were recently shown to be located close to the active site of the enzyme. These residues were exchanged against alanine or aspartate by in vitro mutagenesis, and the six mutant proteins were expressed in E. coli and purified. Structural integrity of the mutant proteins was checked by small-angle X-ray scattering. Kinetic analysis showed the mutant His 61 Asp to be completely inactive in the direction of ATP consumption while exhibiting a residual activity of 1.7% of the wild-type (wt) activity in the reverse direction. The respective His to Ala mutant of residue 61 showed approximately 1% wt activity in the forward and 10% wt activity in the reverse reaction. All other mutants showed near wt activities. Changes in the kinetic parameters K(m) or Vmax, as well as a significant loss of synergism in substrate binding, could be observed with all active mutants. These effects were most pronounced for the binding of creatine and phosphocreatine, whereas ATP or ADP binding were less severely affected. Based on our results, we assume that His 92 and His 186 are involved in the binding of creatine and ATP in the active site, whereas His 61 is of importance for the catalytic reaction but does not serve as an acid-base catalyst in the transphosphorylation of creatine and ATP. In addition, our data support the idea that the flexible loop bearing His 61 is able to move towards the active site and to participate in catalysis.  相似文献   

12.
Beta-ketoacyl-acyl carrier protein (ACP) synthase enzymes join short carbon units to construct fatty acyl chains by a three-step Claisen condensation reaction. The reaction starts with a trans thioesterification of the acyl primer substrate from ACP to the enzyme. Subsequently, the donor substrate malonyl-ACP is decarboxylated to form a carbanion intermediate, which in the third step attacks C1 of the primer substrate giving rise to an elongated acyl chain. A subgroup of beta-ketoacyl-ACP synthases, including mitochondrial beta-ketoacyl-ACP synthase, bacterial plus plastid beta-ketoacyl-ACP synthases I and II, and a domain of human fatty acid synthase, have a Cys-His-His triad and also a completely conserved Lys in the active site. To examine the role of these residues in catalysis, H298Q, H298E and six K328 mutants of Escherichia colibeta-ketoacyl-ACP synthase I were constructed and their ability to carry out the trans thioesterification, decarboxylation and/or condensation steps of the reaction was ascertained. The crystal structures of wild-type and eight mutant enzymes with and/or without bound substrate were determined. The H298E enzyme shows residual decarboxylase activity in the pH range 6-8, whereas the H298Q enzyme appears to be completely decarboxylation deficient, showing that H298 serves as a catalytic base in the decarboxylation step. Lys328 has a dual role in catalysis: its charge influences acyl transfer to the active site Cys, and the steric restraint imposed on H333 is of critical importance for decarboxylation activity. This restraint makes H333 an obligate hydrogen bond donor at Nepsilon, directed only towards the active site and malonyl-ACP binding area in the fatty acid complex.  相似文献   

13.
Park C  Schultz LW  Raines RT 《Biochemistry》2001,40(16):4949-4956
His12 and His119 are critical for catalysis of RNA cleavage by ribonuclease A (RNase A). Substitution of either residue with an alanine decreases the value of k(cat)/K(M) by more than 10(4)-fold. His12 and His119 are proximal to the scissile phosphoryl group of an RNA substrate in enzyme-substrate complexes. Here, the role of these active site histidines in RNA binding was investigated by monitoring the effect of mutagenesis and pH on the stability of enzyme-nucleic acid complexes. X-ray diffraction analysis of the H12A and H119A variants at a resolution of 1.7 and 1.8 A, respectively, shows that the amino acid substitutions do not perturb the overall structure of the variants. Isothermal titration calorimetric studies on the complexation of wild-type RNase A and the variants with 3'-UMP at pH 6.0 show that His12 and His119 contribute 1.4 and 1.1 kcal/mol to complex stability, respectively. Determination of the stability of the complex of wild-type RNase A and 6-carboxyfluorescein approximately d(AUAA) at varying pHs by fluorescence anisotropy shows that the stability increases by 2.4 kcal/mol as the pH decreases from 8.0 to 4.0. At pH 4.0, replacing His12 with an alanine residue decreases the stability of the complex with 6-carboxyfluorescein approximately d(AUAA) by 2.3 kcal/mol. Together, these structural and thermodynamic data provide the first thorough analysis of the contribution of histidine residues to nucleic acid binding.  相似文献   

14.
F S Lee  B L Vallee 《Biochemistry》1989,28(8):3556-3561
The importance of specific residues in angiogenin for binding to placental ribonuclease inhibitor (PRI) has been assessed by examining the interaction of angiogenin derivatives with PRI. PRI binds native angiogenin with a Ki value of 7.1 X 10(-16) M [Lee, F. S., Shapiro, R., & Vallee, B. L. (1989) Biochemistry 28, 225-230]. Substitution of a Gln for Lys-40 in angiogenin by site-specific mutagenesis decreases the association rate constant 3-fold and increases the dissociation rate constant 440-fold, resulting in a 1300-fold weaker Ki value. The half-life of the mutant.PRI complex is 3.4 h compared to approximately 60 days for the native angiogenin.PRI complex. The magnitude of the change in Ki value suggests that in the complex, Lys-40 forms a salt bridge or hydrogen bond with an anionic moiety in PRI. Carboxymethylation of His-13 or His-114 with bromoacetate increases the Ki value 15-fold, and oxidation of Trp-89 by means of dimethyl sulfoxide and hydrochloric acid increases it 2.4-fold, suggesting that these residues also form part of the contact region with PRI. The changes in Ki value reflect an increase in the dissociation rate constant. On the other hand, dinitrophenylation of either Lys-50 or Lys-60 with 1-fluoro-2,4-dinitrobenzene does not significantly alter the Ki value, suggesting that these residues are not part of the contact region. These results indicate that PRI inhibition minimally involves the three residues critical for the activity of angiogenin--Lys-40, His-13, and His-114--and to a lesser extent its single tryptophan, Trp-89.  相似文献   

15.
The seven histidines of bovine prolactin were modified with ethoxyformic anhydride and two classes of reactivity were apparent: 5 histidines were in the more reactive class (k = 0.097 min-1) and 2 histidines were less reactive (k = 0.011 min-1). The activity of the modified prolactins was determined by measuring their ability to bind to prolactin receptors from rabbit mammary glands. This assay showed that prolactin was fully active when 0 to 5 histidines were modified. If all 7 residues were modified, the hormone was unable to bind to its receptor. Circular dichroism studies indicated no significant differences in conformation for prolactins which had 2 to 7 histidines modified. Modification of human growth hormone and human placental lactogen with ethoxyformic anhydride resulted in a loss of the ability of these lactogenic hormones to bind to the prolactin receptor. For all three hormones, essentially full activity was recovered when the modifying group was removed by treatment with hydroxylamine. Sequence comparisons indicate that only 2 of the 3 growth hormone histidines and 2 of 7 placental lactogen histidines were homologous with histidines in bovine prolactin and that, in each case, they correspond to His-27 and His-30 in bovine prolactin. It is postulated that these residues serve to identify a portion of the binding domain of bovine prolactin.  相似文献   

16.
Poly(A)-specific ribonuclease (PARN) is a highly poly(A)-specific 3'-exoribonuclease that efficiently degrades mRNA poly(A) tails. PARN belongs to the DEDD family of nucleases, and four conserved residues are essential for PARN activity, i.e. Asp-28, Glu-30, Asp-292, and Asp-382. Here we have investigated how catalytically important divalent metal ions are coordinated in the active site of PARN. Each of the conserved amino acid residues was substituted with cysteines, and it was found that all four mutants were inactive in the presence of Mg2+. However, in the presence of Mn2+, Zn2+, Co2+, or Cd2+, PARN activity was rescued from the PARN(D28C), PARN(D292C), and PARN(D382C) variants, suggesting that these three amino acids interact with catalytically essential metal ions. It was found that the shortest sufficient substrate for PARN activity was adenosine trinucleotide (A3) in the presence of Mg2+ or Cd2+. Interestingly, adenosine dinucleotide (A) was efficiently hydrolyzed in the presence of Mn2+, Zn2+, or Co2+, suggesting that the substrate length requirement for PARN can be modulated by the identity of the divalent metal ion. Finally, introduction of phosphorothioate modifications into the A substrate demonstrated that the scissile bond non-bridging phosphate oxygen in the pro-R position plays an important role during cleavage, most likely by coordinating a catalytically important divalent metal ion. Based on our data we discuss binding and coordination of divalent metal ions in the active site of PARN.  相似文献   

17.
Extracellular fungal RNases, including ribotoxins such as alpha-sarcin, constitute a family of structurally related proteins represented by RNase T1. The tautomeric preferences of the alpha-sarcin imidazole side chains have been determined by nuclear magnetic resonance and electrostatic calculations. Histidine residues at the active site, H50 and H137, adopt the Ndelta tautomer, which is less common in short peptides, as has been found for RNase T1. Comparison with tautomers predicted from crystal structures of other ribonucleases suggests that two active site histidine residues with the Ndelta tautomer are a conserved feature of microbial ribonucleases and that this is related to their ribonucleolytic function.  相似文献   

18.
Studies were conducted on the depolymerization of polyadenylic acid (poly (A)) by RNAse A (EC 3.1.4.22) depending on the pH (pH 5-8). The results showed that depending on the pH, the ratio Vmax/Km was analogous to that described earlier for nucleoside-2', 3'-cyclophosphates and dinucleoside phosphates. This indicates that depolymerization of poly (A), transesterification and hydrolysis of specific substrates is achieved by the same ionizing groups of the enzyme with pKa 5.4 and pKb 6.4. The rate of degradation of poly (A) is also influenced by the state of adenine ionization, the protonation of which leads to the formation of a double helical poly (A), and does not serve as a substrate for RNAse A. The low rate for the depolymerization of poly (A) in the presence of RNAse A is related to a decrease in the turnover number of the enzyme, and an increase in the molecular weight of the enzyme (RNAse dimer), leads to a decrease in the Km, and does not effect Vmax. This indicates that the rate of depolymerization of polynucleotides is determined by orientation of factors. On the basis of the comparison of the resultant kinetic data, and the structure of the enzyme inhibitory complexes of RNAse S, which were studied by the method of x-ray structural analysis, a conclusion was reached on the kinetic characteristics of RNAse A specificity with respect to polymeric substrates, which is determined by the orinetation of the ribose phosphate relative to the catalytic groups of the active site.  相似文献   

19.
The bacterial tRNA processing enzyme ribonuclease P (RNase P) is a ribonucleoprotein composed of a approximately 400 nucleotide RNA and a smaller protein subunit. It has been established that RNase P RNA contacts the mature tRNA portion of pre-tRNA substrates, whereas RNase P protein interacts with the 5' leader sequence. However, specific interactions with substrate nucleotides flanking the cleavage site have not previously been defined. Here we provide evidence for an interaction between a conserved adenosine, A248 in the Escherichia coli ribozyme, and N(-1), the substrate nucleotide immediately 5' of the cleavage site. Specifically, mutations at A248 result in miscleavage of substrates containing a 2' deoxy modification at N(-1). Compensatory mutations at N(-1) restore correct cleavage in both the RNA-alone and holoenzyme reactions, and also rescue defects in binding thermodynamics caused by A248 mutation. Analysis of pre-tRNA leader sequences in Bacteria and Archaea reveals a conserved preference for U at N(-1), suggesting that an interaction between A248 and N(-1) is common among RNase P enzymes. These results provide the first direct evidence for RNase P RNA interactions with the substrate cleavage site, and show that RNA and protein cooperate in leader sequence recognition.  相似文献   

20.
The study by means of 1H nuclear magnetic resonance (NMR) of the histidines of phospholipase A2 isolated from porcine, bovine and equine pancreas is reported. Assignment of the histidine resonances was achieved by comparison of different enzymes and the use of paramagnetic probes. pH titration curves for various histidyl resonances were obtained and compared in the presence and absence of calcium. Calcium is shown to lower the pKa of the active site histidine. The NMR results are compared with the known X-ray three-dimensional structure for the bovine enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号