首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cytoskeleton of most cells is complex and spatially diverse. The mRNAs for some cytoskeletal proteins are localized, suggesting that synthesis of these proteins may occur at sites appropriate for function or assembly. mRNA concentrations were first observed for several oocyte and embryonic mRNAs. Some insight has been gained into the mechanisms that help to position these mRNAs. More surprising to some, many cytoskeletal mRNAs are also localized. Among them are mRNAs for actin, tubulin, intermediate filaments, and a variety of associated proteins. Different mRNAs in the same cell can be located in different places; the same mRNA can be located in different places; the same mRNA can be located differently at different times of development. For example, we observed vimentin mRNA in developing chicken muscle cultures by fluorescent in situ hybridization. We found that vimentin mRNA takes on a variety of positions during myogenesis, ending up located with its cognate protein at costameres. This last pattern is significant because it is too finely structured to have a function in the soluble phase and probably reflects contranslational assembly of this particular protein. Analogies can be made between oocyte or embryonic positions (animal/vegetal poles, oocyte cortex, and interior) and somatic cell positions (anterior/posterior and cell cortex/cell center). These analogies may point to conserved mechanisms for moving and retaining mRNA. Localization of cytoskeletal synthesis, through the mRNA or by other means, may prove as important for assembling and maintaining differentiated cytoskeletal structures and somatic cells as mRNA location is for organizing the embryo. Mechanisms that permit mRNA localization are likely to be conserved.  相似文献   

2.
Cloned DNAs encoding four different proteins have been isolated from recombinant cDNA libraries constructed with Glycine max seed mRNAs. Two cloned DNAs code for the alpha and alpha'-subunits of the 7S seed storage protein (conglycinin). The other cloned cDNAs code for proteins which are synthesized in vitro as 68,000 d., 60,000 d. or 53,000 d. polypeptides. Hybrid selection experiments indicate that, under low stringency hybridization conditions, all four cDNAs hybridize with mRNAs for the alpha and alpha'-subunits and the 68,000 d., 60,000 d. and 53,000 d. in vitro translation products. Within three of the mRNA, there is a conserved sequence of 155 nucleotides which is responsible for this hybridization. The conserved nucleotides in the alpha and alpha'-subunit cDNAs and the 68,000 d. polypeptide cDNAs span both coding and noncoding sequences. The differences in the coding nucleotides outside the conserved region are extensive. This suggests that selective pressure to maintain the 155 conserved nucleotides has been influenced by the structure of the seed mRNA. RNA blot hybridizations demonstrate that mRNA encoding the other major subunit (beta) of the 7S seed storage protein also shares sequence homology with the conserved 155 nucleotide sequence of the alpha and alpha'-subunit mRNAs, but not with other coding sequences.  相似文献   

3.
We identified two cDNAs coding for the novel human actin-related proteins (Arps) hArpM1 and hArpM2. Both of them show remarkable similarity to conventional actin, and the ATP-binding motif and nuclear-export signals of actin are highly conserved. Their mRNAs are expressed in all tested human tissues, but in smaller amounts than that of actin. These features suggest that hArpM1 and M2 are involved in cytoskeletal organization like other cytoplasmic Arp subfamilies.  相似文献   

4.
We have been able to visualize cytoskeletal messenger RNA molecules at high resolution using nonisotopic in situ hybridization followed by whole-mount electron microscopy. Biotinated cDNA probes for actin, tubulin, or vimentin mRNAs were hybridized to Triton-extracted chicken embryo fibroblasts and myoblasts. The cells were then exposed to antibodies against biotin followed by colloidal gold-conjugated antibodies and then critical-point dried. Identification of mRNA was possible using a probe fragmented to small sizes such that hybridization of several probe fragments along the mRNA was detected as a string of colloidal gold particles qualitatively and quantitatively distinguishable from nonspecific background. Extensive analysis showed that when eight gold particles were seen in this iterated array, the signal to noise ratio was greater than 30:1. Furthermore, these gold particles were colinear, often spiral, or circular suggesting detection of a single nucleic acid molecule. Antibodies against actin, vimentin, or tubulin proteins were used after in situ hybridization, allowing simultaneous detection of the protein and its cognate message on the same sample. This revealed that cytoskeletal mRNAs are likely to be extremely close to actin protein (5 nm or less) and unlikely to be within 20 nm of vimentin or tubulin filaments. Actin mRNA was found to be more predominant in lamellipodia of motile cells, confirming previous results. These results indicate that this high resolution in situ hybridization approach is a powerful tool by which to investigate the association of mRNA with the cytoskeleton.  相似文献   

5.
6.
The link between the biochemical and morphological differentiation of granulosa cells was studied by investigating the organization and the expression of cytoskeletal proteins which determine cell shape and contacts. In cells treated with follicle-stimulating hormone (FSH), in a serum- and growth factor-free medium, or with other compounds which elevate cellular cAMP levels, the synthesis of the adherens junction proteins, vinculin, alpha-actinin, and actin was reduced significantly when compared to unstimulated cells (7-fold for vinculin, 5-fold for alpha-actinin, and 3-fold for actin). The in vitro translatability of the mRNAs coding for these proteins and the level of actin mRNA determined by RNA blot hybridization were generally reduced in differentiating cells. The synthesis and the organization of vimentin and tubulin was unaffected during this process, whereas the organization of actin and vinculin was dramatically affected, with FSH-treated cells displaying a diffuse pattern of actin and vinculin, with very little vinculin in adhesion plaques. Gonadotropin-releasing hormone agonist and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate which are known to antagonize the cAMP-mediated biochemical differentiation of granulosa cells by reducing cAMP levels or by activating protein kinase C and phospholipid turnover, blocked to a large extent the FSH-induced effect on the adherens junction proteins. Epidermal growth factor, which blocked the FSH-induced cAMP increase, but not the FSH-induced progesterone production, failed to block the synthesis of vinculin, alpha-actinin, and actin. Cytochalasin B could induce steroidogenesis and similar changes in the synthesis of these cytoskeletal proteins, whereas fibronectin, which causes cell spreading, blocked in part the FSH-induced effect on the expression of cytoskeletal proteins. The modulation of cytoskeletal proteins may therefore be an essential feature of programmed differentiation events leading to the final phenotype of granulosa cells.  相似文献   

7.
8.
T E Gilroy  C A Thomas 《Gene》1983,23(1):41-51
Drosophila melanogaster DNA (Dm) was sequentially cleaved by BamHI and EcoRI and separated by two-dimensional gel electrophoresis. Six different prominent bands, which are derived primarily from the cleavage of long sequences that are repeated 20-100 times per genome, were recovered from the gel and cloned in pBR322. Hybridization and restriction analysis of the cloned Dm segments showed that three of these bands are mainly derived from the ribosomal and histone gene repeating units. Segments cloned from the other three bands are not homologous to any known repeating elements that we have tested. They represent long repetitive sequences of moderate multiplicity that appear not to have been hitherto described. These segments have been restriction-mapped and hybridized to cDNA prepared from poly(A)RNA from adult flies. While two minority segments did hybridize to this probe, the majority failed to hybridize. The arrangement of genomic sequences homologous to each plasmid was tested by restriction analysis and Southern hybridization. The results indicate that the repetitive element is largely conserved intact although occupying numerous different positions in the genome. The DNAs from four different strains of D. melanogaster and two of D. simulans produced restriction patterns having some segment lengths in common and some showing clear differences, a fact that indicates that these sequences can move about to occupy different genomic locations in different strains.  相似文献   

9.
《Cell》1986,45(3):407-415
We have analyzed intracellular distributions of mRNAs for the cytoskeletal proteins actin, vimentin, and tubulin by in situ hybridization. Although polyadenylated RNA was homogeneously distributed throughout the cell, actin mRNA demonstrated a nonhomogeneous distribution in 95% of randomly selected chicken embryonic myoblasts and fibroblasts, as detected by isotopic and nonisotopic techniques. Actin mRNA concentrations were highest at cell extremities, generally in lamellipodia, where grain densities were up to 16-fold higher than in areas near the nucleus. Vimentin mRNA, unlike actin mRNA, was distributed near the nucleus. Tubulin mRNA appeared most concentrated in the peripheral cytoplasm. These results demonstrate that cytoplasmic mRNAs are localized in specific, nonrandom cellular patterns and that localized concentrations of specific proteins may result from corresponding localization of their respective mRNAs. Hence, actin mRNA distribution may result in increased concentration of actin filaments in lamellipodia of motile cells.  相似文献   

10.
Nineteen cloned cDNAs encoding the alpha and alpha'-subunits of the 7S seed storage protein in the soybean, Glycine max, have been isolated from a recombinant cDNA library constructed with mRNA from maturing seeds. In addition, a gene encoding an alpha'-subunit has been isolated from a recombinant Charon 4A phage library containing genomic Glycine max DNA. The cloned DNAs have been divided, on the basis of their endonuclease sites, into two main classes of sequences which differ in approximately 6% of their nucleotides. Whereas the proteins encoded within each DNA class are nearly identical, the proteins encoded by the two different classes of soybean DNAs are distinct and correspond to alpha and alpha'-subunits. Thus, the alpha and alpha'-subunits are coded for by two closely related multigene families. The amino acid differences in the portions of the alpha and alpha'-subunits presented in this paper occur primarily near the carboxyl-terminus. The 3' noncoding nucleotides of the cloned alpha and alpha'-subunit DNAs are more highly conserved than are the coding nucleotides. This conservation suggests that the 3' untranslated sequences of the alpha and alpha'-subunit mRNAs are functional in the expression of the alpha and alpha'-subunit proteins or in the stabilization of the 7S subunit mRNAs.  相似文献   

11.
12.
Hybridization blot (Northern) analysis of mRNA coding for alpha subunits of the Go signal-transducing protein detects three bands at 5.7, 4.2, and 3.2 kilobases (kb). We showed previously that the largest is a splice variant coding for the type 2 form of the polypeptide (alpha o2) and the two smaller RNAs react with a probe specific for the seventh of the eight exons that code for the type 1 form (alpha o1). In the present work we demonstrate that the 3.2- and 4.2-kb mRNAs also result from alternative splicing, the splice site being located 31 nucleotides downstream from the termination codon of the open reading frame, and that therefore the alpha o mRNA is made up of at least nine exons. All three alpha o mRNAs are expressed in both heart and brain, more in the latter than the former, as well as in the hamster insulin-secreting tumor (HIT) cell from which the cDNAs encoding the splice variants had been cloned. In contrast, in lung and testis we found only the 5.7-kb alpha o2 mRNA. The same analysis was unable to detect alpha o-specific sequences in either kidney, pancreas (whole), spleen, or liver, while at the same time detecting strong bands for alpha s mRNA. A comparison of the nucleotide sequences of the 5'- and 3'-untranslated regions of the hamster cDNAs cloned here indicated that previously cloned alpha o cDNAs all belong to the same alpha o1A slice subclass derived from 3.2-kb mRNA. The comparison also revealed that the sequences of the untranslated regions are highly conserved among three species (rat, hamster, and brain). Their 3' tails are 99.1% (HIT versus bovine, 200 known bases) and 99.7% (HIT versus rat, 229 bases) identical, and their 5' leader sequences are 92.7% (HIT versus bovine, 165 known bases) and 90.7% (HIT versus rat, 670 bases) identical. This indicates that untranslated regions of mRNAs need not exhibit high degrees of species variation.  相似文献   

13.
Partial amino acid sequences of a 49 kDa apyrase (ATP diphosphohydrolase, EC 3.6.1.5) from the cytoskeletal fraction of etiolated pea stems were used to derive oligonucleotide DNA primers to generate a cDNA fragment of pea apyrase mRNA by RT-PCR and these primers were used to screen a pea stem cDNA library. Two almost identical cDNAs differing in just 6 nucleotides within the coding regions were found, and these cDNA sequences were used to clone genomic fragments by PCR. Two nearly identical gene fragments containing 8 exons and 7 introns were obtained. One of them (H-type) encoded the mRNA sequence described by Hsieh et al. (1996) (DDBJ/EMBL/GenBank Z32743), while the other (S-type) differed by the same 6 nucleotides as the mRNAs, suggesting that these genes may be alleles. The six nucleotide differences between these two alleles were found solely in the first exon, and these mutation sites had two types of consensus sequences. These mRNAs were found with varying lengths of 3′ untranslated regions (3′-UTR). There are some similarities between the 3′-UTR of these mRNAs and those of actin and actin binding proteins in plants. The putative roles of the 3′-UTR and alternative polyadenylation sites are discussed in relation to their possible role in targeting the mRNAs to different subcellular compartments. Sequence data from this article were deposited with the DDBJ/EMBL/GenBank Data Libraries under Accession Nos. Genomic sequences of pea apyrase: AB023621, AB030444, AB030445, AB038554, AB038555. cDNA sequences of pea apyrase: AB022319, AB027614, AB038668, AB038669.  相似文献   

14.
Four cDNA clones coding for different Artemia actin isoforms have been isolated. Three of the clones contain the complete coding sequences while the fourth one lacks 145 bases, coding for the 49 amino terminal amino acids of the protein. The amino acid sequences predicted for the four actin isoforms identified are highly homologous to insect actins as well as to vertebrate cytoplasmic actins. The four identified cDNA clones code for mRNAs of 5.2, 1.9, 1.6 and 1.8 kb, respectively, whose expression is regulated during development. Three of the actin mRNAs are present in cryptobiotic embryos while the other is not. The steady-state levels of all four mRNAs increase during development to reach maximal levels by 10-15 hours of development and decrease thereafter. The total number of actin genes encoded in the Artemia genome has been estimated as 8 to 10 by Southern analysis of total DNA.  相似文献   

15.
Sea urchin actin gene subtypes. Gene number, linkage and evolution   总被引:12,自引:0,他引:12  
The actin gene family of the sea urchin Strongylocentrotus purpuratus was analyzed by the genome blot method, using subcloned probes specific to the 3' terminal non-translated actin gene sequence, intervening sequence and coding region probes. We define an actin gene subtype as that gene or set of genes displaying homology with a given 3' terminal sequence probe, when hybridized at 55 degrees C, 0.75 M-Na+. By determining the often polymorphic restriction fragment band pattern displayed in genome blots by each probe, all, or almost all of the actin genes in this species could be classified. Our evidence shows that the S. purpuratus genome probably contains seven to eight actin genes, and these can be assigned to four subtypes. Studies of the expression of the genes (Shott et al., 1983) show that the actin genes of three of these subtypes code for cytoskeletal actins (Cy), while the fourth gives rise to a muscle-specific actin (M). We denote the array of S. purpuratus actin genes indicated by our data as follows. There is a single CyI actin gene, two or possibly three CyII genes (CyIIa, CyIIb, and possibly CyIIc), three CyIII actin genes (CyIIIa, CyIIIb, CyIIIc), and a single M actin gene. Comparative studies were carried out on the actin gene families of five other sea urchin species. At least the CyIIa and CyIIb genes are also linked in the Strongylocentrotus franciscanus genome, and this species also has a CyI gene, an M actin gene and at least two CyIII actin genes. It is not clear whether it also possesses a CyIIc actin gene, or a CyIIIc actin gene. The genome of a more closely related congener, Strongylocentrotus dr?bachiensis, includes 3' terminal sequences suggesting the presence of a CyIIc gene. In S. franciscanus and S. dr?bachiensis the first intron of the CyI gene has remained homologous with intron sequences of both the CyIIa and CyIIb genes, indicating a common origin of these three linked cytoskeletal actin genes. Of the four S. purpuratus 3' terminal subtype probe sequences only the CyI 3' terminal sequence has been conserved sufficiently during evolution to permit detection outside of the genus Strongylocentrotus. An unexpected observation was that a sequence found only in the 3' untranslated region of the CyII actin gene in the DNA of S. dr?bachiensis and S. purpuratus is represented as a large family of interspersed repeat sequences in the genome of S. franciscanus.  相似文献   

16.
17.
Full- and partial-length cDNAs encoding calmodulin mRNA have been cloned and sequenced from barley (Hordeum vulgare L.). Barley leaf mRNA, size-fractionated in sucrose density gradients, was used to synthesize double-stranded cDNA. The cDNA was cloned in λgt10 and screened with a synthetic, 14-nucleotide oligonucleotide probe, which was designed using the predicted coding sequences of the carboxy termini of spinach and wheat calmodulin proteins. The primary structure of barley calmodulin, predicted from DNA sequencing experiments, consists of 148 amino acids and differs from that of wheat calmodulin in only three positions. In two of the three positions, the amino acid changes are conservative, while the third change consists of an apparent deletion/insertion. The overall nucleotide sequence similarity between the amino acid coding regions of barley and vertebrate calmodulin mRNAs is approximately 77%. However, a region encoding 11 amino acids of the second Ca2+-binding domain is very highly conserved at the nucleotide level compared with the rest of the coding sequences (94% sequence identity between barley and chicken calmodulin mRNAs). Genomic Southern blots reveal that barley calmodulin is encoded by a single copy gene. This gene is expressed as a single size class of mRNA in all tissues of 7-day-old barley seedlings. In addition, these analyses indicate that a barley calmodulin cDNA coding region subclone is suitable as a probe for isolating calmodulin genes from other plants.  相似文献   

18.
《The Journal of cell biology》1987,105(6):2621-2629
Northern blot analysis of rat heart mRNA probed with a cDNA coding for the principal polypeptide of rat liver gap junctions demonstrated a 3.0- kb band. This band was observed only after hybridization and washing using low stringency conditions; high stringency conditions abolished the hybridization. A rat heart cDNA library was screened with the same cDNA probe under the permissive hybridization conditions, and a single positive clone identified and purified. The clone contained a 220-bp insert, which showed 55% homology to the original cDNA probe near the 5' end. The 220-bp cDNA was used to rescreen a heart cDNA library under high stringency conditions, and three additional cDNAs that together spanned 2,768 bp were isolated. This composite cDNA contained a single 1,146-bp open reading frame coding for a predicted polypeptide of 382 amino acids with a molecular mass of 43,036 D. Northern analysis of various rat tissues using this heart cDNA as probe showed hybridization to 3.0-kb bands in RNA isolated from heart, ovary, uterus, kidney, and lens epithelium. Comparisons of the predicted amino acid sequences for the two gap junction proteins isolated from heart and liver showed two regions of high homology (58 and 42%), and other regions of little or no homology. A model is presented which indicates that the conserved sequences correspond to transmembrane and extracellular regions of the junctional molecules, while the nonconserved sequences correspond to cytoplasmic regions. Since it has been shown previously that the original cDNA isolated from liver recognizes mRNAs in stomach, kidney, and brain, and it is shown here that the cDNA isolated from heart recognizes mRNAs in ovary, uterus, lens epithelium, and kidney, a nomenclature is proposed which avoids categorization by organ of origin. In this nomenclature, the homologous proteins in gap junctions would be called connexins, each distinguished by its predicted molecular mass in kilodaltons. The gap junction protein isolated from liver would then be called connexin32; from heart, connexin43.  相似文献   

19.
Human cellular sequences detectable with adenovirus probes   总被引:1,自引:0,他引:1  
Previous studies suggesting homology between human cellular DNA and the DNAs from adenovirus types 2 and 5 are extended in the present paper. A clone (ChAdh), isolated from a human genomic DNA library using an adenovirus probe, hybridized to discrete regions of adenovirus 2 DNA, including part of the transforming genes E1a and E1b, as well as to repeated sequences within human DNA. The E1a and E1b genes both hybridize to the same 300 base pair Sau3AI fragment within ChAdh although there is no obvious homology between E1a and E1b. The Ad 2 E1a gene was also used as a probe to screen other cellular DNAs to determine whether repeated sequences detectable with Ad 2 DNA probes were conserved over long evolutionary periods. Hybridization was detected to the genomes of man, rat, mouse and fruit fly, but not to those of yeast and bacteria. In addition to a smear hybridization, discrete fragments were detected in both rodent and fruit fly DNAs. The experiments reported suggest the existence of two different types of cellular sequences detected by Ad 2 DNA: (1) repeated sequences conserved in a variety of eukaryote genomes and (2) a possible unique sequence detected with an E1a probe different from that responsible for hybridization to repeated sequences. This unique sequence was detected as an EcoRI fragment in mouse DNA and had a molecular size of about 8.8 kb.  相似文献   

20.
The localization of constitutive proteins of different types of cytoskeletal components (prekeratin, vimentin, and actin) was examined in embryonic mouse molars using specific antibodies and immunofluorescence microscopy on frozen sections. Prekeratin and actin were found in the enamel organ. Preameloblasts demonstrated uniform staining, whereas ameloblasts demonstrated an apical accumulation of both prekeratin and actin. Vimentin and actin were observed in the dental papilla. A redistribution of vimentin accompanied the polarization of odontoblasts. A possible transmembranous control of cytoskeletal activities by the extracellular matrix is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号