首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
The purpose of this study was to test the hypothesis that endothelial cells from resistance arteries and epicardial conduit coronary arteries differ in their expression of nitric oxide synthase (NOS) and calcium metabolism, and that these differences contribute to the mechanism underlying disparate physiological vasodilator responses observed between the two populations of vessels. The functional vasodilator responses of isolated resistance arteries and epicardial conduit coronary arteries were compared in vitro using both the receptor-independent agonist A23187 ionophore to increase intracellular calcium and the receptor-dependent agonist bradykinin. Constitutive NOS (cNOS) activity in monocultures of endothelial cells derived from resistance arteries and conduit arteries was assayed using a fibroblast-reporter cell method. Intracellular calcium concentration was assessed using fura-2 microfluorometry. Nitric oxide production was determined using a chemiluminescence technique, while cNOS protein was quantitated by Western blot analysis. A23187 was a less potent vasodilator of resistance arteries studied in vitro, compared to epicardial conduit arteries (EC50 = 1.6 μM, resistance artery vs. EC50 = 0.03 μM, conduit artery); however, bradykinin was more potent in resistance arteries (EC50 = 0.3 nM, resistance artery vs. EC50 = 2 nM, conduit artery). In pure monocultures of endothelium, nitric oxide production measured by chemiluminescence both basally and in response to A23187 was significantly less in resistance arteries (6.1 ± 0.5, basal vs. 10.80 ± 0.55, stimulated nmol/μg protein), compared to conduit arteries (7.7 ± 0.5, basal vs. 17.00 ± 1.52, stimulated nmol/μg protein; P < 0.05 resistance artery endothelium vs. conduit artery endothelium). cNOS enzyme activity assessed by cGMP production in reporter cell fibroblasts was also lower in resistance arteries compared to conduit arteries (0.17 ± 0.03 vs. 0.33 ± 0.05 fmol cGMP/μg protein, respectively; P < 0.05 resistance artery endothelium vs. conduit artery endothelium). Conduit arteries expressed 2.1 × more cNOS protein than resistance arteries, as assessed by Western blotting of cellular homogenates. No significant differences were found with microfluorimetry in either basal or ionophore-stimulated intracellular calcium concentrations. The results signified that porcine resistance arteries expressed less NOS and produced less nitric oxide than epicardial conduit arteries both basally and in response to an increase in intracellular calcium. This difference was reflected functionally as a decreased vasodilatory response to increased intracellular calcium in resistance arteries that could not be explained on the basis of differences in the metabolism of intracellular calcium. In contrast, the functional vasodilator response of intact vessels to a receptor-mediated agonist was enhanced in resistance arteries compared to conduit arteries, suggesting an important role of signal transduction mechanisms in specific physiological responses. Thus, the ability of the endothelium to regulate on a regional basis the expression of NOS and integrate receptor-mediated responses with these differences may provide a mechanism for diverse vasomotor responses in different populations of vessels. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Differential segmental distribution of electrophysiologically distinct myocytes helps to explain the variability of the pulmonary arteries to vasoactive agents. We have studied whether Ca2+ -dependent CI- (CICa) and K+ (KCa) channels are activated differentially in enzymatically dispersed conduit and resistance myocytes. We measured cytosolic [Ca2+] and the changes of membrane current and potential elicited by spontaneous or agonist-induced Ca2+ oscillations. Conduit arteries contained a heterogeneous cell population with a variable mixture of KCa and CICa conductances. Resistance arteries contained a more homogeneous cell population with predominance of CICa channel activation. The relation between KCa and CICa conductances in a given conduit myocyte determines the size of the V(m)change in response to a rise of cytosolic [Ca2+]. Conduit myocytes tend to hyperpolarize towards the K+ equilibrium potential (approximately - 90 m V). In resistance myocytes, release of Ca2+ from stores activates CI Cachannels and brings Vm to a value close to the chloride equilibrium potential (approximately - 20 or - 30 m V) thus favouring opening of Ca2+ channels and Ca2+ influx. In resistance vessels CICachannels contribute to link agonist-induced Ca2+ release from stores and membrane depolarization, thus permitting protracted vasoconstriction.  相似文献   

3.
Insulin and insulin-like growth factor I (IGF-I) influence numerous metabolic and mitogenic processes; these hormones also have vasoactive properties. This study examined mechanisms involved in insulin- and IGF-I-induced dilation in canine conduit and microvascular coronary segments. Tension of coronary artery segments was measured after constriction with PGF(2alpha). Internal diameter of coronary microvessels (resting diameter = 112.6+/-10.1 microm) was measured after endothelin constriction. Vessels were incubated in control (Krebs) solution and were treated with N(omega)-nitro-L-arginine (L-NA), indomethacin, or K(+) channel inhibitors. After constriction, cumulative doses of insulin or IGF-I (0.1-100 ng/ml) were administered. In conduit arteries, insulin produced modest maximal relaxation (32 +/- 5%) compared with IGF-I (66+/-12%). Vasodilation was attenuated by nitric oxide synthase (NOS) and cyclooxygenase inhibition and was blocked with KCl constriction. Coronary microvascular relaxation to insulin and IGF-I was not altered by L-NA, indomethacin, tetraethylammonium chloride, glibenclamide, charybdotoxin, and apamin; however, tetrabutylammonium chloride attenuated the response. In conclusion, insulin and IGF-I cause vasodilation in canine coronary conduit arteries and microvessels. In conduit vessels, NOS/cyclooxygenase pathways are involved in the vasodilation. In microvessels, relaxation to insulin and IGF-I is not mediated by NOS/cyclooxygenase pathways but rather through K(+)-dependent mechanisms.  相似文献   

4.
Endothelial small and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) play an important role in the regulation of vascular function and systemic blood pressure. Growing evidence indicates that they are intimately involved in agonist-evoked vasodilation of small resistance arteries throughout the circulation. Small molecule activators of KCa2.x and 3.1 channels, such as SKA-31, can acutely inhibit myogenic tone in isolated resistance arteries, induce effective vasodilation in intact vascular beds, such as the coronary circulation, and acutely decrease systemic blood pressure in vivo. The blood pressure-lowering effect of SKA-31, and early indications of improvement in endothelial dysfunction suggest that endothelial KCa channel activators could eventually be developed into a new class of endothelial targeted agents to combat hypertension or atherosclerosis. This review summarises recent insights into the activation of endothelial Ca2+ activated K+ channels in various vascular beds, and how tools, such as SKA-31, may be beneficial in disease-related conditions.  相似文献   

5.
cGMP对原代培养猪冠状动脉平滑肌细胞钙激活钾通道的作用   总被引:11,自引:1,他引:10  
Chai Q  Zeng XR 《生理学报》1998,50(1):115-119
3′,5′-环-磷酸鸟苷(cGMP)具有激活血管平滑肌细胞膜上钙激活钾通道(KCa通道)的作用,从而引起血管平滑肌细胞的舒张。但cGMP激活KCa物机制存在争论。本工作应用膜片箝技术以原代培养猪冠状动脉平滑肌细胞为对象研究了cGMP影响KCa通道的机制。实验结果显示:(1)在cell-attached膜片方式下,当溶液内游离Ca^2+浓度为10^-7mol/L,膜电位为+70mV时,不同浓度的cG  相似文献   

6.
Whether a cytochrome P-450 (CYP)-related endothelium-derived hyperpolarizing factor (EDHF), acting through calcium-activated potassium (K(Ca)) channels, interacts with nitric oxide (NO) to regulate the basal diameter of human peripheral conduit arteries is unexplored in vivo. Radial artery diameter (echo tracking) and blood flow (Doppler) were measured, after oral aspirin (500 mg), in eight healthy volunteers during local infusion for 8 min of tetraethylammonium chloride (TEA; 9 micromol/min), as K(Ca) channel inhibitor, and fluconazole (0.4 micromol/min), as CYP inhibitor, alone and in combination with N(G)-monomethyl-L-arginine (L-NMMA; 8 micromol/min), as endothelial NO synthase inhibitor. Endothelium-independent dilatation was assessed by using sodium nitroprusside (SNP). Radial diameter was unaffected by L-NMMA (0.4 +/- 0.9%) and fluconazole (-1.6 +/- 0.8%) but was decreased by TEA (-5.0 +/- 1.0%), L-NMMA + fluconazole (-5.3 +/- 0.5%), and L-NMMA + TEA (-9.9 +/- 1.3%). These effects are still significant even when the concomitant decreases in blood flow induced by L-NMMA (-24 +/- 4%), TEA (-21 +/- 3%), L-NMMA + fluconazole (-26 +/- 5%), and L-NMMA + TEA (-35 +/- 4%) were taken as covariate into analysis. Conversely, fluconazole alone slightly but not significantly increased radial flow (13 +/- 6%). L-NMMA alone or with TEA and with fluconazole enhanced radial artery dilatation to SNP, whereas TEA and fluconazole alone did not modify this response. These results confirm in humans the involvement of NO and K(Ca) channels in the regulation of basal conduit artery diameter. Moreover, the synergistic effect of combined inhibition of NO synthesis and CYP on the decrease in radial diameter in the absence of such effect after L-NMMA and fluconazole alone unmasks the role of CYP in this regulation and shows the presence of an interaction between NO and a CYP-related EDHF to maintain peripheral conduit artery diameter in vivo. Furthermore, the higher vasoconstrictor effect of TEA compared with fluconazole suggests that different K(Ca) channel-dependent hyperpolarizing mechanisms could exist in conduit arteries.  相似文献   

7.
Exercise training produces enhanced nitric oxide (NO)-dependent, endothelium-mediated vasodilator responses of porcine coronary arterioles but not conduit coronary arteries. The purpose of this study was to test the hypothesis that exercise training increases the amount of endothelial NO synthase (eNOS) in the coronary arterial microcirculation but not in the conduit coronary arteries. Miniature swine were either exercise trained or remained sedentary for 16--20 wk. Exercise-trained pigs exhibited increased skeletal muscle oxidative capacity, exercise tolerance, and heart weight-to-body weight ratios. Content of eNOS protein was determined with immunoblot analysis in conduit coronary arteries (2- to 3-mm ID), small arteries (301- to 1,000-microm ID), resistance arteries (151- to 300-microm ID), and three sizes of coronary arterioles [large (101- to 150-microm ID), intermediate (51- to 100-microm ID), and small (<50-microm ID)]. Immunoblots revealed increased eNOS protein in some sizes of coronary arteries and arterioles but not in others. Content of eNOS was increased by 60--80% in small and large arterioles, resistance arteries, and small arteries; was increased by 10--20% in intermediate-sized arterioles; and was not changed or decreased in conduit arteries. Immunohistochemistry revealed that eNOS was located in the endothelial cells in all sizes of coronary artery. We conclude that exercise training increases eNOS protein expression in a nonuniform manner throughout the coronary arterial tree. Regional differences in shear stress and intraluminal pressures during exercise training bouts may be responsible for the distribution of increased eNOS protein content in the coronary arterial tree.  相似文献   

8.
Peculiarities in structure and deformability of epicardial conduit coronary arteries are described. The thin wall of animal coronary artery contrasts the human coronary artery in which the remarkable wall thickness is due namely by the intima thickness. Deformation in length and diameter of conduit coronary arteries, due to the left and right ventricle volume increase, has been defined in non-beating canine heart. Ramus interventricularis anterior being firmly tethered to the myocardium undergoes about 3 times larger deformation than ramus circumflexus In anaesthetized dogs a 30% increase in blood pressure, elicited by aortic constriction, induces an increase in diameter of coronary artery, in segment lenght, in blood flow and consequently in shear stress which represents a load for circumferentially running smooth muscle bundles, longitudinally running smooth muscle bundles, as well as for the endothelium. The above load lasting 4 h is already reflected by an increase in total RNA content and [14C] leucin incorporation in the left ventricle myocardium in the wall of ramus interventricularis anterior, not in ramus circumflexus. The finding fit completely with the different range of deformation of both the above coronary branches and indicates an increase in proteosynthesis not only in myocardium, but in ramus interventricularis anterior as well. An increase in ornithindecarboxylase activity in coronary wall leading to an increase in biogenic polyamines, is present in the case only, when blood pressure increase is induced by infusion of noradrenaline.  相似文献   

9.
Although ketamine and Ca2+-activated K+ (KCa) channels have been implicated in the contractile activity regulation of cerebral arteries, no studies have addressed the specific interactions between ketamine and the KCa channels in cerebral arteries. The purpose of this study was to examine the direct effects of ketamine on KCa channel activities using the patch-clamp technique in single-cell preparations of rabbit middle cerebral arterial smooth muscle. We tested the hypothesis that ketamine modulates the KCa channel activity of the cerebral arterial smooth muscle cells of the rabbit. Vascular myocytes were isolated from rabbit middle cerebral arteries using enzymatic dissociation. Single KCa channel activities of smooth muscle cells from rabbit cerebral arteries were recorded using the patch-clamp technique. In the inside-out patches, ketamine in the micromolar range inhibited channel activity with a half-maximal inhibition of the ketamine concentration value of 83.8 +/- 12.9 microM. The Hill coefficient was 1.2 +/- 0.3. The slope conductance of the current-voltage relationship was 320.1 +/- 2.0 pS between 0 and +60 mV in the presence of ketamine and symmetrical 145 mM K+. Ketamine had little effect on either the voltage-dependency or open- and closed-time histograms of KCa channel. The present study clearly demonstrates that ketamine inhibits KCa channel activities in rabbit middle cerebral arterial smooth muscle cells. This inhibition of KCa channels may represent a mechanism for ketamine-induced cerebral vasoconstriction.  相似文献   

10.

Background

KCa3.1 channels are calcium/calmodulin-regulated voltage-independent K+ channels that produce membrane hyperpolarization and shape Ca2+-signaling and thereby physiological functions in epithelia, blood vessels, and white and red blood cells. Up-regulation of KCa3.1 is evident in fibrotic and inflamed tissues and some tumors rendering the channel a potential drug target. In the present study, we searched for novel potent small molecule inhibitors of KCa3.1 by testing a series of 20 selected natural and synthetic (poly)phenols, synthetic benzoic acids, and non-steroidal anti-inflammatory drugs (NSAIDs), with known cytoprotective, anti-inflammatory, and/or cytostatic activities.

Methodology/Principal Findings

In electrophysiological experiments, we identified the natural phenols, caffeic acid (EC50 1.3 µM) and resveratrol (EC50 10 µM) as KCa3.1 inhibitors with moderate potency. The phenols, vanillic acid, gallic acid, and hydroxytyrosol had weak or no blocking effects. Out of the NSAIDs, flufenamic acid was moderately potent (EC50 1.6 µM), followed by mesalamine (EC50≥10 µM). The synthetic fluoro-trivanillic ester, 13b ([3,5-bis[(3-fluoro-4-hydroxy-benzoyl)oxymethyl]phenyl]methyl 3-fluoro-4-hydroxy-benzoate), was identified as a potent mixed KCa2/3 channel inhibitor with an EC50 of 19 nM for KCa3.1 and 360 pM for KCa2.3, which affected KCa1.1 and Kv channels only at micromolar concentrations. The KCa3.1/KCa2-activator SKA-31 antagonized the 13b-blockade. In proliferation assays, 13b was not cytotoxic and reduced proliferation of 3T3 fibroblasts as well as caffeic acid. In isometric vessel myography, 13b increased contractions of porcine coronary arteries to serotonin and antagonized endothelium-derived hyperpolarization-mediated vasorelaxation to pharmacological KCa3.1/KCa2.3 activation.

Conclusions/Significance

We identified the natural phenols, caffeic acid and resveratrol, the NSAID, flufenamic acid, and the polyphenol 13b as novel KCa3.1 inhibitors. The high potency of 13b with pan-activity on KCa3.1/KCa2 channels makes 13b a new pharmacological tool to manipulate inflammation and cancer growth through KCa3.1/KCa2 blockade and a promising template for new drug design.  相似文献   

11.
Estrogens can either relax or contract arteries via rapid, nongenomic mechanisms involving classic estrogen receptors (ER). In addition to ERα and ERβ, estrogen may also stimulate G protein-coupled estrogen receptor 1 (GPER) in nonvascular tissue; however, a potential role for GPER in coronary arteries is unclear. The purpose of this study was to determine how GPER activity influenced coronary artery reactivity. In vitro isometric force recordings were performed on endothelium-denuded porcine arteries. These studies were augmented by RT-PCR and single-cell patch-clamp experiments. RT-PCR and immunoblot studies confirmed expression of GPER mRNA and protein, respectively, in smooth muscle from either porcine or human coronary arteries. G-1, a selective GPER agonist, produced a concentration-dependent relaxation of endothelium-denuded porcine coronary arteries in vitro. This response was attenuated by G15, a GPER-selective antagonist, or by inhibiting large-conductance calcium-activated potassium (BK(Ca)) channels with iberiotoxin, but not by inhibiting NO signaling. Last, single-channel patch-clamp studies demonstrated that G-1 stimulates BK(Ca) channel activity in intact smooth muscle cells from either porcine or human coronary arteries but had no effect on channels isolated in excised membrane patches. In summary, GPER activation relaxes coronary artery smooth muscle by increasing potassium efflux via BK(Ca) channels and requires an intact cellular signaling mechanism. This novel action of estrogen-like compounds may help clarify some of the controversy surrounding the vascular effects of estrogens.  相似文献   

12.
Nitric oxide (NO) released from the endothelium or from NO-donors is a powerful vasodilator. Its effect is mediated partly by vascular smooth muscle high conductance calcium-activated potassium (Kca) channels. Contradictory data exist as to whether NO activated the KCa channel directly or indirectly via protein kinase G (PKG). Thus the hypothesis that NO-donors can activate the KCa directly was investigated using the patch-clamp technique and freshly isolated smooth muscle cells from the rat tail artery. In inside-out experiments, the activity of KCa-channels was increased 1.61 +/- 0.20-fold (n = 10) by 10 microM SNP and 1.45 +/- 0.17-fold (n = 8) by 10 microM SNAP. However, the activity of KCa channels was also increased 1.46 +/- 0.20-fold (n = 8) by addition of the experimental bath solution. Thus these results suggest that NO released from NO-donors cannot activate KCa channel of the rat tail artery smooth muscle cells directly.  相似文献   

13.
Tamoxifen has been reported to directly activate large conductance calcium-activated potassium (KCa) channels through the KCa beta1 subunit, suggesting a cardio-protective role of this compound. The present study using knock-out (KO) mice for the KCa channel beta1 subunit was aimed at understanding the molecular mechanisms of the effects of tamoxifen on arterial smooth muscle KCa channels. Single channel studies were conducted in excised patches from cerebral artery myocytes from both wild-type and KO animals. The present data demonstrated that tamoxifen can inhibit arterial KCa channels due to a major decrease in channel open probability (P(o)), a mechanism different from the reduction in single channel amplitude reported previously and also observed in the present work. A tamoxifen-induced decrease in P(o) was present in arterial KCa channels from both wild-type and beta1 KO animals. This inhibition was concentration-dependent and partially reversible with a half-maximal concentration constant IC(50) of 2.6 microm. The effect of tamoxifen was actually dual Single channel kinetic analysis showed that tamoxifen shortens both mean closed time and mean open time; the latter is probably due to an intermediate duration voltage-independent blocking mechanism. Thus, tamoxifen block would predominate when KCa channel P(o) is >0.1-0.2, limiting the maximum P(o), whereas a leftward shift in voltage or Ca(2+) activation curves can be observed for P(o) values lower than those values. This dual effect of tamoxifen appears to be independent of the beta1 subunit. The molecular specificity of tamoxifen, or eventually other xenoestrogen derivatives, for the KCa channel beta1 subunit is uncertain.  相似文献   

14.
We examined the effect of a novel antihypertensive diuretic, torasemide, on the vasoconstriction induced by TXA2 in the isolated canine coronary artery. Carbocyclic thromboxane A2 (CTA2), a stable analogue of the potent coronary vasoconstrictor thromboxane A2, exhibited a slow onset and progressive contraction of isolated canine coronary arteries at 2 x 10(-8) M. Torasemide (10(-7) approximately 10(-4) M) elicited a dose-dependent vasodilating action in the isolated canine coronary arteries contracted by CTA2, whereas indapamide or furosemide had little effect on this preparation. The maximum vasodilating response to torasemide was 45 +/- 12% of vasodilating effect induced by 10(-4) M papaverine. These results suggest that torasemide is a promising antihypertensive agent with a coronary protective effect.  相似文献   

15.
In smooth muscle cells, localized intracellular Ca2+ transients, termed "Ca2+ sparks," activate several large-conductance Ca2+-activated K+ (KCa) channels, resulting in a transient KCa current. In some smooth muscle cell types, a significant proportion of Ca2+ sparks do not activate KCa channels. The goal of this study was to explore mechanisms that underlie fractional Ca2+ spark-KCa channel coupling. We investigated whether membrane depolarization or ryanodine-sensitive Ca2+ release (RyR) channel activation modulates coupling in newborn (1- to 3-day-old) porcine cerebral artery myocytes. At steady membrane potentials of -40, 0, and +40 mV, mean transient KCa current frequency was approximately 0.18, 0.43, and 0.26 Hz and KCa channel activity [number of KCa channels activated by Ca2+ sparksxopen probability of KCa channels at peak of Ca2+ sparks (NPo)] at the transient KCa current peak was approximately 4, 12, and 24, respectively. Depolarization between -40 and +40 mV increased KCa channel sensitivity to Ca2+ sparks and elevated the percentage of Ca2+ sparks that activated a transient KCa current from 59 to 86%. In a Ca2+-free bath solution or in diltiazem, a voltage-dependent Ca2+ channel blocker, steady membrane depolarization between -40 and +40 mV increased transient KCa current frequency up to approximately 1.6-fold. In contrast, caffeine (10 microM), an RyR channel activator, increased mean transient KCa current frequency but did not alter Ca2+ spark-KCa channel coupling. These data indicate that coupling is increased by mechanisms that elevate KCa channel sensitivity to Ca2+ sparks, but not by RyR channel activation. Overall, KCa channel insensitivity to Ca2+ sparks is a prominent factor underlying fractional Ca2+ spark uncoupling in newborn cerebral artery myocytes.  相似文献   

16.
Spasm of a conduit coronary artery, converting it into a major resistance vessel impeding myocardial blood flow, may have severe short- or long-term effects on cardiac rhythm and systolic ejection of blood. It is now clear that human coronary arteries in vitro contract to acetylcholine but that relaxation is the only response observed in dog coronary vessels. Acetylcholine is as powerful a constrictor of human coronary arteries, in terms of tension induced, as 5-hydroxytryptamine (5-HT) or histamine and is a substantially more powerful constrictor than norepinephrine. Field stimulation of coronary artery strips caused a vasoconstriction that was partially antagonized by atropine (3.45 X 10(-6) M). An enhanced reactivity of the epicardial arteries of cardiac and older patients to several agonists was also observed and appears to provide a background against which a number of vasoactive agents might induce spasm. Coronary tissue from cardiac patients also contains stores of 5-HT and histamine, and the histamine levels are substantially increased above the values in vessels from noncardiac patients. Coronary artery spasm or contraction probably can be initiated by diverse intrinsic and extrinsic influences, including autonomic discharge from either the parasympathetic or sympathetic nervous system or from histamine or 5-HT, and probably no one agent or entity is causative in all cases.  相似文献   

17.
Our objective was to test the hypothesis that short-term exercise training (STR) of pigs increases endothelium-dependent dilation (EDD) of coronary arteries but not coronary arterioles. Female Yucatan miniature swine ran on a treadmill for 1 h, at 3.5 mph, twice daily for 7 days (STR; n = 28). Skeletal muscle citrate synthase activity was increased in STR compared with sedentary controls (Sed; n = 26). Vasoreactivity was evaluated in isolated segments of conduit arteries (1-2 mm ID, 3-4 mm length) mounted on myographs and in arterioles (50-100 microm ID) isolated and cannulated with micropipettes with intraluminal pressure set at 60 cmH(2)O. EDD was assessed by examining responses to increasing concentrations of bradykinin (BK) (conduit arteries 10(-12)-10(-6) M and arterioles 10(-13)-10(-6) M). There were no differences in maximal EDD or BK sensitivity of coronary arterioles from Sed and STR hearts. In contrast, sensitivity of conduit arteries (precontracted with PGF(2alpha)) to BK was increased significantly (P < 0.05) in STR (EC(50), 2.33 +/- 0.62 nM, n = 12) compared with Sed animals (EC(50), 3.88 +/- 0.62 nM, n = 13). Immunoblot analysis revealed that coronary arteries from STR and Sed animals had similar levels of endothelial nitric oxide synthase (eNOS). In contrast, eNOS protein was increased in STR aortic endothelial cells. Neither protein nor mRNA levels of eNOS were different in coronary arterioles from STR compared with Sed animals. STR did not alter expression of superoxide dismutase (SOD-1) protein in any artery examined. We conclude that pigs exhibit increases in EDD of conduit arteries, but not in coronary arterioles, at the onset of exercise training. These adaptations in pigs do not appear to be mediated by alterations in eNOS or SOD-1 expression.  相似文献   

18.
A growing body of evidence suggests that the angiotensin II fragments, Ang(1-7) and Ang(3-8), have a vasoactive role, however ACE2, the enzyme that produces Ang(1-7), or AT4R, the receptor that binds Ang (3-8), have yet been simultaneously localised in both normal and diseased human conduit blood vessels. We sought to determine the immunohistochemical distribution of ACE2 and the AT4R in human internal mammary and radial arteries from patients undergoing coronary artery bypass surgery. We found that ACE2 positive cells were abundant in both normal and diseased vessels, being present in neo-intima and in media. ACE2 positive immunoreactivity was not present in the endothelial layer of the conduit vessels, but was clearly evident in small newly formed angiogenic vessels as well as the vaso vasorum. Endothelial AT4R immunoreactivity were rarely observed in either normal and diseased arteries, but AT4R positive cells were observed adjacent to the internal elastic lamine in the internal mammary artery, in the neo-intima of radial arteries, as well as in the media of both internal mammary artery and radial artery. AT4R was abundant in vaso vasorum and within small angiogenic vessels. Both AT4R and ACE2 co-localised with smooth muscle cell alpha actin. This study identifies smooth muscle cell alpha actin positive ACE2 and AT4R in human blood vessels as well as in angiogenic vessels, indicating a possible role for these enzymes in pathological disease.  相似文献   

19.
The goal of the present study was to develop a competitive PCR assay to measure changes in the expression of endothelial nitric oxide synthase (eNOS) mRNA levels throughout the canine vascular tree. A partial sequence of canine eNOS cDNA (1.86 kb), inducible NOS (1.95 kb), and neuronal NOS (1.16 kb) was cultured from canine aortic endothelial cells, LPS-treated canine splenic vein endothelial cells, and from canine left ventricle, respectively. Competitor eNOS cDNA (eNOS-C) was constructed via recombinant PCR. Thus, with the use of a standard curve competitive PCR with eNOS-C, the amount of eNOS mRNA in 500 ng of total RNA was greatest in the circumflex > right coronary artery > left anterior descending coronary artery > aorta. The isolation of coronary microvessels from the left ventricle was associated with an enrichment of endothelial cell markers such as eNOS, von Willebrand factor, and caveolin-1, an observation supported by the detection of up to 15-fold higher levels of eNOS mRNA in coronary microvessels relative to the larger arteries. The ability to quantify changes in eNOS mRNA levels throughout the canine vasculature should provide greater insight into the molecular mechanisms of how this gene is regulated in physiological and pathophysiological states.  相似文献   

20.
The role of positively charged arginines in the fourth transmembrane domain (S4) and a single negatively charged amino acid in the third transmembrane domain (S3) on channel biogenesis and gating of voltage-gated K(+) channels (Kv) has been well established. Both intermediate (KCa3.1) and small (KCa2.x) conductance, Ca(2+)-activated K(+) channels have two conserved arginines in S4 and a single conserved glutamic acid in S3, although these channels are voltage-independent. We demonstrate that mutation of any of these charged amino acids in KCa3.1 or KCa2.3 to alanine, glutamine, or charge reversal mutations results in a rapid degradation (<30 min) of total protein, confirming the critical role of these amino acids in channel biogenesis. Mutation of the S4 arginine closest to the cytosolic side of KCa3.1 to histidine resulted in expression at the cell surface. Excised patch clamp experiments revealed that this Arg/His mutation had a dramatically reduced open probability (P(o)), relative to wild type channels. Additionally, we demonstrate, using a combination of short hairpin RNA, dominant negative, and co-immunoprecipitation studies, that both KCa3.1 and KCa2.3 are translocated out of the endoplasmic reticulum associated with Derlin-1. These misfolded channels are poly-ubiquitylated, recognized by p97, and targeted for proteasomal degradation. Our results suggest that S3 and S4 charged amino acids play an evolutionarily conserved role in the biogenesis and gating of KCa channels. Furthermore, these improperly folded K(+) channels are translocated out of the endoplasmic reticulum in a Derlin-1- and p97-dependent fashion, poly-ubiquitylated, and targeted for proteasomal degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号