首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
横断山地区是许多温带植物的冰期避难所。为揭示该地区分布物种的亲缘地理结构, 检测了该地区特有、分布相对较为普遍的偏花报春Primula secundiflora的叶绿体trnL-trnF和rps16区序列变异。研究了11个居群109个个体, 一共发现了15种单倍型。只有一种单倍型为3个居群所共有, 其他单倍型都只存在于单个居群内。总的遗传多样性较高(HT=0.966), 但居群内遗传多样性较低(HS=0.178)。尽管种内形态十分一致, 居群间却存在高水平的遗传分化(FST=0.976)。NST (0.982)显著高于GST (0.816), 表明偏花报春在居群间存在明显的亲缘地理结构。单倍型聚成四个主要的分支: 三个分支的单倍型分布在北部, 而另一分支的单倍型分布在南部。四个分支的隔离分布表明该物种在冰期存在多个避难所。未发现在其他温带物种中广泛存在的间冰期或者冰期后物种分布范围的统一扩张现象。但是, 在气候变迁过程中由于居群增长-缩小反复发生, 多数居群的遗传多样性降低。这些推断也被巢式分支分析所证实, 距离隔离而导致的限制性基因流以及异域片断化被认为是该物种现有单倍型分布格局形成的主要原因。这种独特的谱系地理结构主要是由于气候变迁与该地区复杂的地质环境相结合造成的。  相似文献   

2.
The majority of the approximately 80-90 species in subtribe Arctotidinae occur in southern Africa with the centre of diversity in the winter-rainfall region. Three species are restricted to afromontane eastern Africa and three species are endemic to Australia. To investigate biogeographic and phylogenetic relationships within Arctotidinae, sequence data from four cpDNA regions (psbA-trnH, trnT-trnL and trnL-trnF spacers and trnL intron) and the ITS nrDNA region for 59 Arctotidinae species were analyzed with parsimony and Bayesian-inference approaches. Eight well-supported major lineages were resolved. The earliest-diverging extant lineages are afromontane or inhabit mesic habitats, whereas almost all sampled taxa from the winter-rainfall and semi-arid areas have diverged more recently. Molecular dating estimated that the major clades diverged during the Miocene and Pliocene, which is coincident with the trend of increasing rainfall seasonality, aridification and vegetation changes in southwestern Africa. Trans-oceanic dispersal to Australia was estimated to have occurred during the Pliocene.  相似文献   

3.
Vulnerable Kaiser''s mountain newt, Neurergus kaiseri, is endemic to highland streams, springs, and pools of the southwestern Zagros mountain, Iran. The present study aimed to use an integration of phylogeographical and species distribution modeling (SDM) approaches to provide new insights into the evolutionary history of the species throughout Quaternary climate oscillations. The phylogeographical analysis was followed by analyzing two mitochondrial DNA (mt‐DNA) markers including 127 control region (D‐loop) and 72 NADH dehydrogenase 2 (ND2) sequences from 15 populations in the entire species range that were obtained from GenBank. Potential recent and past distribution (the Last Glacial Maximum, LGM, 21 Kya and the Mid‐Holocene, 6 Kya) reconstructed by ensemble SDM using nine algorithms with CCSM4, MIROC‐ESM, and MPI‐ESM‐P models. Nkaiseri displayed two distinct lineages in the northern and southern regions that diverged in the Early‐Pleistocene. The demographics analysis showed signs of a slight increase in effective population size for both northern and southern populations in the Mid‐Pleistocene. Biogeography analysis showed that both vicariance and dispersal events played an important role in the formation of recent species distribution of N. kaiseri. Based on SDM projection onto paleoclimatic data, N. kaiseri displayed a scenario of past range expansion that followed by postglacial contraction. The models showed that the distribution range of the species may have shifted to a lower altitude during LGM while with amelioration of climatic during Mid‐Holocene to recent conditions caused the species to shift to the higher altitude. The findings of the current study support the hypothesis that the Zagros mountains​ may be acting as climatic refugia and play an important role in the protection of isolated populations during climate oscillations.  相似文献   

4.
The eastern sedge frog Litoria fallax (Anura: Hylidae) is common throughout the open forests and coastal wetlands along the eastern coast of Australia. Its range spans four biogeographical zones from northern Queensland to central New South Wales. Phylogenetic analysis of mitochondrial DNA (mtDNA) haplotypes of 87 L. fallax individuals from 22 populations identified two major mtDNA lineages, differing by 11-12% sequence divergence. The two clades of haplotypes were separated by the McPherson Range, indicating that this mesic upland area has acted as a major long-term barrier to gene flow for this open forest species. Slight isolation by distance was observed within both the northern and southern lineages but was insufficient to explain the large sequence divergence between lineages. Within the northern lineage, additional phylogeographical structure was observed across the relatively dry Burdekin Gap which separates Atherton populations from all populations in the central and eastern Queensland biogeographical zones. There was less phylogeographical structure in the southern lineage suggesting historical gene flow across the drier portions of the Great Dividing Range. These data, together with recent observations of deep phylogeographical divergences in rainforest-restricted Litoria suggest that the east coast hylids of Australia represent an old (Tertiary) radiation. Individual species of Litoria have been strongly affected by climatic and ecological barriers to gene flow during the Quaternary.  相似文献   

5.
Aim To investigate the distribution of Australian species of Sauropus. The information obtained is used to (1) identify areas of highest richness and centres of endemism, (2) investigate latitudinal gradients of richness and range size, (3) determine the types of rarity shown, and (4) provide hypotheses on historical biogeography of the genus within Australia. Location Australia. Methods Specimens from 17 herbaria and field searches were examined and label and field information collated on distribution, habit and habitat. Distribution information was used to map all species within 784 grid cells of 1° × 1° and within the 97 Australian ‘ecological regions’. Morphometric cluster analysis of species was conducted using Kulczynski association and flexible UPGMA on 23 character states. Simple regression was used to correlate species richness, density and range size to changes in latitude. CLIMEX is used to match the climate of the region of highest richness in Australia with other areas of the world. Results Species richness was highest within the tropical north of Australia, and most species were associated with tropical savanna woodlands. Two areas were identified as centres of endemism and these corresponded closely to areas of high species richness. Four morphological groups were identified. One species (Sauropus trachyspermus) was found to be widespread, however all other species had small geographical ranges. Species richness and range size were significantly correlated with changes in latitude. Ten species were found to be of the rarest type, warranting conservation initiatives. Main conclusions Two regions of high richness and endemism of Sauropus occur, Thailand and Australia. Within Australia, the Kakadu‐Alligator River and the Cairns‐Townsville areas were identified as centres of endemism and high species richness for Sauropus. Australian Sauropus in general occur in similar communities and climates as other members of the genus elsewhere. Ten of the 27 species of Australian endemic Sauropus are extremely rare and warrant conservation initiatives. Correlations of latitude to species richness are potentially due to Sauropus radiating from the climatically stable top end of Australia. Increasing range size in more southern latitudes may also be due to stability of climates in the top end or because there is more available land area at these latitudes. Sauropus micranthus, the only non‐endemic species, is probably a more recent invader from the Tertiary period when tropical rain forests where more extensive and congruent with those of New Guinea.  相似文献   

6.
Aim Climatic fluctuations during the Pleistocene have shaped the population structure of many extant taxa. However, few studies have examined widespread species inhabiting the Australian continent, where periods of increased aridity characterized the Pleistocene. Here we investigate the phylogeography and population history of a widespread and vagile southern Australian marsupial, the western grey kangaroo (Macropus fuliginosus). Location Southern Australia. Methods We examined the variation of the mitochondrial DNA (mtDNA) control region from 511 individuals of M. fuliginosus sampled throughout their transcontinental distribution. Maximum likelihood and Bayesian analyses were used to investigate the phylogeography and coalescence analyses were then used to test hypothesized biogeographical scenarios. Results The combined results of the phylogeographical and coalescence analyses revealed a complex evolutionary history. Macropus fuliginosus originated in the south‐west of the continent, with north‐western and south‐western populations subsequently diverging as a result of vicariance events during the mid‐Pleistocene. Subsequent arid phases affected these populations differently. In the north‐west, the expansion and contraction of the arid zone resulted in repeated vicariance events and multiple divergent north‐western mtDNA subclades. In contrast, the south‐western population was less impacted by climatic oscillations but gave rise to a major transcontinental eastward expansion. Main conclusions Macropus fuliginosus exhibits the genetic signature of divergence due to unidentified barriers in south‐western Western Australia, while previously identified barriers across southern Australia appear to have had little impact despite evidence of a broad‐scale range expansion prior to the Last Glacial Maximum (LGM). This pattern of localized expansion and contraction is comparable to unglaciated regions in both the Northern and Southern Hemispheres. Furthermore, this study indicates that despite the potential similarities between Northern Hemisphere glaciation and the activation of dune systems in the Australian arid zone, both of which rendered large areas inhospitable, the biotic responses and resultant phylogeographical signatures are dissimilar. Whereas a limited number of major geographically concordant refugia are observed in glaciated areas, the Southern Hemisphere arid zone appears to be associated with multiple species‐specific idiosyncratic refugia.  相似文献   

7.
We conducted a phylogeographical and niche modelling study of the tree Ficus bonijesulapensis, endemic to Brazilian seasonally dry tropical forests (SDTFs), in order to evaluate the effects of Quaternary climatic fluctuations on population dynamics. The trnQ–5′rps16 region of plastid DNA was sequenced from 15 populations. Three phylogeographical groups were identified by the median‐joining algorithm network and spatial analysis of molecular variance (SAMOVA) (FCT = 0.591): a central‐west, a central‐east and a scattered group. The central groups had higher total haplotype and nucleotide diversities than the scattered group. Ecological niche modelling suggested that, since the Last Interglacial (130 kyr bp ), the central and north regions have been relatively stable, whereas the southern region of the species distribution has been less stable. The phylogeographical groups showed concordance with the floristic units described for SDTFs. The low genetic diversity, unimodal mismatch distribution and unfavourable climatic conditions in the southern region suggest a recent southward expansion of the range of the species during the Holocene, supporting the hypothesis of the southward expansion of SDTFs during this period. The central and northern regions of the current distribution of F. bonijesulapensis, which are consistent with arboreal caatinga and rock outcrop floristic units, were potential refugia during Quaternary climatic fluctuations. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 189–201.  相似文献   

8.
Byrne M  Macdonald B  Brand J 《Heredity》2003,91(4):389-395
Western Australian sandalwood (Santalum spicatum) is widespread throughout Western Australia across the semiarid and arid regions. The diversity and phylogeographic patterns within the chloroplast genome of S. spicatum were investigated using restriction fragment length polymorphism analysis of 23 populations. The chloroplast diversity was structured into two main clades that were geographically separated, one centred in the southern (semiarid region) and the other in the northern (arid) region. Fragmentation due to climatic instability was identified as the most likely influence on the differentiation of the lineages. The lineage in the arid region showed a greater level of differentiation than that in the southern region, suggesting a higher level of gene flow or a more recent range expansion of sandalwood in the southern region. The phylogeographic pattern in the chloroplast genome is congruent with that detected in the nuclear genome, which identified different genetic influences between the regions and also suggested a more recent expansion of sandalwood in the southern region.  相似文献   

9.
The biota of much of continental Australia have evolved within the context of gradual aridification of the region over several million years, and more recently of climatic cycling between relatively dry and humid conditions. We performed a phylogeographical study of three sexual chromosome races of the Heteronotia binoei complex of geckos found throughout the Australian arid zone. Two of these three races were involved in two separate hybridization events leading to parthenogenetic lineages (also H. binoei), and the third is widespread and broadly sympatric with the parthenogens. Based on our analyses, the three sexual races diversified approximately 6 million years ago in eastern Australia, during a period of aridification, then each moved west through northern, southern, and central dispersal corridors to occupy their current ranges. In each case, the timing of major phylogeographical inferences corresponds to inferred palaeoclimatic changes in continental Australia. This scenario provides a simple explanation for diversification, secondary contact, and hybridization between the races. However, data presented elsewhere indicate that formation of the parthenogens was considerably more recent than the westward expansion of the hybridizing races, and that multiple hybridization events were geographically and temporally distinct. We suggest that cyclical climate changes may have led to regional range changes that facilitated hybridization between the races, which are not currently known to be in sympatry.  相似文献   

10.
Southwestern Australia (SWA) is a region of temperate Mediterranean climate isolated by desert from the rest of Australia. Since the Jurassic it has been a geologically stable area that resisted Cenozoic glaciations and today represents an ancient landscape characterized by subdued topography and nutrient-poor soils. Despite these ecological conditions, SWA contains an incredibly rich flora and fauna that includes a great diversity of endemic species and it recently has been identified as a biodiversity hotspot of international significance. Since the early recognition of the high floral diversity in SWA and subsequent recognition of high faunal diversity, much discussion has focused on the origins of this rich endemic biota. Two alternative models have been proposed--the Multiple Invasion Hypothesis and the Endemic Speciation Hypothesis. Multiple tests of these models have variously supported either one, but many of the tests have been poor. Here we use a phylogeny for the myobatrachid frog genus Heleioporus to distinguish between these hypotheses. Heleioporus comprises six species: five endemic to southwestern Australia with one from eastern Australia. A molecular phylogeny using two mitochondrial genes (ND2 and 12S rDNA) and one nuclear gene (rag1) was used to test alternative theories about the biogeography and the origin of diversity in this genus. Using a relaxed molecular clock, the divergence between the eastern and western species was dated at 25.60 M years, which is considerably older than previously suggested. Our phylogeny of Heleioporus is inconsistent with previous biogeographic hypotheses involving repeated invasions from the east to the west and some previous in situ models and instead strongly supports an ancient endemic speciation model. While the split between east and west appears to be contemporaneous with similar splits in Geocrinia (Anura) and Banksia (Proteaceae) it is much older than splits in a range of other taxa including other anurans.  相似文献   

11.
As a result of their rapid expansion and large larval host range, true fruit flies are among the world's most important agricultural pest species. Among them, Ceratitis capitata has become a model organism for studies on colonization and invasion processes. The genetic aspects of the medfly invasion process have already been analysed throughout its range, with the exception of Australia. Bioinvasion into Australia is an old event: medfly were first captured in Australia in 1895, near Perth. After briefly appearing in Tasmania and the eastern states of mainland Australia, medfly had disappeared from these areas by the 1940s. Currently, they are confined to the western coastal region. South Australia seems to be protected from medfly infestations both by the presence of an inhospitable barrier separating it from the west and by the limited number of transport routes. However, numerous medfly outbreaks have occurred since 1946, mainly near Adelaide. Allele frequency data at 10 simple sequence repeat loci were used to study the genetic structure of Australian medflies, to infer the historical pattern of invasion and the origin of the recent outbreaks. The combination of phylogeographical analysis and Bayesian tests showed that colonization of Australia was a secondary colonization event from the Mediterranean basin and that Australian medflies were unlikely to be the source for the initial Hawaiian invasion. Within Australia, the Perth area acted as the core range and was the source for medfly bioinvasion in both Western and South Australia. Incipient differentiation, as a result of habitat fragmentation, was detected in some localized areas at the periphery of the core range.  相似文献   

12.
During Pleistocene, the Laurentide ice sheet rearranged and diversified biotic distributions in eastern North America, yet had minimal physical impact in western North America where lineage diversification is instead hypothesized to result from climatic changes. If Pleistocene climatic fluctuations impacted desert species, the latter would reflect patterns of restricted gene flow concomitant with indications of demographic bottlenecks. Accordingly, molecular evidence for refugia should be present within these distributions and for subsequent range expansions as conditions improved. We sought answers to these questions by evaluating mitochondrial DNA (mtDNA) sequences from four species of rattlesnakes [Crotalus mitchellii (speckled rattlesnake), Crotalus cerastes (sidewinder), Crotalus tigris (tiger rattlesnake), Crotalus ruber (red diamond rattlesnake)] with distributions restricted to desert regions of southwestern North America. We inferred relationships using parsimony and maximum likelihood, tested intraspecific clades for population expansions, applied an isolation-with-migration model to determine bi-directional migration rates (m) among regions, and inferred divergence times for species and clades by applying a semiparametric penalized likelihood approach to our molecular data. Evidence for significant range expansion was present in two of eight regions in two species (Crotalus mitchellii pyrrhus, C. tigris region north). Two species (C. cerastes, C. mitchellii) showed a distribution concomitant with northward displacement of Baja California from mainland México, followed by vicariant separation into subclades. Effects of Pleistocene climate fluctuations were found in the distributions of all four species. Three regional diversification patterns were identified: (i) shallow genetic diversity that resulted from Pleistocene climatic events (C. tigris, C. ruber); (ii) deep Pleistocene divisions indicating allopatric segregation of subclades within refugia (C. mitchellii, C. cerastes); and (iii) lineage diversifications that extended to Pliocene or Late Miocene (C. mitchellii, C. cerastes). Clade-diversifying and clade-constraining effects impacted the four species of rattlesnakes unequally. We found relatively high levels of molecular diversification in the two most broadly distributed species (C. mitchellii, C. cerastes), and lower levels of genetic diversification in the two species (C. tigris, C. ruber) whose ranges are relatively more restricted. Furthermore, in several cases, the distributions of subspecies were not congruent with our molecular information. We suggest regional conservation perspectives for southwestern deserts cannot rely upon subspecies as biodiversity surrogates, but must instead employ a molecular and deep historical perspective as a primary mechanism to frame biodiversity reserves within this region.  相似文献   

13.
Phylogeographic studies of flora in species-rich south-western Australia point to complex evolutionary histories, reflecting patterns of persistence and resilience to climatic changes during the Pleistocene. We asked whether coastal areas of the mid-west and south, as well as granite outcrops and inland ranges, have acted as major refugia within this region during Pleistocene climatic fluctuations by analysing phylogeographic patterns in the shrub Calothamnus quadrifidus R.Br. (Myrtaceae). We determined variation in chloroplast DNA data for 41 populations across the geographic range. Relationships and major clades were resolved using parsimony and Bayesian analyses. We tested for demographic and spatial expansion of the major clades and estimated clade divergence dates using an uncorrelated, lognormal relaxed clock based on two conservative chloroplast mutation rates. Two distinct phylogeographic clades were identified showing divergence during the Pleistocene, consistent with other phylogeographic studies of south-west Australian flora, emphasising the impact of climatic oscillations in driving divergence in this landscape. The southern clade was more diverse, having higher haplotype diversity and greater genetic structure, while the northern clade showed evidence of fluctuation in population size. Regions of high haplotype diversity with adjacent areas of low diversity observed in each clade indicated the locations of two coastal refugia: one on the south coast and another along the mid-west coast. This is the first evidence for major Pleistocene refugia using chloroplast genetic data in a common, widespread species from this region.  相似文献   

14.
Aim Our aim was to understand the processes that have shaped the present‐day distribution of the freshwater limpet Ancylus fluviatilis sensu stricto in order to predict the consequences of global climate change for the geographical range of this species. Location North‐western Europe. Methods We sampled populations of A. fluviatilis sensu stricto over the entire range of the species (north‐western Europe) and sequenced 16S ribosomal RNA (16S) and cytochrome oxidase subunit I (COI) mitochondrial fragments to perform phylogenetic and phylogeographical analyses. Climatic niche modelling allowed us to infer the climatic preferences of the species. A principal components analysis identified the most important climatic factors explaining the actual range of A. fluviatilis. We also identified which climatic factor was the most limiting at range margins, and predicted the species’ geographical range under a climate change scenario [Community Climate Model 3 (CCM3)]. Results By means of the phylogeographical analysis, we infer that A. fluviatilis sensu stricto occupied northern refuges during the Last Glacial Maximum. We show that the climatic preferences of Baltic populations are significantly different from those of Central European populations. The projection of the occupied area under the CCM3 climate model predicts a moderate poleward shift of the northern range limits, but a dramatic loss of areas currently occupied, for instance in northern Germany and in southern Great Britain. Main conclusions The post‐glacial range dynamics of A. fluviatilis are not governed by niche conservatism. Therefore, we must be cautious about bioclimatic model predictions: the expected impact of climate change could be tempered by the adaptive potential this species has already shown in its evolutionary history. Thus, modelling approaches should rather be seen as conservative forecasts of altered species ranges as long as the adaptive potential of the organisms in question cannot be predicted.  相似文献   

15.
Background and Aims A worldwide increase in tree decline and mortality has been linked to climate change and, where these represent foundation species, this can have important implications for ecosystem functions. This study tests a combined approach of phylogeographic analysis and species distribution modelling to provide a climate change context for an observed decline in crown health and an increase in mortality in Eucalyptus wandoo, an endemic tree of south-western Australia.Methods Phylogeographic analyses were undertaken using restriction fragment length polymorphism analysis of chloroplast DNA in 26 populations across the species distribution. Parsimony analysis of haplotype relationships was conducted, a haplotype network was prepared, and haplotype and nucleotide diversity were calculated. Species distribution modelling was undertaken using Maxent models based on extant species occurrences and projected to climate models of the last glacial maximum (LGM).Key Results A structured pattern of diversity was identified, with the presence of two groups that followed a climatic gradient from mesic to semi-arid regions. Most populations were represented by a single haplotype, but many haplotypes were shared among populations, with some having widespread distributions. A putative refugial area with high haplotype diversity was identified at the centre of the species distribution. Species distribution modelling showed high climatic suitability at the LGM and high climatic stability in the central region where higher genetic diversity was found, and low suitability elsewhere, consistent with a pattern of range contraction.Conclusions Combination of phylogeography and paleo-distribution modelling can provide an evolutionary context for climate-driven tree decline, as both can be used to cross-validate evidence for refugia and contraction under harsh climatic conditions. This approach identified a central refugial area in the test species E. wandoo, with more recent expansion into peripheral areas from where it had contracted at the LGM. This signature of contraction from lower rainfall areas is consistent with current observations of decline on the semi-arid margin of the range, and indicates low capacity to tolerate forecast climatic change. Identification of a paleo-historical context for current tree decline enables conservation interventions to focus on maintaining genetic diversity, which provides the evolutionary potential for adaptation to climate change.  相似文献   

16.
Anthropogenically-induced climate change is one of the most important global threats to biodiversity. Understanding its impact on the distribution of exotic plant species is critical for developing effective adaptation and management strategies. However, there is insufficient information currently available on the biodiversity at risk from 1) exotic plant invasions, 2) climate change, and 3) the interaction between these two major threats, to develop such strategies. We use ecological niche models as a first step to identify zones inside and outside Australian protected areas that may be most at risk from invasions of three species of Hieracium (hawkweeds) under current and future (2030 and 2070) climate scenarios, should current control and eradication methods fail. These perennial herbs are native to Europe and invasive to New Zealand and North America. Naturalised in Australia, hawkweeds threaten native tussock grasslands and the grazing industry, and have been placed on the National Alert List. Using eight ecological niche models currently available in the software package BIOMOD, we found that these species have yet to realize the extent of their climatic distribution under present day climate in Australia. As climate change accelerates, the climatic range of hawkweeds was projected to contract overall. However, much of the Australian Alps, which contain large contiguous tracts of reserves and many endemic species, will continue to retain climatically suitable areas for hawkweeds through to 2070. These results emphasise the need for ongoing monitoring as well as focused control to minimize the likelihood of hawkweeds realizing their invasive potential in protected areas and beyond.  相似文献   

17.
A framework for identifying species that may become invasive under future climate conditions is presented, based on invader attributes and biogeography in combination with projections of future climate. We illustrate the framework using the CLIMEX niche model to identify future climate suitability for three species of Hawkweed that are currently present in the Australian Alps region and related species that are present in the neighbouring region. Potential source regions under future climate conditions are identified, and species from those emerging risk areas are identified. We use dynamically downscaled climate projections to complement global analyses and provide fine-scale projections of suitable climate for current and future (2070–2099) conditions at the regional scale. Changing climatic conditions may reduce the suitability for some invasive species and improve it for others. Invasive species with distributions strongly determined by climate, where the projected future climate is highly suitable, are those with the greatest potential to be future invasive species in the region. As the Alps region becomes warmer and drier, many more regions of the world become potential sources of invasive species, although only one additional species of Hawkweed is identified as an emerging risk. However, in the longer term, as the species in these areas respond to global climate change, the potential source areas contract again to match higher altitude regions. Knowledge of future climate suitability, based on species-specific climatic tolerances, is a useful step towards prioritising management responses such as targeted eradication and early intervention to prevent the spread of future invasive species.  相似文献   

18.
With the accumulation and accessibility of information about plant species, it is time to re-evaluate and further divide a global biodiversity hotspot region, Yunnan, located in southwestern China. In this study, we combined data on the distribution of 1010 stenochoric endemic seed plants, vegetation constitution, geological history and climate change, and used these to propose a new system of floristic regions. We identified 11 distinct floristic subregions and 84 floristic provinces within Yunnan. Our work confirmed some views emphasized by Wu Zhengyi that the stenochoric endemic species play a key role in defining floristic provinces; that stenochoric endemic plants with long collection and publication histories are more valuable; that greater attention should be paid to woody plants; and that for Yunnan, a border region, some trans-border distributed elements should be treated cautiously.  相似文献   

19.
The first extensive and stratigraphically detailed taxonomic study of the Middle to Late Eocene Bryozoa of the St Vincent Basin has identified more than 200 species of Cheilostomata and 50 species of Cyclostomata. There are three biogeographic groups: basin endemic, Australian and global. Two-thirds (116) of the cheilostome species and seven genera are currently considered endemic to this basin. Most species are endemic to Australia and similar to those found in the Oligo-Miocene of Victoria. The Cellariidae are a common component of most Australian Cainozoic deposits, but the species are highly dissimilar, with 13 of the 17 species here being new. The global component indicates that biogeographic links with regions outside Australia still existed in the Eocene. The cyclostome genus Reticrescis is only known from the Australian and Antarctic Eocene. Ten genera have their first occurrence in the Eocene St Vincent Basin. The Phidoloporidae and Smittinidae represent the most diverse and ubiquitous groups at a geological time close to their time of origination. Contemporaneous sediments in Antarctica, eastern Europe and North America also have a diverse fauna of this family, pointing to a strong Tethyan link. Rhamphosmittina lateralis (MacGillivray) is still extant in New Zealand, having an exceptionally long time range of 40 million years. Overall, the fauna has a distinct Late Cretaceous character. A new genus of Onychocellidae appears similar to genera that were common in Cretaceous Tethyan faunas but rare during the Cainozoic. This similarity ends in the Oligocene, after which the Australian bryozoan became endemic  相似文献   

20.
Palaeoclimatic events and biogeographical processes since the mid-Tertiary are believed to have strongly influenced the evolution and distribution of the terrestrial vertebrate fauna of southeastern Australia. We examined the phylogeography of the temperate-adapted members of the Egernia whitii species group, a group of skinks that comprise both widespread low- to mid-elevation (E. whitii) and montane-restricted species (Egernia guthega, Egernia montana), in order to obtain important insights into the influence of past biogeographical processes on the herpetofauna of southeastern Australia. Sequence data were obtained from all six temperate-adapted species within the E. whitii species group, and specifically from across the distributional ranges of E. whitii, E. guthega and E. montana. We targeted a fragment of the ND4 mitochondrial gene (696 bp) and analysed the data using maximum likelihood and Bayesian methods. Our data reveal a deep phylogeographical break in the east Gippsland region of Victoria between 'northern' (Queensland, New South Wales, Australian Capital Territory) and 'southern' (Victoria, Tasmania, South Australia) populations of E. whitii. This divergence appears to have occurred during the late Miocene-Pliocene, with the Gippsland basin possibly forming a geographical barrier to dispersal. Substantial structuring within both the 'northern' and the 'southern' clades is consistent with the effects of Plio-Pleistocene glacial-interglacial cycles. Pleistocene glacial cycles also appear to have shaped the phylogeographical patterns observed in the alpine species, E. guthega and E. montana. We used our results to examine the biogeographical process that led to the origin and subsequent diversification of the lowland and alpine herpetofauna of southeastern Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号