首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The structure of the major light-harvesting chlorophyll a/b complex (LHCII) was analyzed by pulsed EPR measurements and compared with the crystal structure. Site-specific spin labeling of the recombinant protein allowed the measurement of distance distributions over several intra- and intermolecular distances in monomeric and trimeric LHCII, yielding information on the protein structure and its local flexibility. A spin label rotamer library based on a molecular dynamics simulation was used to take the local mobility of spin labels into account. The core of LHCII in solution adopts a structure very similar or identical to the one seen in crystallized LHCII trimers with little motional freedom as indicated by narrow distance distributions along and between α helices. However, distances comprising the lumenal loop domain show broader distance distributions, indicating some mobility of this loop structure. Positions in the hydrophilic N-terminal domain, upstream of the first trans-membrane α helix, exhibit more and more mobility the closer they are to the N terminus. The nine amino acids at the very N terminus that have not been resolved in any of the crystal structure analyses give rise to very broad and possibly bimodal distance distributions, which may represent two families of preferred conformations.  相似文献   

2.
The main light harvesting complex of photosystem II in plants, LHCII, exists in a trimeric state. To understand the biological significance of trimerization, a comparison has been made been LHCII trimers and LHCII monomers prepared by treatment with phospholipase. The treatment used caused no loss of chlorophyll, but there was a difference in carotenoid composition, together with the previously observed alterations in absorption spectrum. It was found that, when compared to monomers, LHCII trimers showed increased thermal stability and a reduced structural flexibility as determined by the decreased rate and amplitude of fluorescence quenching in low-detergent concentration. It is suggested that LHCII should be considered as having two interacting domains: the lutein 1 domain, the site of fluorescence quenching [Wentworth et al. (2003) J. Biol. Chem. 278, 21845-21850], and the lutein 2 domain. The lutein 2 domain faces the interior of the trimer, the differences in absorption spectrum and carotenoid binding in trimers compared to monomers indicating that the trimeric state modulates the conformation of this domain. It is suggested that the lutein 2 domain controls the conformation of the lutein 1 domain, thereby providing allosteric control of fluorescence quenching in LHCII. Thus, the pigment configuration and protein conformation in trimers is adapted for efficient light harvesting and enhanced protein stability. Furthermore, trimers exhibit the optimum level of control of energy dissipation by modulating the development of the quenched state of the complex.  相似文献   

3.
The absorption spectrum of the main antenna complex of photosystem II, LHCII, has been modeled using, as starting points, the chlorophyll (chl) atomic coordinates as obtained by the LHCII crystal analysis [Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X., and Chang, W. (2004) Nature 428, 287-292] of three different trimers. The chl site Q(y) transition energies have been obtained in terms of the chl macrocycle deformations influencing the energy level of the chl frontier orbitals. Using these chl site transition energy values and the entire set of interaction energies, calculated in the ideal dipole approximation, the complete Hamiltonians for the three LHCII trimers have been written and the full set of 42 eigenstates of each LHCII trimer have been calculated. With the 42 transition energies and transition dipole strengths, either unperturbed or associated to the eigenstates, the LHCII Q(y) absorption spectrum has been calculated using a chl absorption band shape. These calculations have been performed both in vacuo and in the presence of a medium. Despite the number of approximations, a good correlation with the measured absorption spectrum of a LHCII preparation is obtained. This analysis shows that, although a substantial C3 symmetry of the LHCII trimer in terms of both chl-chl distances and interaction energies is present, a marked variation among monomer subsets of site transition energies is estimated. This leads to a C3 symmetry breaking in the unperturbed chl site transition energies set and, consequently, in the trimer eigenstates. It is also concluded that interactions among chlorophylls do not significantly modify the light absorption role of LHCII in plant leaves.  相似文献   

4.
The major light-harvesting chlorophyll a/b-binding protein (Lhcb1,2) of photosystem II is inserted into the thylakoid via the signal recognition particle dependent pathway. However, the mechanism by which the protein enters the membrane is at this time unknown. In order to define some topographical restrictions for this process, we constructed several recombinant derivatives of Lhcb1 carrying hexahistidine tags at either protein terminus or in the stromal loop domain. Additionally, green fluorescent protein (GFP) was fused to either terminus. None of the modifications significantly impair the pigment-binding properties of the protein in the in vitro reconstitution of LHCII. With the exception of the C-terminal GFP fusion, all mutants stably insert into isolated thylakoids in the absence of Ni2+ ions. The addition of low concentrations of Ni2+ ions abolishes the thylakoid insertion of C-terminally His-tagged mutants whereas the other His-tagged proteins fail to insert only at higher Ni2+ concentrations. The C-terminus of Lhcb1 must cross the membrane during protein insertion whereas the other sites of Lhcb1 modification are positioned on the stromal side of LHCII. We conclude that a Ni2+-complexed His tag and fusion to GFP inhibit translocation of the protein C-terminus across the thylakoid. Our observations indicate that the N-terminal and stromal domain of Lhcb1 need not traverse the thylakoid during protein insertion and are consistent with a loop mechanism in which only the C-terminus and the lumenal loop of Lhcb1 are translocated across the thylakoid.  相似文献   

5.
Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional “three-finger” snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, and computer modeling, we investigated the recombinant mutant WTX analogue (rWTX) which, compared with the native toxin, has an additional N-terminal methionine residue. In comparison with the wild-type toxin, rWTX demonstrated an altered pharmacological profile, decreased binding of orthosteric antagonist N-methylscopolamine to human M1- and M2-mAChRs, and increased antagonist binding to M3-mAChR. Positively charged arginine residues located in the flexible loop II were found to be crucial for rWTX interactions with all types of mAChR. Computer modeling suggested that the rWTX loop II protrudes to the M1-mAChR allosteric ligand-binding site blocking the entrance to the orthosteric site. In contrast, toxin interacts with M3-mAChR by loop II without penetration into the allosteric site. Data obtained provide new structural insight into the target-specific allosteric regulation of mAChRs by “three-finger” snake neurotoxins.  相似文献   

6.
Conversion of solar energy into chemical energy in plant chloroplasts concomitantly modifies the thylakoid architecture and hierarchical interactions between pigment–protein complexes. Here, the thylakoids were isolated from light‐acclimated Arabidopsis leaves and investigated with respect to the composition of the thylakoid protein complexes and their association into higher molecular mass complexes, the largest one comprising both photosystems (PSII and PSI) and light‐harvesting chlorophyll a/b‐binding complexes (LHCII). Because the majority of plant light‐harvesting capacity is accommodated in LHCII complexes, their structural interaction with photosystem core complexes is extremely important for efficient light harvesting. Specific differences in the strength of LHCII binding to PSII core complexes and the formation of PSII supercomplexes are well characterized. Yet, the role of loosely bound L‐LHCII that disconnects to a large extent during the isolation of thylakoid protein complexes remains elusive. Because L‐LHCII apparently has a flexible role in light harvesting and energy dissipation, depending on environmental conditions, its close interaction with photosystems is a prerequisite for successful light harvesting in vivo. Here, to reveal the labile and fragile light‐dependent protein interactions in the thylakoid network, isolated membranes were subjected to sequential solubilization using detergents with differential solubilization capacity and applying strict quality control. Optimized 3D‐lpBN‐lpBN‐sodium dodecyl sulfate–polyacrylamide gel electrophoresis system demonstrated that PSII–LHCII supercomplexes, together with PSI complexes, hierarchically form larger megacomplexes via interactions with L‐LHCII trimers. The polypeptide composition of LHCII trimers and the phosphorylation of Lhcb1 and Lhcb2 were examined to determine the light‐dependent supramolecular organization of the photosystems into megacomplexes.  相似文献   

7.
A Kuttkat  R Grimm    H Paulsen 《Plant physiology》1995,109(4):1267-1276
The light-harvesting chlorophyll a/b-binding protein (LHCP) is largely protected against protease (except for about 1 kD on the N terminus) in the thylakoid membrane; this protease resistance is often used to assay successful insertion of LHCP into isolated thylakoids in vitro. In this paper we show that this protease resistance is exhibited by trimeric light-harvesting complex of photosystem II (LHCII) but not by monomeric LHCII in which about 5 kD on the N terminus of LHCP are cleaved off by protease. When a mutant version of LHCP that is unable to trimerize in an in vitro reconstitution assay is inserted into isolated thylakoids, it gives rise to only the shorter protease digestion product indicative of monomeric LHCII. We conclude that more of the N-terminal domain of LHCP is shielded in trimeric than in monomeric LHCII and that this difference in protease sensitivity can be used to distinguish between LHCP assembled in LHCII monomers or trimers. The data presented prove that upon insertion of LHCP into isolated thylakoids at least part of the protein spontaneously binds pigments to form LHCII, which then is assembled in trimers. The dependence of the protease sensitivity of thylakoid-inserted LHCP on the oligomerization state of the newly formed LHCII justifies caution when using a protease assay to verify successful insertion of LHCP into the membrane.  相似文献   

8.
The organization of Arabidopsis thaliana photosystem II (PSII) and its associated light-harvesting antenna (LHCII) was studied in isolated PSII-LHCII supercomplexes and native membrane-bound crystals by transmission electron microscopy and image analysis. Over 4000 single-particle projections of PSII-LHCII supercomplexes were analyzed. In comparison to spinach supercomplexes [Boekema, E.J., van Roon, H., van Breemen, J.F.L. & Dekker, J.P. (1999) Eur. J. Biochem. 266, 444-452] some striking differences were revealed: a much larger number of supercomplexes from Arabidopsis contain copies of M-type LHCII trimers. M-type trimers can also bind in the absence of the more common S-type trimers. No binding of l-type trimers could be detected. Analysis of native membrane-bound PSII crystals revealed a novel type of crystal with a unit cell of 25.6 x 21.4 nm (angle 77 degrees ), which is larger than any of the PSII lattices observed before. The data show that the unit cell is built up from C2S2M2 supercomplexes, rather than from C2S2M supercomplexes observed in native membrane crystals from spinach [Boekema, E.J., Van Breemen, J.F.L., Van Roon, H. & Dekker, J.P. (2000) J. Mol. Biol. 301, 1123-1133]. It is concluded from both the single particle analysis and the crystal analysis that the M-type trimers bind more strongly to PSII core complexes in Arabidopsis than in spinach.  相似文献   

9.
Previously, we reported that the mitochondrial translocator protein (TSPO) induces HIV-1 envelope (Env) degradation via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway, but the mechanism was not clear. Here we investigated how the four ER-associated glycoside hydrolase family 47 (GH47) α-mannosidases, ERManI, and ER-degradation enhancing α-mannosidase-like (EDEM) proteins 1, 2, and 3, are involved in the Env degradation process. Ectopic expression of these four α-mannosidases uncovers that only ERManI inhibits HIV-1 Env expression in a dose-dependent manner. In addition, genetic knock-out of the ERManI gene MAN1B1 using CRISPR/Cas9 technology disrupts the TSPO-mediated Env degradation. Biochemical studies show that HIV-1 Env interacts with ERManI, and between the ERManI cytoplasmic, transmembrane, lumenal stem, and lumenal catalytic domains, the catalytic domain plays a critical role in the Env-ERManI interaction. In addition, functional studies show that inactivation of the catalytic sites by site-directed mutagenesis disrupts the ERManI activity. These studies identify ERManI as a critical GH47 α-mannosidase in the ER-associated protein degradation pathway that initiates the Env degradation and suggests that its catalytic domain and enzymatic activity play an important role in this process.  相似文献   

10.
Xanthophylls have a crucial role in the structure and function of the light harvesting complexes of photosystem II (LHCII) in plants. The binding of xanthophylls to LHCII has been investigated, particularly with respect to the xanthophyll cycle carotenoids violaxanthin and zeaxanthin. It was found that most of the violaxanthin pool was loosely bound to the major complex and could be removed by mild detergent treatment. Gentle solubilization of photosystem II particles and thylakoids allowed the isolation of complexes, including a newly described oligomeric preparation, enriched in trimers, that retained all of the in vivo violaxanthin pool. It was estimated that each LHCII monomer can bind at least one violaxanthin. The extent to which different pigments can be removed from LHCII indicated that the relative strength of binding was chlorophyll b > neoxanthin > chlorophyll a > lutein > zeaxanthin > violaxanthin. The xanthophyll binding sites are of two types: internal sites binding lutein and peripheral sites binding neoxanthin and violaxanthin. In CP29, a minor LHCII, both a lutein site and the neoxanthin site can be occupied by violaxanthin. Upon activation of the violaxanthin de-epoxidase, the highest de-epoxidation state was found for the main LHCII component and the lowest for CP29, suggesting that only violaxanthin loosely bound to LHCII is available for de-epoxidation.  相似文献   

11.
The functional domain size for efficient excited singlet state quenching was studied in artificial aggregates of the main light-harvesting complex II (LHCIIb) from spinach and in native thylakoid membranes by picosecond time-resolved fluorescence spectroscopy and quantum yield measurements. The domain size was estimated from the efficiency of added exogenous singlet excitation quenchers-phenyl-p-benzoquinone (PPQ) and dinitrobenzene (DNB). The mean fluorescence lifetimes τ(av) were quantified for a range of quencher concentrations. Applying the Stern-Volmer formalism, apparent quenching rate constants k(q) were determined from the dependencies on quencher concentration of the ratio τ(0)(av)/τ(av), where τ(0)(av) is the average fluorescence lifetime of the sample without addition of an exogenous quencher. The functional domain size was gathered from the ratio k(q)'/k(q), i.e., the apparent quenching rate constants determined in aggregates (or membranes), k(q)', and in detergent-solubilised LHCII trimers, k(q), respectively. In LHCII macroaggregates, the resulting values for the domain size were 15-30 LHCII trimers. In native thylakoid membranes the domain size was equivalent to 12-24 LHCII trimers, corresponding to 500-1000 chlorophylls. Virtually the same results were obtained when membranes were suspended in buffers promoting either membrane stacking or destacking. These domain sizes are orders of magnitude smaller than the number of physically connected pigment-protein complexes. Therefore our results imply that the physical size of an antenna system beyond the numbers of a functional domain size has little or no effect on improving the light-harvesting efficiency.  相似文献   

12.
Diurnal fluctuations were observed in the content and some structural and functional properties of the light-harvesting chlorophyll (Chl) a/b pigment-protein complex of photosystem II (LHCII) in young developing wheat (Triticum aestivum) leaves grown under 16 hours light/8 hours dark illumination regime. The fluctuations could be correlated with the diurnal oscillation in the level of mRNA for LHCII. The most pronounced changes occurred in the basal segments of the leaves. They were weaker or hardly discernible in the middle and tip segments. As judged from the diurnal variations of the Chl-a/Chl-b molar ratio, the LHCII content of the thylakoid membranes peaked around 2 pm. This can be accounted for by the cumulative effect of the elevated level of mRNA in the morning and early afternoon. In the basal segment, the extent of the fluctuation in the LHCII content was approximately 25%, as determined from gel electrophoresis (“green gels”). The amplitude of the principal bands of the circular dichroism (CD) spectra of isolated chloroplasts paralleled the changes in the LHCII content. Our circular dichroism data suggest that the newly synthesized LHCII complexes are incorporated into the existing helically organized macrodomains of the pigment-protein complexes or themselves form such macrodomains in the thylakoid membranes. Chl-a fluorescence induction kinetics also showed diurnal variations especially in the basal segments of the leaves. This most likely indicates fluctuations in the ability of membranes to undergo “state transitions.” These observations suggest a physiological role of diurnal rhythm of mRNA for LHCII in young developing leaves.  相似文献   

13.
State transitions represent a photoacclimation process that regulates the light‐driven photosynthetic reactions in response to changes in light quality/quantity. It balances the excitation between photosystem I (PSI) and II (PSII) by shuttling LHCII, the main light‐harvesting complex of green algae and plants, between them. This process is particularly important in Chlamydomonas reinhardtii in which it is suggested to induce a large reorganization in the thylakoid membrane. Phosphorylation has been shown to be necessary for state transitions and the LHCII kinase has been identified. However, the consequences of state transitions on the structural organization and the functionality of the photosystems have not yet been elucidated. This situation is mainly because the purification of the supercomplexes has proved to be particularly difficult, thus preventing structural and functional studies. Here, we have purified and analysed PSI and PSII supercomplexes of C. reinhardtii in states 1 and 2, and have studied them using biochemical, spectroscopic and structural methods. It is shown that PSI in state 2 is able to bind two LHCII trimers that contain all four LHCII types, and one monomer, most likely CP29, in addition to its nine Lhcas. This structure is the largest PSI complex ever observed, having an antenna size of 340 Chls/P700. Moreover, all PSI‐bound Lhcs are efficient in transferring energy to PSI. A projection map at 20 Å resolution reveals the structural organization of the complex. Surprisingly, only LHCII type I, II and IV are phosphorylated when associated with PSI, while LHCII type III and CP29 are not, but CP29 is phosphorylated when associated with PSII in state2.  相似文献   

14.
We used site-directed labeling of the type 1 ryanodine receptor (RyR1) and fluorescence resonance energy transfer (FRET) measurements to map RyR1 sequence elements forming the binding site of the 12-kDa binding protein for the immunosuppressant drug, FK506. This protein, FKBP12, promotes the RyR1 closed state, thereby inhibiting Ca2+ leakage in resting muscle. Although FKBP12 function is well established, its binding determinants within the RyR1 protein sequence remain unresolved. To identify these sequence determinants using FRET, we created five single-Cys FKBP variants labeled with Alexa Fluor 488 (denoted D-FKBP) and then targeted these D-FKBPs to full-length RyR1 constructs containing decahistidine (His10) “tags” placed within N-terminal (amino acid residues 76–619) or central (residues 2157–2777) regions of RyR1. The FRET acceptor Cy3NTA bound specifically and saturably to these His tags, allowing distance analysis of FRET measured from each D-FKBP variant to Cy3NTA bound to each His tag. Results indicate that D-FKBP binds proximal to both N-terminal and central domains of RyR1, thus suggesting that the FKBP binding site is composed of determinants from both regions. These findings further imply that the RyR1 N-terminal and central domains are proximal to one another, a core premise of the domain-switch hypothesis of RyR function. We observed FRET from GFP fused at position 620 within the N-terminal domain to central domain His-tagged sites, thus further supporting this hypothesis. Taken together, these results support the conclusion that N-terminal and central domain elements are closely apposed near the FKBP binding site within the RyR1 three-dimensional structure.  相似文献   

15.
Redox-controlled, reversible phosphorylation of the thylakoid light harvesting complex II (LHCII) regulates its association with photosystems (PS) I or II and thus, energy distribution between the two photosystems (state transition). Illumination of solubilized LHCII enhances exposure of the phosphorylation site at its N-terminal domain to protein kinase(s) and tryptic cleavage in vitro [Zer et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8277-8282]. Here we report that short illumination (5-10 min, 15-30 micromol m(-2) s(-1)) enhances the accessibility of LHCII phosphorylation site to kinase(s) activity also in isolated thylakoids. However, prolonged illumination or higher light intensities (30 min, 80-800 micromol m(-2) s(-1)) prevent phosphorylation of LHCII in the isolated membranes as well as in vivo, although redox-dependent protein kinase activity persists in the illuminated thylakoids toward exogenous solubilized LHCII. This phenomenon, ascribed to light-induced inaccessibility of the phosphorylation site to the protein kinase(s), affects in a similar way the accessibility of thylakoid LHCII N-terminal domain to tryptic cleavage. The illumination effect is not redox related, decreases linearly with temperature from 25 to 5 degrees C and may be ascribed to light-induced conformational changes in the complex causing lateral aggregation of dephosphorylated LHCII bound to and/or dissociated from PSII. The later state occurs under conditions allowing turnover of the phospho-LHCII phosphate. The light-induced inaccessibility of LHCII to the membrane-bound protein kinase reverses readily in darkness only if induced under LHCII-phosphate turnover conditions. Thus, phosphorylation prevents irreversible light-induced conformational changes in LHCII allowing lateral migration of the complex and the related state transition process.  相似文献   

16.
The type 3 secretion system (T3SS) and the bacterial flagellum are related pathogenicity-associated appendages found at the surface of many disease-causing bacteria. These appendages consist of long tubular structures that protrude away from the bacterial surface to interact with the host cell and/or promote motility. A proposed “ruler” protein tightly regulates the length of both the T3SS and the flagellum, but the molecular basis for this length control has remained poorly characterized and controversial. Using the Pseudomonas aeruginosa T3SS as a model system, we report the first structure of a T3SS ruler protein, revealing a “ball-and-chain” architecture, with a globular C-terminal domain (the ball) preceded by a long intrinsically disordered N-terminal polypeptide chain. The dimensions and stability of the globular domain do not support its potential passage through the inner lumen of the T3SS needle. We further demonstrate that a conserved motif at the N terminus of the ruler protein interacts with the T3SS autoprotease in the cytosolic side. Collectively, these data suggest a potential mechanism for needle length sensing by ruler proteins, whereby upon T3SS needle assembly, the ruler protein''s N-terminal end is anchored on the cytosolic side, with the globular domain located on the extracellular end of the growing needle. Sequence analysis of T3SS and flagellar ruler proteins shows that this mechanism is probably conserved across systems.  相似文献   

17.
Light-harvesting complex II (LHCII) is a crucial component of the photosynthetic machinery, with central roles in light capture and acclimation to changing light. The association of an LHCII trimer with PSI in the PSI-LHCII supercomplex is strictly dependent on LHCII phosphorylation mediated by the kinase STATE TRANSITION7, and is directly related to the light acclimation process called state transitions. In Arabidopsis (Arabidopsis thaliana), the LHCII trimers contain isoforms that belong to three classes: Lhcb1, Lhcb2, and Lhcb3. Only Lhcb1 and Lhcb2 can be phosphorylated in the N-terminal region. Here, we present an improved Phos-tag-based method to determine the absolute extent of phosphorylation of Lhcb1 and Lhcb2. Both classes show very similar phosphorylation kinetics during state transition. Nevertheless, only Lhcb2 is extensively phosphorylated (>98%) in PSI-LHCII, whereas phosphorylated Lhcb1 is largely excluded from this supercomplex. Both isoforms are phosphorylated to different extents in other photosystem supercomplexes and in different domains of the thylakoid membranes. The data imply that, despite their high sequence similarity, differential phosphorylation of Lhcb1 and Lhcb2 plays contrasting roles in light acclimation of photosynthesis.Light capture and its conversion to chemical energy occur in a set of transmembrane protein complexes of the thylakoid membrane. PSII, the cytochrome b6f complex, and PSI drive photosynthetic electron flow and the creation of a proton gradient across the thylakoid membrane. ATP synthase couples the dissipation of this gradient to the synthesis of ATP. The light-harvesting antennae play an important role in collecting light and transferring energy to the photosystems. Light-Harvesting Complex I (LHCI) exclusively transfers light energy to PSI, with which it is tightly associated (Croce and van Amerongen, 2014). In contrast, LHCII, which is the most abundant complex of the thylakoid membrane, can transfer energy to PSI or PSII (Grieco et al., 2015). Light is highly variable in natural environments, and plants experience continuous changes in both the spectrum and intensity of light on timescales as short as seconds. Changes in light quality may unbalance the activity of the two photosystems since their absorption spectra differ, whereas high light intensity can lead to overexcitation and induce photodamage. At low or moderate light intensities, the LHCII complex differentially associates with PSII or PSI, in a phosphorylation-dependent process known as state transitions, to rapidly respond to changes in the spectrum of light. In brief, under light quality that activates PSII more than PSI (e.g. blue light), LHCII is phosphorylated, and as a consequence, its binding to PSI is favored (state 2). Conversely, under light that preferentially excites PSI (enriched in far-red), this association can be reverted by dephosphorylation of the LHCII antenna, which favors its binding to PSII (state 1; Goldschmidt-Clermont and Bassi, 2015; Kim et al., 2015). A protein kinase, STATE TRANSITION7 (STN7), and a protein phosphatase, PROTEIN PHOSPHATASE1 (PPH1)/THYLAKOID-ASSOCIATED PHOSPHATASE38 (TAP38), are essential for the rapid phosphorylation and dephosphorylation of the LHCII antenna that regulates its differential association to PSI or PSII (Bellafiore et al., 2005; Pribil et al., 2010; Shapiguzov et al., 2010). Only a relatively small fraction of the LHCII antenna (<20%) is estimated to participate in state transitions in Arabidopsis (Arabidopsis thaliana; Allen, 1992). However, the process is conserved across the green eukaryotes and is relevant to plant fitness (Frenkel et al., 2007). Under high light, energy-dependent quenching of LHCII predominates, and furthermore, this antenna can uncouple from PSII (Wientjes et al., 2013b).The differential association of photosystems, LHCII, and other components of the thylakoid membrane gives rise to a set of supercomplexes that are central in ensuring photosynthetic efficiency and a rapid response to environmental cues (Caffarri et al., 2009; Duffy et al., 2013; Pietrzykowska et al., 2014; Fristedt et al., 2015). Fine tuning the dynamic assembly of these supercomplexes involves the association of antennae containing specific sets of Lhcb proteins. The major LHCII antenna comprises homo- and heterotrimers of Lhcb1 to Lhcb3 (Jackowski et al., 2001), whereas the minor LHCII isoforms (Lhcb4–Lhcb6) are monomeric (de Bianchi et al., 2008). Lhcb1 and Lhcb2 share a very similar primary structure and associated pigments (Formaggio et al., 2001; Zhang et al., 2008), whereas Lhcb3 appears to have slightly different features (Standfuss and Kühlbrandt, 2004). In Arabidopsis, five genes encode Lhcb1 isoforms, three genes encode Lhcb2 isoforms, and a single gene encodes Lhcb3. The principal discriminant between these classes is a short stretch of residues at the N-terminal end, which is of particular importance since it contains the Thr that is reversibly phosphorylated during light-acclimation processes (Goldschmidt-Clermont and Bassi, 2015). During evolution, land plants have maintained a major LHCII composed of different classes of Lhcb subunits. The phosphorylated N terminus of Lhcb2 was particularly well conserved (Alboresi et al., 2008; Zhang et al., 2008).PSII-LHCII supercomplexes have been isolated from Arabidopsis with up to four LHCII trimers bound to a PSII dimer, as well as the three minor monomeric antennae (Lhcb4–Lhcb6; Caffarri et al., 2009; Kouřil et al., 2012). In the LHCII trimers of these supercomplexes, different classes of Lhcb subunits are distributed differently, suggesting a specific role in light acclimation for each of them (Damkjaer et al., 2009; Pietrzykowska et al., 2014). In the stably bound S trimer, Lhcb1 and Lhcb2 are more abundant, whereas the moderately bound M trimer contains mostly Lhcb1 and Lhcb3 (Galka et al., 2012). PSII supercomplexes isolated from spinach (Spinacia oleracea) showed the presence of an extra LHCII trimer (L trimer); therefore, it is possible that, in Arabidopsis, other trimers are associated with the PSII dimer in a more labile supercomplex that cannot be isolated (Boekema et al., 1999). A single LHCII trimer, containing Lhcb1 and Lhcb2, stably associates with PSI to constitute the PSI-LHCII supercomplex, whose formation is dependent on LHCII phosphorylation by STN7 in state 2 (Kouřil et al., 2005; Galka et al., 2012).Previous reports have shown that the relative phosphorylation of Lhcb1 and Lhcb2 isoforms differs among thylakoid supercomplexes (Galka et al., 2012; Leoni et al., 2013). Here, we address the specific roles of Lhcb1 and Lhcb2 phosphorylation in photosynthetic acclimation. The improved protocol for SDS-PAGE in the presence of Phos-tag (Wako Chemicals) that we present allows quantification of the extent of phosphorylation for each class of antenna isoforms. We report that, in the PSI-LHCII supercomplex that is assembled in state 2, only the phosphorylated form of Lhcb2 is present, whereas the phosphorylated form of Lhcb1 is excluded. In contrast, both Lhcb1 and Lhcb2 are phosphorylated to different levels in other supercomplexes. This quantitative information on the level of phosphorylation of Lhcb1 and Lhcb2 offers new insights into the specific roles of the two classes of LHCII isoforms in light acclimation and supercomplex formation.  相似文献   

18.
We have applied small angle x-ray scattering and protein cross-linking coupled with mass spectrometry to determine the architectures of full-length HIV integrase (IN) dimers in solution. By blocking interactions that stabilize either a core-core domain interface or N-terminal domain intermolecular contacts, we show that full-length HIV IN can form two dimer types. One is an expected dimer, characterized by interactions between two catalytic core domains. The other dimer is stabilized by interactions of the N-terminal domain of one monomer with the C-terminal domain and catalytic core domain of the second monomer as well as direct interactions between the two C-terminal domains. This organization is similar to the “reaching dimer” previously described for wild type ASV apoIN and resembles the inner, substrate binding dimer in the crystal structure of the PFV intasome. Results from our small angle x-ray scattering and modeling studies indicate that in the absence of its DNA substrate, the HIV IN tetramer assembles as two stacked reaching dimers that are stabilized by core-core interactions. These models of full-length HIV IN provide new insight into multimer assembly and suggest additional approaches for enzyme inhibition.  相似文献   

19.
Light-harvesting antennae of the LHC family form transmembrane three-helix bundles of which two helices are interlocked by conserved arginine-glutamate (Arg-Glu) ion pairs that form ligation sites for chlorophylls. The antenna proteins of photosystem II have an intriguing dual function. In excess light, they can switch their conformation from a light-harvesting into a photoprotective state, in which the excess and harmful excitation energies are safely dissipated as heat. Here we applied magic angle spinning NMR and selective Arg isotope enrichment as a noninvasive method to analyze the Arg structures of the major light-harvesting complex II (LHCII). The conformations of the Arg residues that interlock helix A and B appear to be preserved in the light-harvesting and photoprotective state. Several Arg residues have very downfield-shifted proton NMR responses, indicating that they stabilize the complex by strong hydrogen bonds. For the Arg Cα chemical shifts, differences are observed between LHCII in the active, light-harvesting and in the photoprotective, quenched state. These differences are attributed to a conformational change of the Arg residue in the stromal loop region. We conclude that the interlocked helices of LHCII form a rigid core. Consequently, the LHCII conformational switch does not involve changes in A/B helix tilting but likely involves rearrangements of the loops and helical segments close to the stromal and lumenal ends.  相似文献   

20.
The molecular configuration of the xanthophyll cycle carotenoids, violaxanthin and zeaxanthin, was studied in various isolated photosystem II antenna components in comparison to intact photosystem II membranes using resonance Raman combined with low-temperature absorption spectroscopy. The molecular configurations of zeaxanthin and violaxanthin in thylakoids and isolated photosystem II membranes were found to be the same within an isolated oligomeric LHCII antenna, confirming our recent conclusion that these molecules are not freely located in photosynthetic membranes (Ruban, A. V., Pascal, A. A., Robert, B., and Horton, P. (2001) J. Biol. Chem. 276, 24862-24870). In contrast, xanthophyll cycle carotenoids bound to LHCII trimers had largely lost their in vivo configuration, suggesting their partial dissociation from the binding locus. Violaxanthin and zeaxanthin associated with the minor antenna complexes, CP26 and CP29, were also found to be in a relaxed configuration, similar to that of free pigment. The origin of the characteristic C-H vibrational bands of violaxanthin and zeaxanthin in vivo is discussed by comparison with those of neoxanthin and lutein in oligomeric and trimeric LHCII respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号