首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Previously we reported that Wnt3a-dependent neurite outgrowth in Ewing sarcoma family tumor cell lines was mediated by Frizzled3, Dishevelled (Dvl), and c-Jun N-terminal kinase (Endo, Y., Beauchamp, E., Woods, D., Taylor, W. G., Toretsky, J. A., Uren, A., and Rubin, J. S. (2008) Mol. Cell. Biol. 28, 2368–2379). Subsequently, we observed that Dvl2/3 phosphorylation correlated with neurite outgrowth and that casein kinase 1δ, one of the enzymes that mediate Wnt3a-dependent Dvl phosphorylation, was required for neurite extension (Greer, Y. E., and Rubin, J. S. (2011) J. Cell Biol. 192, 993–1004). However, the functional relevance of Dvl phosphorylation in neurite outgrowth was not established. Dvl1 has been shown by others to be important for axon specification in hippocampal neurons via an interaction with atypical PKCζ, but the role of Dvl phosphorylation was not evaluated. Here we report that Ewing sarcoma family tumor cells express PKCι but not PKCζ. Wnt3a stimulated PKCι activation and caused a punctate distribution of pPKCι in the neurites and cytoplasm, with a particularly intense signal at the centrosome. Knockdown of PKCι expression with siRNA reagents blocked neurite formation in response to Wnt3a. Aurothiomalate, a specific inhibitor of PKCι/Par6 binding, also suppressed neurite extension. Wnt3a enhanced the co-immunoprecipitation of endogenous PKCι and Dvl2. Although FLAG-tagged wild-type Dvl2 immunoprecipitated with PKCι, a phosphorylation-deficient Dvl2 derivative did not. This derivative also was unable to rescue neurite outgrowth when endogenous Dvl2/3 was suppressed by siRNA (González-Sancho, J. M., Greer, Y. E., Abrahams, C. L., Takigawa, Y., Baljinnyam, B., Lee, K. H., Lee, K. S., Rubin, J. S., and Brown, A. M. (2013) J. Biol. Chem. 288, 9428–9437). Taken together, these results suggest that site-specific Dvl2 phosphorylation is required for Dvl2 association with PKCι. This interaction is likely to be one of the mechanisms essential for Wnt3a-dependent neurite outgrowth.  相似文献   

2.
The small GTP-binding protein Rho has been implicated in the control of neuronal morphology. In N1E-115 neuronal cells, the Rho-inactivating C3 toxin stimulates neurite outgrowth and prevents actomyosin-based neurite retraction and cell rounding induced by lysophosphatidic acid (LPA), sphingosine-1-phosphate, or thrombin acting on their cognate G protein–coupled receptors. We have identified a novel putative GDP/GTP exchange factor, RhoGEF (190 kD), that interacts with both wild-type and activated RhoA, but not with Rac or Cdc42. RhoGEF, like activated RhoA, mimics receptor stimulation in inducing cell rounding and in preventing neurite outgrowth. Furthermore, we have identified a 116-kD protein, p116Rip, that interacts with both the GDP- and GTP-bound forms of RhoA in N1E-115 cells. Overexpression of p116Rip stimulates cell flattening and neurite outgrowth in a similar way to dominant-negative RhoA and C3 toxin. Cells overexpressing p116Rip fail to change their shape in response to LPA, as is observed after Rho inactivation. Our results indicate that (a) RhoGEF may link G protein–coupled receptors to RhoA activation and ensuing neurite retraction and cell rounding; and (b) p116Rip inhibits RhoA-stimulated contractility and promotes neurite outgrowth.  相似文献   

3.
NGF induces neuronal differentiation by modulating [Ca2+]i. However, the role of the three isoforms of the main Ca2+-extruding system, the Na+/Ca2+ exchanger (NCX), in NGF-induced differentiation remains unexplored. We investigated whether NCX1, NCX2, and NCX3 isoforms could play a relevant role in neuronal differentiation through the modulation of [Ca2+]i and the Akt pathway. NGF caused progressive neurite elongation; a significant increase of the well known marker of growth cones, GAP-43; and an enhancement of endoplasmic reticulum (ER) Ca2+ content and of Akt phosphorylation through an early activation of ERK1/2. Interestingly, during NGF-induced differentiation, the NCX1 protein level increased, NCX3 decreased, and NCX2 remained unaffected. At the same time, NCX total activity increased. Moreover, NCX1 colocalized and coimmunoprecipitated with GAP-43, and NCX1 silencing prevented NGF-induced effects on GAP-43 expression, Akt phosphorylation, and neurite outgrowth. On the other hand, the overexpression of its neuronal splicing isoform, NCX1.4, even in the absence of NGF, induced an increase in Akt phosphorylation and GAP-43 protein expression. Interestingly, tetrodotoxin-sensitive Na+ currents and 1,3-benzenedicarboxylic acid, 4,4′-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester-detected [Na+]i significantly increased in cells overexpressing NCX1.4 as well as ER Ca2+ content. This latter effect was prevented by tetrodotoxin. Furthermore, either the [Ca2+]i chelator(1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) (BAPTA-AM) or the PI3K inhibitor LY 294002 prevented Akt phosphorylation and GAP-43 protein expression rise in NCX1.4 overexpressing cells. Moreover, in primary cortical neurons, NCX1 silencing prevented Akt phosphorylation, GAP-43 and MAP2 overexpression, and neurite elongation. Collectively, these data show that NCX1 participates in neuronal differentiation through the modulation of ER Ca2+ content and PI3K signaling.  相似文献   

4.
The function of the central nervous system largely depends on growth and differentiation (neurite outgrowth) of neural cells and it is well established that growth factors, especially nerve growth factor NGF stimulate neurite outgrowth. However, additional factors are implicated in this process notably the redox state of the cells. For the first time we could demonstrate that the application of recombinant thioredoxin stimulates neurite outgrowth of PC12 cells to the same extend as NGF. Thioredoxin, a small redox protein is a major player in the cellular protein reduction system. An increased expression and secretion of thioredoxin is achieved by the application of the novel sialic acid precursor N-propionylmannosamine (ManNProp). From earlier studies it is known that this N-acylmannosamine analog stimulates significantly the neurite outgrowth in cell cultures. This finding would give new insights into the mechanism of the nerve-stimulatory action of ManNProp and demonstrates the novel role of thioredoxin during the regulation of nerve growth, encouraging further studies.  相似文献   

5.
6.
The cell adhesion molecule L1 is a potent inducer of neurite outgrowth and it has been implicated in X-linked hydrocephalus and related neurological disorders. To investigate the mechanisms of neurite outgrowth stimulated by L1, attempts were made to identify the neuritogenic sites in L1. Fusion proteins containing different segments of the extracellular region of L1 were prepared and different neuronal cells were assayed on substrate-coated fusion proteins. Interestingly, both immunoglobulin (Ig)-like domains 2 and 6 (Ig2, Ig6) promoted neurite outgrowth from dorsal root ganglion cells, whereas neural retinal cells responded only to Ig2. L1 Ig2 contains a previously identified homophilic binding site, whereas L1 Ig6 contains an Arg-Gly-Asp (RGD) sequence. The neuritogenic activity of Ig6 was abrogated by mutations in the RGD site. The addition of RGD-containing peptides also inhibited the promotion of neurite outgrowth from dorsal root ganglion cells by glutathione S-transferase-Ig6, implicating the involvement of an integrin. The monoclonal antibody LM609 against αvβ3 integrin, but not an anti-β1 antibody, inhibited the neuritogenic effects of Ig6. These data thus provide the first evidence that the RGD motif in L1 Ig6 is capable of promoting neurite outgrowth via interaction with the αvβ3 integrin on neuronal cells.  相似文献   

7.
8.
Neurite outgrowth is an important process in neural regeneration and plasticity, especially after neural injury, and recent evidence indicates that several Gαi/o protein-coupled receptors play an important role in neurite outgrowth. The neuropeptide (NP)FF system contains two Gαi/o protein-coupled receptors, NPFF1 and NPFF2 receptors, which are mainly distributed in the central nervous system. The aim of the present study was to determine whether the NPFF system is involved in neurite outgrowth in Neuro 2A cells. We showed that Neuro 2A cells endogenously expressed NPFF2 receptor, and the NPFF2 receptor agonist dNPA inhibited cyclic adenosine monophosphate (cAMP) production stimulated by forskolin in Neuro 2A cells. We also demonstrated that NPFF and dNPA dose-dependently induced neurite outgrowth in Neuro 2A cells, which was completely abolished by the NPFF receptor antagonist RF9. Pretreatment with mitogen-activated protein kinase inhibitors PD98059 and U0126 decreased dNPA-induced neurite outgrowth. In addition, dNPA increased phosphorylation of extracellular signal-regulated kinase (ERK) in Neuro 2A cells, which was completely antagonized by pretreatment with U0126. Our results suggest that activation of NPFF2 receptor stimulates neurite outgrowth in Neuro 2A cells through activation of the ERK signaling pathway. Moreover, NPFF2 receptor may be a potential therapeutic target for neural injury and degeneration in the future.  相似文献   

9.
A role for protein phosphorylation in the process of neurite outgrowth has been inferred from many studies of the effects of protein kinase inhibitors and activators on cultured neurotumor cells and primary neuronal cells from developing brain or ganglia. Here we re-examine this issue, using a culture system derived from a fully differentiated neuronal system undergoing axonal regeneration—the explanted goldfish retina following optic nerve crush. Of the relatively non-selective protein kinase inhibitors employed, H7, staurosporine and K252a were found to block neurite outgrowth, whereas HA1004 had no effect, a result which appears to rule out a critical role for protein kinase A. The more selective protein kinase C inhibitors, sphingosine, calphostin C and Ro-31-8220 were all inhibitory, as was prolonged treatment with phorbol ester and the protein phosphatase inhibitor okadaic acid. These results are in support of a role for protein kinase C in axonal regrowth.  相似文献   

10.
Like other CNS neurons, mature retinal ganglion cells (RGCs) are unable to regenerate their axons after nerve injury due to a diminished intrinsic regenerative capacity. One of the reasons why they lose the capacity for axon regeneration seems to be associated with a dramatic shift in RGCs’ program of gene expression by epigenetic modulation. We recently reported that (1R)-isoPropyloxygenipin (IPRG001), a genipin derivative, has both neuroprotective and neurite outgrowth activities in murine RGC-5 retinal precursor cells. These effects were both mediated by nitric oxide (NO)/S-nitrosylation signaling. Neuritogenic activity was mediated by S-nitrosylation of histone deacetylase-2 (HDAC2), which subsequently induced retinoic acid receptor β (RARβ) expression via chromatin remodeling in vitro. RARβ plays important roles of neural growth and differentiation in development. However, the role of RARβ expression during adult rat optic nerve regeneration is not clear. In the present study, we extended this hypothesis to examine optic nerve regeneration by IPRG001 in adult rat RGCs in vivo. We found a correlation between RARβ expression and neurite outgrowth with age in the developing rat retina. Moreover, we found that IPRG001 significantly induced RARβ expression in adult rat RGCs through the S-nitrosylation of HDAC2 processing mechanism. Concomitant with RARβ expression, adult rat RGCs displayed a regenerative capacity for optic axons in vivo by IPRG001 treatment. These neuritogenic effects of IPRG001 were specifically suppressed by siRNA for RARβ. Thus, the dual neuroprotective and neuritogenic actions of genipin via S-nitrosylation might offer a powerful therapeutic tool for the treatment of RGC degenerative disorders.  相似文献   

11.

Background

Neurite outgrowth is an important aspect of neuronal plasticity and regeneration after neuronal injury. Alpha-lipoic acid (LA) has been used as a therapeutic approach for a variety of neural disorders. We recently reported that LA prevents local anesthetics-induced neurite loss. In this study, we hypothesized that LA administration promotes neurite outgrowth.

Methods

To test our hypothesis, we treated mouse neuroblastoma N2a cells and primary neurons with LA. Neurite outgrowth was evaluated by examination of morphological changes and by immunocytochemistry for β-tubulin-3. ROS production was examined, as were the phosphorylation levels of ERK and Akt. In separate experiments, we determined the effects of the inhibition of ERK or PI3K/Akt as well as ROS production on LA-induced neurite outgrowth.

Results

LA promoted significantly neurite outgrowth in a time- and concentration-dependent manner. LA stimulation significantly increased the phosphorylation levels of both Akt and ERK and transiently induced ROS production. PI3K/Akt inhibition did not affect LA-induced neurite outgrowth. However, the inhibition of ERK activation completely abolished LA-induced neurite outgrowth. Importantly, the prevention of ROS production by antioxidants attenuated LA-stimulated ERK activation and completely abolished LA-promoted neurite outgrowth.

Conclusion

Our data suggest that LA stimulates neurite outgrowth through the activation of ERK signaling, an effect mediated through a ROS-dependent mechanism.  相似文献   

12.
We previously showed that p21-activated kinase 2 (PAK2), a major PAK isoform expressed in PC12 cells, mediates neurite outgrowth via Rac1 GTPase. RhoGDI1 forms a complex with Rac1, resulting in its inhibition. Rac1 activation requires dissociation from RhoGDI1. Here, we show that PAK2 mediates basic fibroblast growth factor (bFGF)-stimulated neurite outgrowth via phosphorylation of RhoGDI1. RhoGDI1 was shown to be associated with PAK2, with phosphorylation of Ser34 and Ser101 by active PAK2 evident in vitro and in vivo. A RhoGDI1 phosphomimetic mutant (S34E/S101E) was dissociated from Rac1/Cdc42, whereas the wild-type or a nonphosphorylatable mutant (S34A/S101A) formed a tight complex. Consistent with this, PC12 cells expressing the phosphomimetic mutant displayed Rac1/Cdc42 activation in response to bFGF stimulation. Neurite outgrowth was also enhanced in PC12 cells expressing the phosphomimetic mutant. These results suggest that PAK2-mediated RhoGDI1 phosphorylation stimulates dissociation of RhoGDI1-Rac1/Cdc42 complex accompanied by relief of inhibitory effect on Rac1/Cdc42, which promotes neuronal differentiation.  相似文献   

13.
Dishevelled (Dvl) proteins are intracellular effectors of Wnt signaling that have essential roles in both canonical and noncanonical Wnt pathways. It has long been known that Wnts stimulate Dvl phosphorylation, but relatively little is known about its functional significance. We have previously reported that both Wnt3a and Wnt5a induce Dvl2 phosphorylation that is associated with an electrophoretic mobility shift and loss of recognition by monoclonal antibody 10B5. In the present study, we mapped the 10B5 epitope to a 16-amino acid segment of human Dvl2 (residues 594–609) that contains four Ser/Thr residues. Alanine substitution of these residues (P4m) eliminated the mobility shift induced by either Wnt3a or Wnt5a. The Dvl2 P4m mutant showed a modest increase in canonical Wnt/β-catenin signaling activity relative to wild type. Consistent with this finding, Dvl2 4Pm preferentially localized to cytoplasmic puncta. In contrast to wild-type Dvl2, however, the P4m mutant was unable to rescue Wnt3a-dependent neurite outgrowth in TC-32 cells following suppression of endogenous Dvl2/3. Earlier work has implicated casein kinase 1δ/ϵ as responsible for the Dvl mobility shift, and a CK1δ in vitro kinase assay confirmed that Ser594, Thr595, and Ser597 of Dvl2 are CK1 targets. Alanine substitution of these three residues was sufficient to abrogate the Wnt-dependent mobility shift. Thus, we have identified a cluster of Ser/Thr residues in the C-terminal domain of Dvl2 that are Wnt-induced phosphorylation (WIP) sites. Our results indicate that phosphorylation at the WIP sites reduces Dvl accumulation in puncta and attenuates β-catenin signaling, whereas it enables noncanonical signaling that is required for neurite outgrowth.  相似文献   

14.
Mesenchymal stem cells (MSCs) can be differentiated into cell types derived from all three germ layers by manipulating culture conditions in vitro. A multitude of growth and differentiation factors have been employed for driving MSCs towards a neuronal phenotype. In the present study, we investigated the potential of extracellular matrix (ECM) proteins—fibronectin, collagen-1, collagen-IV, laminin-1, and laminin-10/11, to induce a neuronal phenotype in bone marrow derived human MSCs in the absence of growth factors/differentiating agents. All of the ECM proteins tested were found to support adhesion of MSCs to different extents. However, direct interaction only with laminin-1 triggered sprouting of neurite-like processes. Cells plated on laminin-1 exhibited neurite out growth as early as 3 h, and by 24 h, the cells developed elaborate neurites with contracted cell bodies and neuronal-like morphology. Function-blocking antibodies directed against α6 and β1 integrin subunits inhibited neurite formation on laminin-1 which confirmed the involvement of integrin α6β1 in neurite outgrowth. Mechanistic studies revealed that cell adhesion to laminin-1 activated focal adhesion kinase (FAK), and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathways. Abrogation of FAK phosphorylation by herbimycin-A inhibited neurite formation and also decreased activities of MEK and ERK. Pharmacological inhibitors of MEK (U0126) and ERK (PD98059) also blocked neurite outgrowth in cells plated on laminin-1. Our study demonstrates the involvement of integrin α6β1 and FAK-MEK/ERK signaling pathways in laminin-1-induced neurite outgrowth in MSCs in the absence of serum and differentiation factors.  相似文献   

15.
Panaxynol, a polyacetylene ((3R)-heptadeca-1,9-diene-4,6-diyn-3-ol; syn. falcarinol), was isolated from the lipophilic fractions of Panax notoginseng, a Chinese traditional medicinal plant. In the present study, we reported the neurotrophic effects of panaxynol on PC12D cells and mechanism involved in neurite outgrowth of the cells. Panaxynol could morphologically promote neurite outgrowth in PC12D cells, concentration-dependently reduce cell division and up-regulate molecular marker (MAP1B) expression in PC12D cells. Panaxynol induces the elevation of intracellular cAMP in PC12D cells. The neurite outgrowth in PC12D cells induced by panaxynol could be inhibited by the protein kinase A inhibitor RpcAMPS and by MAP kinase kinase 1/2 inhibitor U0126. These observations reveal that panaxynol could induce the differentiation of PC12D cells in a process similar to but distinct from that of NGF and the panaxynol's effects were via cAMP- and MAP kinase-dependent mechanisms.  相似文献   

16.
Transport of uridine by mouse early blastocysts is a saturable process. Kinetic studies of uptake by the blastocysts reveal an apparent Km of 1.6 μM and Vmax of 0.0063 pmole/min/embryo at 37°C. Uridine uptake is reduced when thymidine, adenosine, deoxyuridine, cytidine, or deoxyadenosine is added to the medium. These findings suggest that transport of these compounds may occur at the same or overlapping sites in the cell membrane. Inhibition of transport by dinitrophenol and KCN suggests a coupling of transport to phosphorylation and energy metabolism, probably through the phosphorylation of uridine to form UTP, the principal intracellular metabolite of uridine. However, since phosphorylation of uridine is not measurable separately from the transport process in the intact embryo, it has not been determined whether uridine uptake by the embryos occurs by facilitated diffusion or by active transport.  相似文献   

17.
Capping protein (CP) is a heterodimer that regulates actin assembly by binding to the barbed end of F-actin. In cultured nonneuronal cells, each CP subunit plays a critical role in the organization and dynamics of lamellipodia and filopodia. Mutations in either α or β CP subunit result in retinal degeneration in Drosophila. However, the function of CP subunits in mammalian neurons remains unclear. Here, we investigate the role of the β CP subunit expressed in the brain, Capzb2, in growth cone morphology and neurite outgrowth. We found that silencing Capzb2 in hippocampal neurons resulted in short neurites and misshapen growth cones in which microtubules overgrew into the periphery and completely overlapped with F-actin. In searching for the mechanisms underlying these cytoskeletal abnormalities, we identified β-tubulin as a novel binding partner of Capzb2 and demonstrated that Capzb2 decreases the rate and the extent of tubulin polymerization in vitro. We mapped the region of Capzb2 that was required for the subunit to interact with β-tubulin and inhibit microtubule polymerization. A mutant Capzb2 lacking this region was able to bind F-actin and form a CP heterodimer with α2-subunit. However, this mutant was unable to rescue the growth cone and neurite outgrowth phenotypes caused by Capzb2 knockdown. Together, these data suggest that Capzb2 plays an important role in growth cone formation and neurite outgrowth and that the underlying mechanism may involve direct interaction between Capzb2 and microtubules.  相似文献   

18.
Microtubule affinity-regulating kinase 2 (MARK2)/PAR-1b and protein kinase A (PKA) are both involved in the regulation of microtubule stability and neurite outgrowth, but whether a direct cross-talk exists between them remains unclear. Here, we found the disruption of microtubule and neurite outgrowth induced by MARK2 overexpression was blocked by active PKA. The interaction between PKA and MARK2 was confirmed by coimmunoprecipitation and immunocytochemistry both in vitro and in vivo. PKA was found to inhibit MARK2 kinase activity by phosphorylating a novel site, serine 409. PKA could not reverse the microtubule disruption effect induced by a serine 409 to alanine (Ala) mutant of MARK2 (MARK2 S409A). In contrast, mutation of MARK2 serine 409 to glutamic acid (Glu) (MARK2 S409E) did not affect microtubule stability and neurite outgrowth. We propose that PKA functions as an upstream inhibitor of MARK2 in regulating microtubule stability and neurite outgrowth by directly interacting and phosphorylating MARK2.  相似文献   

19.
Exosomes and other extracellular vesicles (EVs) participate in cell–cell communication. Herein, we isolated EVs from human plasma and demonstrated that these EVs activate cell signaling and promote neurite outgrowth in PC-12 cells. Analysis of human plasma EVs purified by sequential ultracentrifugation using tandem mass spectrometry indicated the presence of multiple plasma proteins, including α2-macroglobulin, which is reported to regulate PC-12 cell physiology. We therefore further purified EVs by molecular exclusion or phosphatidylserine affinity chromatography, which reduced plasma protein contamination. EVs subjected to these additional purification methods exhibited unchanged activity in PC-12 cells, even though α2-macroglobulin was reduced to undetectable levels. Nonpathogenic cellular prion protein (PrPC) was carried by human plasma EVs and essential for the effects of EVs on PC-12 cells, as EV-induced cell signaling and neurite outgrowth were blocked by the PrPC-specific antibody, POM2. In addition, inhibitors of the N-methyl-d-aspartate (NMDA) receptor (NMDA-R) and low-density lipoprotein receptor–related protein-1 (LRP1) blocked the effects of plasma EVs on PC-12 cells, as did silencing of Lrp1 or the gene encoding the GluN1 NMDA-R subunit (Grin1). These results implicate the NMDA-R–LRP1 complex as the receptor system responsible for mediating the effects of EV-associated PrPC. Finally, EVs harvested from rat astrocytes carried PrPC and replicated the effects of human plasma EVs on PC-12 cell signaling. We conclude that interaction of EV-associated PrPC with the NMDA-R–LRP1 complex in target cells represents a novel mechanism by which EVs may participate in intercellular communication in the nervous system.  相似文献   

20.
TROY can functionally substitute p75 to comprise the Nogo receptor complex, which transduces the inhibitory signal of myelin-associated inhibitory factors on axon regeneration following CNS injury. The inhibition of neurite extension relies on TROY-dependent RhoA activation, but how TROY activates RhoA remains unclear. Here, we firstly identified Rho guanine nucleotide dissociation inhibitor α (RhoGDIα) as a binding partner of TROY using GST pull-down combined with two-dimensional gel electrophoresis and mass spectra analysis. The interaction was further confirmed by coimmunoprecipitation in vitro and in vivo. Deletion mutagenesis revealed that two regions of the TROY intracellular domain (amino acids 234–256 and 321–350) were essential for the interaction with RhoGDIα. Secondly, TROY and RhoGDIα were coexpressed in postnatal dorsal root ganglion neurons, cortex neurons, and cerebellar granule neurons (CGNs). Thirdly, TROY/RhoGDIα association was potentiated by Nogo-66 and was independent of p75/RhoGDIα interaction. Fourthly, TROY/RhoGDIα interaction was still able to activate RhoA when p75 was deficient. Furthermore, RhoA activation was decreased dramatically when TROY was knocked down in p75-deficient CGNs cells. Finally, RhoGDIα overexpression abolished RhoA activation and following neurite outgrowth inhibition by Nogo-66 in both wild-type and p75-deficient CGNs. These results showed that the association of RhoGDIα with TROY contributed to TROY-dependent RhoA activation and neurite outgrowth inhibition after Nogo-66 stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号