首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-associated (CA) HIV-1 RNA is considered a potential marker for assessment of viral reservoir dynamics and antiretroviral therapy (ART) response in HIV-infected patients. Recent studies employed sensitive seminested real-time quantitative (q)PCR to quantify CA HIV-1 RNA. Digital PCR has been recently described as an alternative PCR-based technique for absolute quantification with higher accuracy compared to qPCR. Here, a comparison was made between the droplet digital PCR (ddPCR) and the seminested qPCR for quantification of unspliced (us) and multiply spliced (ms) CA HIV-1 RNA. Synthetic RNA standards and CA HIV-1 RNA from infected patients on and off ART (N = 34) were quantified with both methods. Correlations were observed between the methods both for serially diluted synthetic standards (usRNA: R2 = 0.97, msRNA: R2 = 0.92) and patient-derived samples (usRNA: R2 = 0.51, msRNA: R2 = 0.87). Seminested qPCR showed better quantitative linearity, accuracy and sensitivity in the quantification of synthetic standards than ddPCR, especially in the lower quantification ranges. Both methods demonstrated equally high detection rate of usRNA in patient samples on and off ART (91%), whereas ddPCR detected msRNA in larger proportion of samples from ART-treated patients (p = 0.13). We observed an average agreement between the methods for usRNA quantification in patient samples, albeit with a large standard deviation (bias = 0.05±0.75 log10). However, a bias of 0.94±0.36 log10 was observed for msRNA. No-template controls were consistently negative in the seminested qPCR, but yielded a positive ddPCR signal for some wells. Therefore, the false positive signals may have affected the detection power of ddPCR in this study. Digital PCR is promising for HIV nucleic acid quantification, but the false positive signals need further attention. Quantitative assays for CA HIV RNA have the potential to improve monitoring of patients on ART and to be used in clinical studies aimed at HIV eradication, but should be cross-validated by multiple laboratories prior to wider use.  相似文献   

2.
The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples.  相似文献   

3.
Quantitative real-time PCR (qPCR) has been widely implemented for clinical hepatitis B viral load testing, but a lack of standardization and relatively poor precision hinder its usefulness. Droplet digital PCR (ddPCR) is a promising tool that offers high precision and direct quantification. In this study, we compared the ddPCR QX100 platform by Bio-Rad with the CFX384 Touch Real-Time PCR Detection System (Bio-Rad, USA) to detect serial plasmid DNA dilutions of known concentrations as well as HBV DNA extracted from patient serum samples. Both methods showed a high degree of linearity and quantitative correlation. However, ddPCR assays generated more reproducible results and detected lower copy numbers than qPCR assays. Patient sample quantifications by ddPCR and qPCR were highly agreeable based on the Bland–Altman analysis. Collectively, our findings demonstrate that ddPCR offers improved analytical sensitivity and specificity for HBV measurements and is suitable for clinical HBV detection.  相似文献   

4.
An environmental DNA (eDNA) analysis method has been recently developed to estimate the distribution of aquatic animals by quantifying the number of target DNA copies with quantitative real-time PCR (qPCR). A new quantitative PCR technology, droplet digital PCR (ddPCR), partitions PCR reactions into thousands of droplets and detects the amplification in each droplet, thereby allowing direct quantification of target DNA. We evaluated the quantification accuracy of qPCR and ddPCR to estimate species abundance and biomass by using eDNA in mesocosm experiments involving different numbers of common carp. We found that ddPCR quantified the concentration of carp eDNA along with carp abundance and biomass more accurately than qPCR, especially at low eDNA concentrations. In addition, errors in the analysis were smaller in ddPCR than in qPCR. Thus, ddPCR is better suited to measure eDNA concentration in water, and it provides more accurate results for the abundance and biomass of the target species than qPCR. We also found that the relationship between carp abundance and eDNA concentration was stronger than that between biomass and eDNA by using both ddPCR and qPCR; this suggests that abundance can be better estimated by the analysis of eDNA for species with fewer variations in body mass.  相似文献   

5.
Deoxyribonucleic acid (DNA) of the human immunodeficiency virus (HIV) provides the most sensitive measurement of residual infection in patients on effective combination antiretroviral therapy (cART). Droplet digital PCR (ddPCR) has recently been shown to provide highly accurate quantification of DNA copy number, but its application to quantification of HIV DNA, or other equally rare targets, has not been reported. This paper demonstrates and analyzes the application of ddPCR to measure the frequency of total HIV DNA (pol copies per million cells), and episomal 2-LTR (long terminal repeat) circles in cells isolated from infected patients. Analysis of over 300 clinical samples, including over 150 clinical samples assayed in triplicate by ddPCR and by real-time PCR (qPCR), demonstrates a significant increase in precision, with an average 5-fold decrease in the coefficient of variation of pol copy numbers and a >20-fold accuracy improvement for 2-LTR circles. Additional benefits of the ddPCR assay over qPCR include absolute quantification without reliance on an external standard and relative insensitivity to mismatches in primer and probe sequences. These features make digital PCR an attractive alternative for measurement of HIV DNA in clinical specimens. The improved sensitivity and precision of measurement of these rare events should facilitate measurements to characterize the latent HIV reservoir and interventions to eradicate it.  相似文献   

6.

Background

Low biomass in the bacterial lung tissue microbiome utilizes quantitative PCR (qPCR) 16S bacterial assays at their limit of detection. New technology like droplet digital PCR (ddPCR) could allow for higher sensitivity and accuracy of quantification. These attributes are needed if specific bacteria within the bacterial lung tissue microbiome are to be evaluated as potential contributors to diseases such as chronic obstructive pulmonary disease (COPD). We hypothesize that ddPCR is better at quantifying the total bacterial load in lung tissue versus qPCR.

Methods

Control (n = 16) and COPD GOLD 2 (n = 16) tissue samples were obtained from patients who underwent lung resection surgery, were cut on a cryotome, and sections were assigned for use in quantitative histology or for DNA extraction. qPCR and ddPCR were performed on these samples using primers spanning the V2 region on the 16S rRNA gene along with negative controls. Total 16S counts were compared between the two methods. Both methods were assessed for correlations with quantitative histology measurements of the tissue.

Results

There was no difference in the average total 16S counts (P>0.05) between the two methods. However, the negative controls contained significantly lower counts in the ddPCR (0.55 ± 0.28 16S/uL) than in the qPCR assay (1.00 ± 0.70 16S copies) (P <0.05). The coefficient of variation was significantly lower for the ddPCR assay (0.18 ± 0.14) versus the qPCR assay (0.62 ± 0.29) (P<0.05).

Conclusion

Overall the ddPCR 16S assay performed better by reducing the background noise in 16S of the negative controls compared with 16S qPCR assay.  相似文献   

7.
This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.  相似文献   

8.

Background

Non-invasive prenatal testing of cell-free fetal DNA (cffDNA) in maternal plasma can predict the fetal RhD type in D negative pregnant women. In Denmark, routine antenatal screening for the fetal RhD gene (RHD) directs the administration of antenatal anti-D prophylaxis only to women who carry an RhD positive fetus. Prophylaxis reduces the risk of immunization that may lead to hemolytic disease of the fetus and the newborn. The reliability of predicting the fetal RhD type depends on pre-analytical factors and assay sensitivity. We evaluated the testing setup in the Capital Region of Denmark, based on data from routine antenatal RHD screening.

Methods

Blood samples were drawn at gestational age 25 weeks. DNA extracted from 1 mL of plasma was analyzed for fetal RHD using a duplex method for exon 7/10. We investigated the effect of blood sample transportation time (n = 110) and ambient outdoor temperatures (n = 1539) on the levels of cffDNA and total DNA. We compared two different quantification methods, the delta Ct method and a universal standard curve. PCR pipetting was compared on two systems (n = 104).

Results

The cffDNA level was unaffected by blood sample transportation for up to 9 days and by ambient outdoor temperatures ranging from -10°C to 28°C during transport. The universal standard curve was applicable for cffDNA quantification. Identical levels of cffDNA were observed using the two automated PCR pipetting systems. We detected a mean of 100 fetal DNA copies/mL at a median gestational age of 25 weeks (range 10–39, n = 1317).

Conclusion

The setup for real-time PCR-based, non-invasive prenatal testing of cffDNA in the Capital Region of Denmark is very robust. Our findings regarding the transportation of blood samples demonstrate the high stability of cffDNA. The applicability of a universal standard curve facilitates easy cffDNA quantification.  相似文献   

9.
《Cytotherapy》2023,25(1):94-102
Background aimsVector copy number (VCN), an average quantification of transgene copies unique to a chimeric antigen receptor (CAR) T-cell product, is a characteristic that must be reported prior to patient administration, as high VCN increases the risk of insertional mutagenesis. Historically, VCN assessment in CAR T-cell products has been performed via quantitative polymerase chain reaction (qPCR). qPCR is reliable along a broad range of concentrations, but quantification requires use of a standard curve and precision is limited. Digital PCR (dPCR) methods were developed for absolute quantification of target sequences by counting nucleic acid molecules encapsulated in discrete, volumetrically defined partitions. Advantages of dPCR compared with qPCR include simplicity, reproducibility, sensitivity and lack of dependency on a standard curve for definitive quantification. In the present study, the authors describe a dPCR assay developed for analysis of the novel bicistronic CD19 × CD22 CAR T-cell construct.MethodsThe authors compared the performance of the dPCR assay with qPCR on both the QX200 droplet dPCR (ddPCR) system (Bio-Rad Laboratories, Inc, Hercules, CA, USA) and the QIAcuity nanoplate-based dPCR (ndPCR) system (QIAGEN Sciences, Inc, Germantown, MD, USA). The primer–probe assay was validated with qPCR, ndPCR and ddPCR using patient samples from pre-clinical CAR T-cell manufacturing production runs as well as Jurkat cell subclones, which stably express this bicistronic CAR construct.ResultsddPCR confirmed the specificity of this assay to detect only the bicistronic CAR product. Additionally, the authors’ assay gave accurate, precise and reproducible CAR T-cell VCN measurements across qPCR, ndPCR and ddPCR modalities.ConclusionsThe authors demonstrate that dPCR strategies can be utilized for absolute quantification of CAR transgenes and VCN measurements, with improved test–retest reliability, and that specific assays can be developed for detection of unique constructs.  相似文献   

10.
The characterization of cell-free DNA (cfDNA) originating from placental trophoblast in maternal plasma provides a powerful tool for non-invasive diagnosis of fetal and obstetrical complications. Due to its placental origin, the specific epigenetic features of this DNA (commonly known as cell-free fetal DNA) can be utilized in creating universal ‘fetal’ markers in maternal plasma, thus overcoming the limitations of gender- or rhesus-specific ones. The goal of this study was to compare the performance of relevant approaches and assays evaluating the amount of cfDNA in maternal plasma throughout gestation (7.2–39.5 weeks). Two fetal- or placental- specific duplex assays (RPP30/SRY and RASSF1A/β-Actin) were applied using two technologies, real-time quantitative PCR (qPCR) and droplet digital PCR (ddPCR). Both methods revealed similar performance parameters within the studied dynamic range. Data obtained using qPCR and ddPCR for these assays were positively correlated (total cfDNA (RPP30): R = 0.57, p = 0.001/placental cfDNA (SRY): R = 0.85, p<0.0001; placental cfDNA (RASSF1A): R = 0.75, p<0.0001). There was a significant correlation in SRY and RASSF1A results measured with qPCR (R = 0.68, p = 0.013) and ddPCR (R = 0.56, p = 0.039). Different approaches also gave comparable results with regard to the correlation of the placental cfDNA concentration with gestational age and pathological outcome. We conclude that ddPCR is a practical approach, adaptable to existing qPCR assays and well suited for analysis of cell-free DNA in plasma. However, it may need further optimization to surpass the performance of qPCR.  相似文献   

11.
Aberrant DNA methylation is a common epigenetic alteration found in colorectal adenomas and cancers and plays a role in cancer initiation and progression. Aberrantly methylated DNA loci can also be found infrequently present in normal colon tissue, where they seem to have potential to be used as colorectal cancer (CRC) risk biomarkers. However, detection and precise quantification of the infrequent methylation events seen in normal colon is likely beyond the capability of commonly used PCR technologies. To determine the potential for methylated DNA loci as CRC risk biomarkers, we developed MethyLight droplet digital PCR (ddPCR) assays and compared their performance to the widely used conventional MethyLight PCR. Our analyses demonstrated the capacity of MethyLight ddPCR to detect a single methylated NTRK3 allele from among more than 3125 unmethylated alleles, 25-fold more sensitive than conventional MethyLight PCR. The MethyLight ddPCR assay detected as little as 19 and 38 haploid genome equivalents of methylated EVL and methylated NTRK3, respectively, which far exceeded conventional MethyLight PCR (379 haploid genome equivalents for both genes). When assessing methylated EVL levels in CRC tissue samples, MethyLight ddPCR reduced coefficients of variation (CV) to 6–65% of CVs seen with conventional MethyLight PCR. Importantly, we showed the ability of MethyLight ddPCR to detect infrequently methylated EVL alleles in normal colon mucosa samples that could not be detected by conventional MethyLight PCR. This study suggests that the sensitivity and precision of methylation detection by MethyLight ddPCR enhances the potential of methylated alleles for use as CRC risk biomarkers.  相似文献   

12.

Background

Quantitative PCR (qPCR) is a workhorse laboratory technique for measuring the concentration of a target DNA sequence with high accuracy over a wide dynamic range. The gold standard method for estimating DNA concentrations via qPCR is quantification cycle () standard curve quantification, which requires the time- and labor-intensive construction of a standard curve. In theory, the shape of a qPCR data curve can be used to directly quantify DNA concentration by fitting a model to data; however, current empirical model-based quantification methods are not as reliable as standard curve quantification.

Principal Findings

We have developed a two-parameter mass action kinetic model of PCR (MAK2) that can be fitted to qPCR data in order to quantify target concentration from a single qPCR assay. To compare the accuracy of MAK2-fitting to other qPCR quantification methods, we have applied quantification methods to qPCR dilution series data generated in three independent laboratories using different target sequences. Quantification accuracy was assessed by analyzing the reliability of concentration predictions for targets at known concentrations. Our results indicate that quantification by MAK2-fitting is as reliable as standard curve quantification for a variety of DNA targets and a wide range of concentrations.

Significance

We anticipate that MAK2 quantification will have a profound effect on the way qPCR experiments are designed and analyzed. In particular, MAK2 enables accurate quantification of portable qPCR assays with limited sample throughput, where construction of a standard curve is impractical.  相似文献   

13.
Most tissue samples available for cancer research are archived as formalin-fixed paraffin-embedded (FFPE) samples. However, the fixation process and the long storage duration lead to DNA fragmentation and hinder epigenome analysis. The use of droplet digital PCR (ddPCR) to detect DNA methylation has recently emerged. In this study, we compare an optimized ddPCR assay with a conventional qPCR assay by targeting a dilution series of control DNA. In addition, we compare the ddPCR technology with results from Infinium arrays targeting two separate CpG sites on a set of colon adenoma FFPE samples. Our data demonstrate that qPCR and ddPCR assess methylation status equally well on dilution controls with a high DNA input. However, the methylation detection on low-input samples is more accurate using ddPCR. The proposed primer design (methylation-independent primers with amplification of solely the converted DNA target) will allow for methylation detection, independent of bisulfite conversion efficiency. Those data show that ddPCR can be used for methylation analysis on FFPE samples with a wide range of DNA input and that the precision of the assay depends largely on the total amount of amplifiable DNA fragments. Due to accessibility of the ddPCR technology and its accuracy on high- as well as low-DNA input samples, we propose the use of this approach for studies involving degraded FFPE samples.  相似文献   

14.

Introduction

Non-invasive prenatal diagnosis (NIPD) makes use of cell-free fetal DNA (cffDNA) in the mother’s bloodstream as an alternative to invasive sampling methods such as amniocentesis or CVS, which carry a 0.5–1% risk of fetal loss. We describe a droplet digital PCR (ddPCR) assay designed to inform the testing options for couples whose offspring are at risk of suffering from cystic fibrosis via compound heterozygosity. By detecting the presence or absence of the paternal mutation in the cffDNA, it is possible to predict whether the fetus will be an unaffected carrier (absence) or whether further invasive testing is indicated (presence).

Methods

We selected a family in which the parents were known to carry different mutated CFTR alleles as our test system. NIPD was performed for three of their pregnancies during the first trimester (at around 11–12 weeks of gestation). Taqman probes were designed against an amplicon in exon 11 of the CFTR gene, to quantify the proportion of mutant (ΔF508-MUT; FAM) and normal (ΔF508-NOR; VIC) alleles at position c.1521_1523 of the CFTR gene.

Discussion

The assay correctly and unambiguously recognized the ΔF508-MUT CFTR allele in the cffDNA of all three proband fetuses and none of the six unaffected control fetuses. In conclusion, the Bio-Rad QX100 was found to be a cost-effective and technically undemanding platform for designing bespoke NIPD assays.  相似文献   

15.
We tested applicability of a new genotyping technique to detect a low abundance CD17 (A → T) mutation of β-globin gene. The technique utilized a combined gap ligase chain reaction (Gap-LCR) and quantitative PCR (qPCR) methods. One pair of Gap-LCR primers was modified by adding specific sequences to the 5′ end of the upstream and the 3′ end of the downstream primer which served as a combining sequence for qPCR. First, specific mutation is detected using Gap-LCR; then, ligation products are detected by qPCR. Our results show that the amount of LCR products is directly proportional to the amount of template DNA. We further demonstrate that this technique detects a low abundance mutant DNA with a mutant/normal allele ratio as low as 1:10000. This technique was applied to detect a paternally inherited CD17 mutation from 53 maternal plasma samples. The results were consistent with those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. In conclusion, by combining Gap-LCR and qPCR technology we successfully established a highly sensitive technique to detect low abundance point mutations. This technique can be applied to detect fetal DNA point mutation in maternal plasma.  相似文献   

16.
Targeted species‐specific and community‐wide molecular diagnostics tools are being used with increasing frequency to detect invasive or rare species. Few studies have compared the sensitivity and specificity of these approaches. In the present study environmental DNA from 90 filtered seawater and 120 biofouling samples was analyzed with quantitative PCR (qPCR), droplet digital PCR (ddPCR) and metabarcoding targeting the cytochrome c oxidase I (COI) and 18S rRNA genes for the Mediterranean fanworm Sabella spallanzanii. The qPCR analyses detected S. spallanzanii in 53% of water and 85% of biofouling samples. Using ddPCR S. spallanzanii was detected in 61% of water of water and 95% of biofouling samples. There were strong relationships between COI copy numbers determined via qPCR and ddPCR (water R2 = 0.81, p < .001, biofouling R2 = 0.68, p < .001); however, qPCR copy numbers were on average 125‐fold lower than those measured using ddPCR. Using metabarcoding there was higher detection in water samples when targeting the COI (40%) compared to 18S rRNA (5.4%). The difference was less pronounced in biofouling samples (25% COI, 29% 18S rRNA). Occupancy modelling showed that although the occupancy estimate was higher for biofouling samples (ψ = 1.0), higher probabilities of detection were derived for water samples. Detection probabilities of ddPCR (1.0) and qPCR (0.93) were nearly double metabarcoding (0.57 to 0.27 marker dependent). Studies that aim to detect specific invasive or rare species in environmental samples should consider using targeted approaches until a detailed understanding of how community and matrix complexity, and primer biases affect metabarcoding data.  相似文献   

17.
PurposeTo date, non-invasive prenatal diagnosis (NIPD) of monogenic disorders has been limited to cases with a paternal origin. This work shows a validation study of the Droplet Digital PCR (ddPCR) technology for analysis of both paternally and maternally inherited fetal alleles. For the purpose, single nucleotide polymorphisms (SNPs) were studied with the only intention to mimic monogenic disorders.MethodsNIPD SNP genotyping was performed by ddPCR in 55 maternal plasma samples. In 19 out of 55 cases, inheritance of the paternal allele was determined by presence/absence criteria. In the remaining 36, determination of the maternally inherited fetal allele was performed by relative mutation dosage (RMD) analysis.ResultsddPCR exhibited 100% accuracy for detection of paternal alleles. For diagnosis of fetal alleles with maternal origin by RMD analysis, the technology showed an accuracy of 96%. Twenty-nine out of 36 were correctly diagnosed. There was one FP and six maternal plasma samples that could not be diagnosed.DiscussionIn this study, ddPCR has shown to be capable to detect both paternal and maternal fetal alleles in maternal plasma. This represents a step forward towards the introduction of NIPD for all pregnancies independently of the parental origin of the disease.  相似文献   

18.
《Epigenetics》2013,8(10):1360-1365
Quantitating the copy number of demethylated CpG promoter sites of the CD3Z gene can be used to estimate the numbers and proportions of T cells in human blood and tissue. Quantitative methylation specific PCR (qPCR) is useful for studying T cells but requires extensive calibration and is imprecise at low copy numbers. Here we compared the performance of a new digital PCR platform (droplet digital PCR or ddPCR) to qPCR using bisulfite converted DNA from 157 blood specimens obtained from ambulatory care controls and patients with primary glioma. We compared both ddPCR and qPCR with conventional flow cytometry (FACS) evaluation of CD3 positive T cells. Repeated measures on the same blood sample revealed ddPCR to be less variable than qPCR. Both qPCR and ddPCR correlated significantly with FACS evaluation of peripheral blood CD3 counts and CD3/total leukocyte values. However, statistical measures of agreement showed that linear concordance was stronger for ddPCR than for qPCR and the absolute values were closer to FACS for ddPCR. Both qPCR and ddPCR could distinguish clinically significant differences in T cell proportions and performed similarly to FACS. Given the higher precision, greater accuracy, and technical simplicity of ddPCR, this approach appears to be a superior DNA methylation based method than conventional qPCR for the assessment of T cells.  相似文献   

19.
Quantitating the copy number of demethylated CpG promoter sites of the CD3Z gene can be used to estimate the numbers and proportions of T cells in human blood and tissue. Quantitative methylation specific PCR (qPCR) is useful for studying T cells but requires extensive calibration and is imprecise at low copy numbers. Here we compared the performance of a new digital PCR platform (droplet digital PCR or ddPCR) to qPCR using bisulfite converted DNA from 157 blood specimens obtained from ambulatory care controls and patients with primary glioma. We compared both ddPCR and qPCR with conventional flow cytometry (FACS) evaluation of CD3 positive T cells. Repeated measures on the same blood sample revealed ddPCR to be less variable than qPCR. Both qPCR and ddPCR correlated significantly with FACS evaluation of peripheral blood CD3 counts and CD3/total leukocyte values. However, statistical measures of agreement showed that linear concordance was stronger for ddPCR than for qPCR and the absolute values were closer to FACS for ddPCR. Both qPCR and ddPCR could distinguish clinically significant differences in T cell proportions and performed similarly to FACS. Given the higher precision, greater accuracy, and technical simplicity of ddPCR, this approach appears to be a superior DNA methylation based method than conventional qPCR for the assessment of T cells.  相似文献   

20.
《Genomics》2020,112(5):2937-2941
To further assess the scale and level of parental somatic mosaicism, we queried the CMA database at Baylor Genetics. We selected 50 unrelated families where clinically relevant apparent de novo CNV-deletions were found in the affected probands. Parental blood samples screening using deletion junction-specific PCR revealed four parents with somatic mosaicism. Droplet digital PCR (ddPCR), qPCR, and amplicon-based next-generation sequencing (NGS) were applied to validate these findings. Using ddPCR levels of mosaicism ranged from undetectable to 18.5%. Amplicon-based NGS and qPCR for the father with undetectable mosaicism was able to detect mosaicism at 0.39%. In one mother, ddPCR analysis revealed 15.6%, 10.6%, 8.2%, and undetectable levels of mosaicism in her blood, buccal cells, saliva, and urine samples, respectively. Our data suggest that more sensitive and precise methods, e.g. CNV junction-specific LR-PCR, ddPCR, or qPCR may allow for a more refined assessment of the potential disease recurrence risk for an identified variant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号