首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccinations are extremely effective at combating infectious diseases. Many conserved antigen (Ag) targets, however, are poorly immunogenic. Protein subunit vaccines frequently elicit only humoral immune responses and fail to confer protection against serious intracellular pathogens. These barriers to vaccine development are often overcome by the use of appropriate adjuvants. Heat-labile enterotoxins (HLT) produced by enterotoxigenic strains of Escherichia coli are potent adjuvants when administered by mucosal or systemic routes. The efficacy of the type II HLT, however, has not been well-defined when administered by the intradermal (ID) route. Using a murine ID immunization model, the adjuvant properties of LT-IIb and LT-IIc, two type II HLTs, were compared with those of LT-I, a prototypical type I HLT. While all three HLT adjuvants enhanced Ag-specific humoral responses to similar levels, LT-IIb and LT-IIc, in contrast to LT-I, induced a more vigorous Ag-specific CD8+ T cell response and proffered faster clearance of Listeria monocytogenes in a challenge model. Additionally, LT-IIb and LT-IIc induced distinct differences in the profiles of the Ag-specific CD8+ T cell responses. While LT-IIc stimulated a robust and rapid primary CD8+ T cell response, LT-IIb exhibited slower CD8+ T cell expansion and contraction kinetics with the formation of higher percentages of effector memory cells. In comparison to LT-I and LT-IIc, LT-IIb evoked better long-term protection after immunization. Furthermore, LT-IIb and LT-IIc enhanced the total number of dendritic cells (DC) in the draining lymph node (DLN) and expression of costimulatory molecules CD80, CD86, and CD40 on DCs. In contrast to LT-I, LT-IIb and LT-IIc induced less edema, cellular infiltrates, and general inflammation at the site of ID injection. Thus, LT-IIb and LT-IIc are attractive comprehensive ID adjuvants with unique characteristic that enhance humoral and cellular immunity to a co-administered protein Ag.  相似文献   

2.
Chronic Hepatitis B virus (CHB) infection is a global public health problem. Oligodeoxynucleotides (ODNs) containing class C unmethylated cytosine-guanine dinucleotide (CpG-C) motifs may provide potential adjuvants for the immunotherapeutic strategy against CHB, since CpG-C ODNs stimulate both B cell and dendritic cell (DC) activation. However, the efficacy of CpG-C ODN as an anti-HBV vaccine adjuvant remains unclear. In this study, we demonstrated that CpG M362 (CpG-C ODN) as an adjuvant in anti-HBV vaccine (cHBV-vaccine) successfully and safely eliminated the virus in HBV-carrier mice. The cHBV-vaccine enhanced DC maturation both in vivo and in vitro, overcame immune tolerance, and recovered exhausted T cells in HBV-carrier mice. Furthermore, the cHBV-vaccine elicited robust hepatic HBV-specific CD8+ and CD4+ T cell responses, with increased cellular proliferation and IFN-γ secretion. Additionally, the cHBV-vaccine invoked a long-lasting follicular CXCR5+ CD8+ T cell response following HBV re-challenge. Taken together, CpG M362 in combination with rHBVvac cleared persistent HBV and achieved long-term virological control, making it a promising candidate for treating CHB.  相似文献   

3.
Currently, there is a shortage of adjuvants that can be employed with protein subunit vaccines to enhance protection against biological threats. LT-IIb(T13I) is an engineered nontoxic derivative of LT-IIb, a member of the type II subfamily of heat labile enterotoxins expressed by Escherichia coli, that possesses potent mucosal adjuvant properties. In this study we evaluated the capacity of LT-IIb(T13I) to augment the potency of RiVax, a recombinant ricin toxin A subunit vaccine, when co-administered to mice via the intradermal (i.d.) and intranasal (i.n.) routes. We report that co-administration of RiVax with LT-IIb(T13I) by the i.d. route enhanced the levels of RiVax-specific serum IgG antibodies (Ab) and elevated the ratio of ricin-neutralizing to non-neutralizing Ab, as compared to RiVax alone. Protection against a lethal ricin challenge was also augmented by LT-IIb(T13I). While local inflammatory responses elicited by LT-IIb(T13I) were comparable to those elicited by aluminum salts (Imject®), LT-IIb(T13I) was more effective than aluminum salts at augmenting production of RiVax-specific serum IgG. Finally, i.n. administration of RiVax with LT-IIb(T13I) also increased levels of RiVax-specific serum and mucosal Ab and enhanced protection against ricin challenge. Collectively, these data highlight the potential of LT-IIb(T13I) as an effective next-generation i.d., or possibly i.n. adjuvant for enhancing the immunogenicity of subunit vaccines for biodefense.  相似文献   

4.
5.
We characterized the immune responses elicited by a DNA-prime/MVA-boost vaccine (TcVac3) constituted of antigenic candidates (TcG2 and TcG4), shown to be recognized by B and T cell responses in Trypanosoma cruzi (Tc) infected multiple hosts. C57BL/6 mice immunized with TcVac3 elicited a strong antigen-specific, high-avidity, trypanolytic antibody response (IgG2b>IgG1); and a robust antigen- and Tc-specific CD8+T cell response with type-1 cytokine (IFN-γ+TNF-α>IL-4+IL-10) and cytolytic effector (CD8+CD107a+IFN-γ+Perforin+) phenotype. The vaccine-induced effector T cells significantly expanded upon challenge infection and provided >92% control of T. cruzi. Co-delivery of IL-12 and GMCSF cytokine adjuvants didn’t enhance the TcVac3-induced resistance to T. cruzi. In chronic phase, vaccinated/infected mice exhibited a significant decline (up to 70%) in IFN-γ+CD8+T cells, a predominance of immunoregulatory IL-10+/CD4+T and IL10+/CD8+T cells, and presented undetectable tissue parasitism, inflammatory infiltrate, and fibrosis in vaccinated/infected mice. In comparison, control mice responded to challenge infection by a low antibody response, mixed cytokine profile, and consistent activation of pro-inflammatory CD8+T cells associated with parasite persistence and pathologic damage in the heart. We conclude that TcVac3 elicited type-1 effector T cell immunity that effectively controlled T. cruzi infection, and subsequently, predominance of anti-inflammatory responses prevented chronic inflammation and myocarditis in chagasic mice.  相似文献   

6.
ABSTRACT

Here, we prepared the novel combined adjuvants, CTB as intra-molecular adjuvant, CpG and aluminum hydroxide (Alum) to strengthen the immunogenicity of clumping factor A221-550 of Staphylococcus aureus (S. aureus). The protein-immunoactive results showed CTB-ClfA221-550 elicited the strong immune responses to serum from mice immunized with CTB and ClfA221-550, respectively. The mice immunized with CTB-ClfA221-550 plus CpG and Alum adjuvant exhibited significantly stronger CD4+ T cell responses for IFN-γ, IL-2, IL-4, and IL-17 and displayed the higher proliferation response of splenic lymphocytes than the control groups, in addition, these mice generated the strongest humoral immune response against ClfA221-550 among all groups. Our results also showed CTB-ClfA221-550 plus CpG and Alum adjuvant obviously increased the survival percentage of the mice challenged by S. aureus. These data suggested that the novel combined adjuvants, CTB, CpG, and Alum, significantly enhance the immune responses triggered with ClfA221-550, and could provide a new approach against infection of S. aureus.  相似文献   

7.
Molecularly defined synthetic vaccines capable of inducing both antibodies and cellular anti-tumor immune responses, in a manner compatible with human delivery, are limited. Few molecules achieve this target without utilizing external immuno-adjuvants. In this study, we explored a self-adjuvanting glyco-lipopeptide (GLP) as a platform for cancer vaccines using as a model MO5, an OVA-expressing mouse B16 melanoma. A prototype B and T cell epitope-based GLP molecule was constructed by synthesizing a chimeric peptide made of a CD8+ T cell epitope, from ovalbumin (OVA257–264) and an universal CD4+ T helper (Th) epitope (PADRE). The resulting CTL–Th peptide backbones was coupled to a carbohydrate B cell epitope based on a regioselectively addressable functionalized templates (RAFT), made of four α-GalNAc molecules at C-terminal. The N terminus of the resulting glycopeptides (GP) was then linked to a palmitic acid moiety (PAM), obviating the need for potentially toxic external immuno-adjuvants. The final prototype OVA-GLP molecule, delivered in adjuvant-free PBS, in mice induced: (1) robust RAFT-specific IgG/IgM that recognized tumor cell lines; (2) local and systemic OVA257–264-specific IFN-γ producing CD8+ T cells; (3) PADRE-specific CD4+ T cells; (4) OVA-GLP vaccination elicited a reduction of tumor size in mice inoculated with syngeneic murine MO5 carcinoma cells and a protection from lethal carcinoma cell challenge; (5) finally, OVA-GLP immunization significantly inhibited the growth of pre-established MO5 tumors. Our results suggest self-adjuvanting glyco-lipopeptide molecules as a platform for B Cell, CD4+, and CD8+ T cell epitopes-based immunotherapeutic cancer vaccines. Both I. Bettahi and G. Dasgupta have contributed equally to this work.  相似文献   

8.
Complexing TLR9 agonists such as plasmid DNA to cationic liposomes markedly potentiates their ability to activate innate immunity. We therefore reasoned that liposomes complexed with DNA or other TLR agonists could be used as effective vaccine adjuvants. To test this hypothesis, the vaccine adjuvant effects of liposomes complexed to TLR agonists were assessed in mice. We found that liposomes complexed to nucleic acids (liposome-Ag-nucleic acid complexes; LANAC) were particularly effective adjuvants for eliciting CD4(+) and CD8(+) T cell responses against peptide and protein Ags. Notably, LANAC containing TLR3 or TLR9 agonists effectively cross-primed CD8(+) T cell responses against even low doses of protein Ags, and this effect was independent of CD4(+) T cell help. Ag-specific CD8(+) T cells elicited by LANAC adjuvants were functionally active and persisted for long periods of time in tissues. In a therapeutic tumor vaccine model, immunization with the melanoma peptide trp2 and LANAC adjuvant controlled the growth of established B16 melanoma tumors. In a prophylactic vaccine model, immunization with the Mycobacterium tuberculosis protein ESAT-6 with LANAC adjuvant elicited significant protective immunity against aerosol challenge with virulent M. tuberculosis. These results suggest that certain TLR agonists can be combined with cationic liposomes to produce uniquely effective vaccine adjuvants capable of eliciting strong T cell responses against protein and peptide Ags.  相似文献   

9.
Norovirus (NoV) P domain complexes, the 24 mer P particles and the P dimers, induced effective humoral immunity, but their role in the cellular immune responses remained unclear. We reported here a study on cellular immune responses of the two P domain complexes in comparison with the virus-like particle (VLP) of a GII.4 NoV (VA387) in mice. The P domain complexes induced significant central memory CD4+ T cell phenotypes (CD4+ CD44+ CD62L+ CCR7+) and activated polyclonal CD4+ T cells as shown by production of Interleukin (IL)-2, Interferon (IFN)-γ, and Tumor Necrosis Factor (TNF)-α. Most importantly, VA387-specific CD4+ T cell epitope induced a production of IFN-γ, indicating an antigen-specific CD4+ T cell response in P domain complex-immunized mice. Furthermore, P domain complexes efficiently induced bone marrow-derived dendritic cell (BMDC) maturation, evidenced by up-regulation of co-stimulatory and MHC class II molecules, as well as production of IL-12 and IL-1β. Finally, P domain complex-induced mature dendritic cells (DCs) elicited proliferation of specific CD4+ T cells targeting VA387 P domain. Overall, we conclude that the NoV P domain complexes are efficiently presented by DCs to elicit not only humoral but also cellular immune responses against NoVs. Since the P particle is highly effective for both humoral and cellular immune responses and easily produced in Escherichia coli (E. coli), it is a good choice of vaccine against NoVs and a vaccine platform against other diseases.  相似文献   

10.
WH1fungin, a surfactin cyclopeptide from Bacillus amyloliquefaciens WH1, is firstly reported as a novel immunoadjuvant, which can markedly enhance the immune response when given in mixture with antigens. After intramuscular or subcutaneous immunization, WH1fungin can help to induce both of durable humoral and cellular immune response, even as strong as Freund's adjuvant. Both IgG1 and IgG2a antigen-specific antibodies were elicited from the immunizations indicating a mixed Th1/Th2 response. Splenocytes from mice intramuscularly immunized with OVA plus WH1fungin responded to OVA CTL peptide stimulation resulting in an increase in CD8+TNF-α+ and CD8+IFN-γ+ T cell populations, and also an increase in CD4+TNF-α+ T cells and CD4+IFN-γ+ T cell populations was found from mice subcutaneously immunized with OVA plus WH1fungin when responded to OVA Th peptide stimulation. These results further suggest that WH1fungin helps to elicit humoral and cellular responses to OVA. The potential mechanism of WH1fungin as an immunoadjuvant was investigated. In vitro assays showed that WH1fungin could enter into RAW 264.7 cells, induce ROS accumulation, and increase the expression of cell surface markers and cytokines in cells. Further investigation suggested that WH1fungin might exert its adjuvant activity by ligating with TLR-2 in antigen present cells such as RAW 264.7. Taken together, WH1fungin is very potent as a novel adjuvant for development of vaccines in the future.  相似文献   

11.

Background

Modifications of adjuvants that induce cell-mediated over antibody-mediated immunity is desired for development of vaccines. Nanocapsules have been found to be viable adjuvants and are amenable to engineering for desired immune responses. We previously showed that natural nanocapsules called vaults can be genetically engineered to elicit Th1 immunity and protection from a mucosal bacterial infection. The purpose of our study was to characterize immunity produced in response to OVA within vault nanoparticles and compare it to another nanocarrier.

Methodology and Principal Findings

We characterized immunity resulting from immunization with the model antigen, ovalbumin (OVA) encased in vault nanocapsules and liposomes. We measured OVA responsive CD8+ and CD4+ memory T cell responses, cytokine production and antibody titers in vitro and in vivo. We found that immunization with OVA contain in vaults induced a greater number of anti-OVA CD8+ memory T cells and production of IFNγ plus CD4+ memory T cells. Also, modification of the vault body could change the immune response compared to OVA encased in liposomes.

Conclusions/Significance

These experiments show that vault nanocapsules induced strong anti-OVA CD8+ and CD4+ T cell memory responses and modest antibody production, which markedly differed from the immune response induced by liposomes. We also found that the vault nanocapsule could be modified to change antibody isotypes in vivo. Thus it is possible to create a vault nanocapsule vaccine that can result in the unique combination of immunogen-responsive CD8+ and CD4+ T cell immunity coupled with an IgG1 response for future development of vault nanocapsule-based vaccines against antigens for human pathogens and cancer.  相似文献   

12.
One strategy to induce optimal cellular and humoral immune responses following immunization is to use vaccines or adjuvants that target dendritic cells and B cells. Activation of both cell types can be achieved using specific TLR ligands or agonists directed against their cognate receptor. In this study, we compared the ability of the TLR7/8 agonist R-848, which signals only via TLR7 in mice, with CpG oligodeoxynucleotides for their capacity to induce HIV-1 Gag-specific T cell and Ab responses when used as vaccine adjuvants with HIV-1 Gag protein in mice. Injection of R-848 and CpG oligodeoxynucleotides alone enhanced the innate immune responses in vivo as demonstrated by high serum levels of inflammatory cytokines, including IL-12p70 and IFN-alpha, and increased expression of CD80, CD86, and CD40 on CD11c(+) dendritic cells. By contrast, R-848 was a relatively poor adjuvant for inducing primary Th1 or CD8(+) T cell responses when administered with HIV-1 Gag protein. However, when a TLR7/8 agonist structurally and functionally similar to R-848 was conjugated to HIV-1 Gag protein both Th1 and CD8(+) T cells responses were elicited as determined by intracellular cytokine and tetramer staining. Moreover, within the population of HIV-1 Gag-specific CD8(+) CD62(low) cells, approximately 50% of cells expressed CD127, a marker shown to correlate with the capacity to develop into long-term memory cells. Overall, these data provide evidence that TLR7/8 agonists can be effective vaccine adjuvants for eliciting strong primary immune responses with a viral protein in vivo, provided vaccine delivery is optimized.  相似文献   

13.
Cell-mediated immunity plays a crucial role in the control of many infectious diseases, necessitating the need for adjuvants that can augment cellular immune responses elicited by vaccines. It is well established that protection against one such disease, malaria, requires strong CD8(+) T cell responses targeted against the liver stages of the causative agent, Plasmodium spp. In this report we show that the dendritic cell-specific chemokine, dendritic cell-derived CC chemokine 1 (DC-CK1), which is produced in humans and acts on naive lymphocytes, can enhance Ag-specific CD8(+) T cell responses when coadministered with either irradiated Plasmodium yoelii sporozoites or a recombinant adenovirus expressing the P. yoelii circumsporozoite protein in mice. We further show that these enhanced T cell responses result in increased protection to malaria in immunized mice challenged with live P. yoelii sporozoites, revealing an adjuvant activity for DC-CK1. DC-CK1 appears to act preferentially on naive mouse lymphocytes, and its adjuvant effect requires IL-12, but not IFN-gamma or CD40. Overall, our results show for the first time an in vivo role for DC-CK1 in the establishment of primary T cell responses and indicate the potential of this chemokine as an adjuvant for vaccines against malaria as well as other diseases in which cellular immune responses are important.  相似文献   

14.
DNA vaccines have emerged as an attractive approach for generating antigen-specific immunotherapy. Strategies that enhance antigen presentation may potentially be used to enhance DNA vaccine potency. Previous experiments showed that chimeric DNA vaccines utilizing endoplasmic reticulum (ER) chaperone molecules, such as Calreticulin (CRT), linked to an antigen were capable of generating antigen-specific CD8+ T cell immune responses in vaccinated mice. In this study, we tested DNA vaccines encoding the ER chaperone molecules ER-60, tapasin (Tap), or calnexin (Cal), linked to human papillomavirus type 16 (HPV-16) E7 for their abilities to generate E7-specific T cell-mediated immune responses and antitumor effects in vaccinated mice. Our results demonstrated that vaccination with DNA encoding any of these chaperone molecules linked to E7 led to a significant increase in the frequency of E7-specific CD8+ T cell precursors and generated stronger antitumor effects against an E7-expressing tumor in vaccinated mice compared to vaccination with wild-type E7 DNA. Our data suggest that DNA vaccines employing these ER chaperone molecules linked to antigen may enhance antigen-specific CD8+ T cell immune responses, resulting in a significantly more potent DNA vaccine.  相似文献   

15.
Chronic hepatitis B infection (CHB) is characterized by sub-optimal T cell responses to viral antigens. A therapeutic vaccine capable of restoring these immune responses could potentially improve HBsAg seroconversion rates in the setting of direct acting antiviral therapies. A yeast-based immunotherapy (Tarmogen) platform was used to make a vaccine candidate expressing hepatitis B virus (HBV) X, surface (S), and Core antigens (X-S-Core). Murine and human immunogenicity models were used to evaluate the type and magnitude of HBV-Ag specific T cell responses elicited by the vaccine. C57BL/6J, BALB/c, and HLA-A*0201 transgenic mice immunized with yeast expressing X-S-Core showed T cell responses to X, S and Core when evaluated by lymphocyte proliferation assay, ELISpot, intracellular cytokine staining (ICS), or tumor challenge assays. Both CD4+ and CD8+ T cell responses were observed. Human T cells transduced with HBc18–27 and HBs183–91 specific T cell receptors (TCRs) produced interferon gamma (IFNγ following incubation with X-S-Core-pulsed dendritic cells (DCs). Furthermore, stimulation of peripheral blood mononuclear cells (PBMCs) isolated from CHB patients or from HBV vaccine recipients with autologous DCs pulsed with X-S-Core or a related product (S-Core) resulted in pronounced expansions of HBV Ag-specific T cells possessing a cytolytic phenotype. These data indicate that X-S-Core-expressing yeast elicit functional adaptive immune responses and supports the ongoing evaluation of this therapeutic vaccine in patients with CHB to enhance the induction of HBV-specific T cell responses.  相似文献   

16.
For protection from HIV-1 infection, a vaccine should elicit both humoral and cell-mediated immune responses. A novel vaccine regimen and adjuvant that induce high levels of HIV-1 Env-specific T cell and antibody (Ab) responses was developed in this study. The prime-boost regimen that used combinations of replication-competent vaccinia LC16m8Δ (m8Δ) and Sendai virus (SeV) vectors expressing HIV-1 Env efficiently produced both Env-specific CD8+ T cells and anti-Env antibodies, including neutralizing antibodies (nAbs). These results sharply contrast with vaccine regimens that prime with an Env expressing plasmid and boost with the m8Δ or SeV vector that mainly elicited cellular immunities. Moreover, co-priming with combinations of m8Δs expressing Env or a membrane-bound human CD40 ligand mutant (CD40Lm) enhanced Env-specific CD8+ T cell production, but not anti-Env antibody production. In contrast, priming with an m8Δ that coexpresses CD40Lm and Env elicited more anti-Env Abs with higher avidity, but did not promote T cell responses. These results suggest that the m8Δ prime/SeV boost regimen in conjunction with CD40Lm expression could be used as an immunization platform for driving both potent cellular and humoral immunities against pathogens such as HIV-1.  相似文献   

17.
There is now convincing evidence that the successful development of an effective CMV vaccine will require improved formulation and adjuvant selection that is capable of inducing both humoral and cellular immune responses. Here, we have designed a novel bivalent subunit vaccine formulation based on CMV-encoded oligomeric glycoprotein B (gB) and polyepitope protein in combination with human compatible TLR9 agonist CpG1018. The polyepitope protein includes multiple minimal HLA class I-restricted CD8+ T cell epitopes from different antigens of CMV. This subunit vaccine generated durable anti-viral antibodies, CMV-specific CD4+ and CD8+ T cell responses in multiple HLA expressing mice. Antibody responses included broad TH1 isotypes (IgG2a, IgG2b and IgG3) and potently neutralized CMV infection in fibroblasts and epithelial cells. Furthermore, polyfunctional antigen-specific T cell immunity and antiviral antibody responses showed long-term memory maintenance. These observations argue that this novel vaccine strategy, if applied to humans, could facilitate the generation of robust humoral and cellular immune responses which may be more effective in preventing CMV-associated complications in various clinical settings.  相似文献   

18.

Background

Virus-specific cellular immune responses play a critical role in virus clearance during acute or chronic HBV infection. Currently, the commercially available HBV vaccine is combined with alum adjuvant, which stimulates mainly Th2 immune responses. Therefore, development of new therapeutic HBV vaccine adjuvants and immune strategies that also promote Th1 and CTL responses is urgently needed.

Methodology/Principal findings

To improve the immunity induced by the novel HBSS1 HBV vaccine, we evaluated the ability of adjuvants, including alum, CpG and polyriboinosinic polyribocytidylic acid [poly(I:C)], to enhance the response when boosted with the recombinant adenoviral vector vaccine rAdSS1. The immune responses to different adjuvant combinations were assessed in C57BL/6 mice by enzyme-linked immunosorbent assay (ELISA), ELISpot and cytokine release assays. Among the combinations tested, a HBV protein particle vaccine with CpG/alum and poly(I:C)/alum priming combinations accelerated specific seroconversion and produced high antibody (anti-PreS1, anti-S antibody) titres with a Th1 bias. After boosting with recombinant adenoviral vector vaccine rAdSS1, both groups produced a strong multi-antigen (S and PreS1)-specific cellular immune response. HBSS1 immunisation with poly(I:C)/alum priming also generated high-level CD4+ and CD8+ T cell responses in terms of Th1 cytokines (IFN-γand IL-2).

Conclusions

The protein-vaccine HBSS1 with mixed poly(I:C)/alum adjuvant priming, followed by a rAdSS1 vaccine boost, maximises specific antibody and Th1-biased cellular immune responses. This regime might prove useful in the development of HBV therapeutic vaccines. Furthermore, this promising strategy might be applied to vaccines against other persistent infections, such as human immunodeficiency virus and tuberculosis.  相似文献   

19.
Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-β, IFN-α/β-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4+ and CD8+ T cell adaptive and memory immune responses, which were mostly mediated by CD8+ T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4+ T cell responses were mainly directed against Env, while GPN-specific CD8+ T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-β signaling, could be a general strategy to improve the immunogenicity of poxvirus-based vaccine candidates.  相似文献   

20.

Background

Urease subunit B (UreB), a conserved and key virulence factor of Helicobacter pylori (H. pylori), can induce the host CD4+ T cell immune responses to provide protection, but less is known regarding CD8+ T cell responses. The characteristics of H. pylori-specific CD8+ T cell responses and the mechanism underlying antigen processing and presentation pathways remain unclear. This study was focus on protective antigen recombinant UreB (rUreb) to detect specific CD8+ T cell responses in vitro and elucidate the mechanism of UreB antigen processing and presentation.

Methods

The peripheral blood mononuclear cells (PBMCs) collected from H. pylori-infected individuals were stimulated with rUreB in vitro to detect specific CD8+ T cell responses after co-culture with rUreB-pulsed autologous hMDCs. Through blocking assay, we investigated the potential pathway of UreB antigen processing and presentation via the cytosolic pathway or vacuolar pathway. The cytokines production of UreB specific CD8+ T cell were evaluated as well.

Results

We demonstrated UreB can induce specific CD8+ T cell immune responses in H. pylori infected individuals. Importantly, we characterized that UreB were mainly processed by proteasome instead of lysosomal proteases and presented through cytosolic pathway of cross-presentation, which requires endoplasmic reticulum–Golgi transport and newly synthesized MHC-I molecules, to induce functional-specific CD8+ T cell (IFN-γ + TNF-α + Grz A+ Grz B+) responses.

Conclusions

These results suggest that H. pylori UreB induces specific CD8+ T cell responses through cytosolic pathway of cross-presentation in infected individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号