首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Mutations in PTEN-induced kinase 1 (PINK1) gene cause recessive familial type 6 of Parkinson's disease (PARK6). PINK1 is believed to exert neuroprotective effect on SN dopaminergic cells by acting as a mitochondrial Ser/Thr protein kinase. Autosomal recessive inheritance indicates the involvement of loss of PINK1 function in PARK6 pathogenesis. In the present study, confocal imaging of cultured SN dopaminergic neurons prepared from PINK1 knockout mice was performed to investigate physiological importance of PINK1 in maintaining mitochondrial membrane potential (ΔΨm) and mitochondrial morphology and test the hypothesis that PARK6 mutations cause the loss of PINK1 function. PINK1-deficient SN dopaminergic neurons exhibited a depolarized ΔΨm. In contrast to long thread-like mitochondria of wild-type neurons, fragmented mitochondria were observed from PINK1-null SN dopaminergic cells. Basal level of mitochondrial superoxide and oxidative stressor H2O2-induced ROS generation were significantly increased in PINK1-deficient dopaminergic neurons. Overexpression of wild-type PINK1 restored hyperpolarized ΔΨm and thread-like mitochondrial morphology and inhibited ROS formation in PINK1-null dopaminergic cells. PARK6 mutant (G309D), (E417G) or (CΔ145) PINK1 failed to rescue mitochondrial dysfunction and inhibit oxidative stress in PINK1-deficient dopaminergic neurons. Mitochondrial toxin rotenone-induced cell death of dopaminergic neurons was augmented in PINK1-null SN neuronal culture. These results indicate that PINK1 is required for maintaining normal ΔΨm and mitochondrial morphology of cultured SN dopaminergic neurons and exerts its neuroprotective effect by inhibiting ROS formation. Our study also provides the evidence that PARK6 mutant (G309D), (E417G) or (CΔ145) PINK1 is defective in regulating mitochondrial functions and attenuating ROS production of SN dopaminergic cells.  相似文献   

17.
Oxidative stress and P53 contribute to the pathogenesis of diabetic kidney disease (DKD). Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular antioxidant defense system, is negatively regulated by P53 and prevents DKD. Recent findings revealed an important role of mouse double minute 2 (MDM2) in protection against DKD. However, the mechanism remained unclear. We hypothesized that MDM2 enhances NRF2 antioxidant signaling in DKD given that MDM2 is a key negative regulator of P53. The MDM2 inhibitor nutlin3a elevated renal P53, inhibited NRF2 signaling and induced oxidative stress, inflammation, fibrosis, DKD-like renal pathology and albuminuria in the wild-type (WT) non-diabetic mice. These effects exhibited more prominently in nutlin3a-treated WT diabetic mice. Interestingly, nutlin3a failed to induce greater renal injuries in the Nrf2 knockout (KO) mice under both the diabetic and non-diabetic conditions, indicating that NRF2 predominantly mediates MDM2's action. On the contrary, P53 inhibition by pifithrin-α activated renal NRF2 signaling and the expression of Mdm2, and attenuated DKD in the WT diabetic mice, but not in the Nrf2 KO diabetic mice. In high glucose-treated mouse mesangial cells, P53 gene silencing completely abolished nutlin3a's inhibitory effect on NRF2 signaling. The present study demonstrates for the first time that MDM2 controls renal NRF2 antioxidant activity in DKD via inhibition of P53, providing MDM2 activation and P53 inhibition as novel strategies in the management of DKD.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号