首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gall‐forming insects are commonly highly host‐specific, and galling species once thought to be oligo‐ or polyphagous are often found to represent a complex of host‐specific races or cryptic species. A recent DNA barcoding study documented that an unidentified species of the genus Adelges is a gall‐former associated with four spruce species (Picea bicolor, P. koyamai, P. maximowiczii, P. polita) as the primary hosts, with little genetic differentiation among insects on different host species. In this study, we investigated the morphology of this galling adelgid to determine its taxonomic identity. Morphological inspection of insects collected from three of the spruce species confirmed that this adelgid is a single galling species, and is identified as Adelges (Sacchiphantes) kitamiensis, which was previously known only from the secondary host. We described the gallicola adults of this species, as well as the first‐instar exules which are the offspring of gallicolae. Finally, we verified the taxonomic identity of this species and discuss its life cycle and host distribution.  相似文献   

2.

Key message

Accumulation of phenolic needle metabolites in Norway spruce is regulated by many genes with small and additive effects and is correlated with the susceptibility against fungal attack.

Abstract

Norway spruce accumulates high foliar concentrations of secondary phenolic metabolites, with important functions for pathogen defence responses. However, the molecular genetic basis underlying the quantitative variation of phenolic compounds and their role in enhanced resistance of spruce to infection by needle bladder rust are unknown. To address these questions, a set of 1035 genome-wide single nucleotide polymorphisms (SNPs) was associated to the quantitative variation of four simple phenylpropanoids, eight stilbenes, nine flavonoids, six related arithmetic parameters and the susceptibility to infection by Chrysomyxa rhododendri in an unstructured natural population of Norway spruce. Thirty-one significant genetic associations for the flavonoids gallocatechin, kaempferol 3-glucoside and quercetin 3-glucoside and the stilbenes resveratrol, piceatannol, astringin and isorhapontin were discovered, explaining 22–59% of phenotypic variation, and indicating a regulation of phenolic accumulation by many genes with small and additive effects. The phenolics profile differed between trees with high and low susceptibility to the fungus, underlining the importance of phenolic compounds in the defence mechanisms of Norway spruce to C. rhododendri. Results highlight the utility of association studies in non-model tree species and may enable marker-assisted selection of Norway spruce adapted to severe pathogen attack.
  相似文献   

3.
The taxonomically diverse phyllosphere fungi inhabit leaves of plants. Thus, apart from the fungi's dispersal capacities and environmental factors, the assembly of the phyllosphere community associated with a given host plant depends on factors encoded by the host's genome. The host genetic factors and their influence on the assembly of phyllosphere communities under natural conditions are poorly understood, especially in trees. Recent work indicates that Norway spruce (Picea abies) vegetative buds harbour active fungal communities, but these are hitherto largely uncharacterized. This study combines internal transcribed spacer sequencing of the fungal communities associated with dormant vegetative buds with a genome‐wide association study (GWAS) in 478 unrelated Norway spruce trees. The aim was to detect host loci associated with variation in the fungal communities across the population, and to identify loci correlating with the presence of specific, latent, pathogens. The fungal communities were dominated by known Norway spruce phyllosphere endophytes and pathogens. We identified six quantitative trait loci (QTLs) associated with the relative abundance of the dominating taxa (i.e., top 1% most abundant taxa). Three additional QTLs associated with colonization by the spruce needle cast pathogen Lirula macrospora or the cherry spruce rust (Thekopsora areolata) in asymptomatic tissues were detected. The identification of the nine QTLs shows that the genetic variation in Norway spruce influences the fungal community in dormant buds and that mechanisms underlying the assembly of the communities and the colonization of latent pathogens in trees may be uncovered by combining molecular identification of fungi with GWAS.  相似文献   

4.
Endophytic fungi show no symptoms of their presence but can influence the performance and vitality of host trees. The potential use of endophytes to indicate vitality has been previously realized, but a standard protocol has yet to be developed due to an incomplete understanding of the factors that regulate endophyte communities. Using a culture-free molecular approach, we examined the extent to which host genotype influences the abundance, species richness, and community composition of endophytic fungi in Norway spruce needles. Briefly, total DNA was extracted from the surface-sterilized needles of 30 clones grown in a nursery field and the copy number of the fungal internal transcribed spacer (ITS) region of ribosomal DNA was estimated by quantitative PCR. Fungal species richness and community composition were determined by denaturing gradient gel electrophoresis and DNA sequencing. We found that community structure and ITS copy number varied among spruce clones, whereas species richness did not. Host traits interacting with endophyte communities included needle surface area and the location of cuttings in the experimental area. Although Lophodermium piceae is considered the dominant needle endophyte of Norway spruce, we detected this species in only 33 % of samples. The most frequently observed fungus (66 %) was the potentially pathogenic Phoma herbarum. Interestingly, ITS copy number of endophytic fungi correlated negatively with the richness of ectomycorrhizal fungi and thus potential interactions between fungal communities and their influence on the host tree are discussed. Our results suggest that in addition to environmental factors, endophyte communities of spruce needles are determined by host tree identity and needle surface area.  相似文献   

5.
The bark beetle Ips typographus carries numerous fungi that could be assisting the beetle in colonizing live Norway spruce (Picea abies) trees. Phenolic defenses in spruce phloem are degraded by the beetle's major tree-killing fungus Endoconidiophora polonica, but it is unknown if other beetle associates can also catabolize these compounds. We compared the ability of five fungi commonly associated with I. typographus to degrade phenolic compounds in Norway spruce phloem. Grosmannia penicillata and Grosmannia europhioides were able to degrade stilbenes and flavonoids faster than E. polonica and grow on minimal growth medium with spruce bark constituents as the only nutrients. Furthermore, beetles avoided medium amended with phenolics but marginally preferred medium colonized by fungi. Taken together our results show that different bark beetle-associated fungi have complementary roles in degrading host metabolites and thus might improve this insect's persistence in well defended host tissues.  相似文献   

6.
Community genetics research has demonstrated ‘bottom‐up’ effects of genetic variation within a plant species in shaping the larger community with which it interacts, such as compositions of arthropod faunas. We demonstrate that such cross‐trophic interactions also influence sexually selected traits. We used a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to ask whether male mating signals are influenced by host plant genetic variation. We reared a random sample of the treehoppers on potted replicates of a sample of host plant clone lines. We found that treehopper male signals varied according to the clone line on which they developed, showing that genetic variation in host plants affects male treehoppers' behavioural phenotypes. This is the first demonstration of cross‐trophic indirect genetic effects on a sexually selected trait. We discuss how such effects may play an important role in the maintenance of variation and within‐population phenotypic differentiation, thereby promoting evolutionary divergence.  相似文献   

7.
8.
We studied survival, mortality factors, and community structure of nine species of leaf-galling sawflies, Eupontania spp., living on ten willow species (Salix spp.) at six sites on the Russian arctic tundra. The sawfly species represented two different gall types: the viminalis-type, which forms pea-shaped galls on the underside of leaf blades, and the vesicator-type, which forms bean-shaped galls on both sides of the leaf blade. Gall communities in the northernmost site had only one parasitoid species, but up to six parasitoids were found at the southernmost site. Inquiline parasitoids were encountered only in the two southern sites. Survival of the larvae varied between 20.0 and 82.8% among galler species at different sites. Parasitoids were the most important mortality factor for the sawflies. They caused mortality of 7.8-65.4%, depending on galler species and site, and it was highest in the northernmost site. Plant-specific mortality varied from 1.7 to 28.4% by galler species and it tended to decrease towards the north. Mortality from parasitoids was greater in the vesicator-type gallers than in the viminalis-type gallers. The total mortality caused by parasitoids in the arctic communities does not appear to differ from that in the diverse southern communities of Eupontania in Middle Europe, Scandinavia and North America, despite the assemblage having only a few members in the Arctic. The largest difference between the southern and the northern communities was the lack of inquiline parasitoids in the north. Our data do not support the hypothesis that abiotic, rather than biotic, factors would be more important in determining the abundance of populations of herbivorous insects in the harsh arctic environment.  相似文献   

9.
A greenhouse experiment was used to study the effects of host genotype on short root formation and ectomycorrhizal (ECM) fungal community structure in Norway spruce (Picea abies (L.) Karst.). Rooted cuttings representing 55 clones were inoculated with a mix of vegetative hyphae of five ECM fungal species (Laccaria sp., Amphinema byssoides, Piloderma sp., Cadophora finlandia, Paxillus involutus). After one growing season, the ECM fungal community structure was determined by amplifying the fungal internal transcribed spacer (ITS) of ribosomal DNA directly from ECM root tips. Restriction profiles of obtained amplicons were then compared to those of the inoculated strains. Spruce clones differed in their ECM fungal community composition; we found a statistically significant clone-specific effect on ECM fungal diversity and dominating fungal species. Nevertheless, the broad sense heritabilities of the levels of Laccaria sp., Piloderma sp. and A. byssoides colonisations as well as the ECM fungal community structure were low (H 2?=?0.04?0.11), owing to the high within-clone variation. As nitrogen concentration of needles correlated negatively with ECM fungal richness, our results imply that in the experimental conditions nutrient acquisition of young trees may benefit from colonisation with only one or two ECM fungal species. The heritability of short root density was moderate (H 2?=?0.41) and highest among all the measured shoot and root growth characteristics of Norway spruce cuttings. We suggest that the genetic component determining root growth and short root formation is significant for the performance of young trees in natural environments as these traits drive the formation of the below-ground symbiotic interactions.  相似文献   

10.
Glen R. Hood  James R. Ott 《Oecologia》2010,162(3):673-683
Host-specific phytophagous insects that are short lived and reliant on ephemeral plant tissues provide an excellent system in which to investigate the consequences of disruption in the timing of resource availability on consumer populations and their subsequent interactions with higher tropic levels. The specialist herbivore, Belonocnema treatae (Hymenoptera: Cynipidae) induces galls on only newly flushed leaves of live oak, Quercus fusiformis. In central Texas (USA) episodic defoliation of the host creates variation in the timing of resource availability and results in heterogeneous populations of B. treatae that initiate development at different times. We manipulated the timing of leaf flush in live oak via artificial defoliation to test the hypothesis that a 6- to 8-week delay in the availability of resources alters the timing of this gall former’s life cycle events, performance and survivorship on its host, and susceptibility to natural enemies. B. treatae exhibits plasticity in development time, as the interval from egg to emergence was significantly reduced when gallers oviposited into the delayed leaf flush. As a consequence, the phenologies of gall maturation and adult emergence remain synchronized in spite of variation in the timing of resource availability. Per capita gall production and gall-former performance are not significantly affected by the timing of resource availability. The timing of resource availability and natural enemies interact, however, to produce strong effects on survivorship: when exposed to natural enemies, B. treatae developing in galls initiated by delayed oviposition exhibited an order-of-magnitude increase in survivorship. Developmental plasticity allows this gall former to circumvent disruptions in resource availability, maintain synchrony of life cycle events, and results in reduced vulnerability to natural enemies following defoliation of the host plant.  相似文献   

11.
The aim of this paper was to identify endosymbiotic microorganisms living in the body cavity of a Polish population of an aphid, Adelges (Sacchiphantes) viridis, as well as to describe their ultrastructure and mode of transmission between generations. Molecular data (amplification and sequencing of 16S rRNA genes) indicated that endosymbionts of A. (S.) viridis are Betaproteobacteria of the species “Candidatus Vallotia virida”. Endosymbiotic bacteria are rod-shaped and localized in the cytoplasm of specific cells, termed bacteriocytes, of host insects. Endosymbionts sharing the same bacteriocytes differ in the density of their cytoplasm. There are two morphotypes of endosymbiotic bacteria: with electron-dense cytoplasm and electron-translucent cytoplasm. Since only bacteria containing electron-dense cytoplasm were observed in the binary fusion stage, differences in density of the cytoplasm are probably due to changes in the cytoskeleton of bacteria during division. Endosymbionts of A. (S.) viridis are transovarially (i.e. via oocytes) transmitted from the mother to the offspring.  相似文献   

12.
Parallel clines in different species, or in different geographical regions of the same species, are an important source of information on the genetic basis of local adaptation. We recently detected latitudinal clines in SNPs frequencies and gene expression of candidate genes for growth cessation in Scandinavian populations of Norway spruce (Picea abies). Here we test whether the same clines are also present in Siberian spruce (P. obovata), a close relative of Norway spruce with a different Quaternary history. We sequenced nine candidate genes and 27 control loci and genotyped 14 SSR loci in six populations of P. obovata located along the Yenisei river from latitude 56°N to latitude 67°N. In contrast to Scandinavian Norway spruce that both departs from the standard neutral model (SNM) and shows a clear population structure, Siberian spruce populations along the Yenisei do not depart from the SNM and are genetically unstructured. Nonetheless, as in Norway spruce, growth cessation is significantly clinal. Polymorphisms in photoperiodic (FTL2) and circadian clock (Gigantea, GI, PRR3) genes also show significant clinal variation and/or evidence of local selection. In GI, one of the variants is the same as in Norway spruce. Finally, a strong cline in gene expression is observed for FTL2, but not for GI. These results, together with recent physiological studies, confirm the key role played by FTL2 and circadian clock genes in the control of growth cessation in spruce species and suggest the presence of parallel adaptation in these two species.  相似文献   

13.
Recent research in community genetics has examined the effects of intraspecific genetic variation on species diversity in local communities. However, communities can be structured by a combination of both local and regional processes and to date, few community genetics studies have examined whether the effects of instraspecific genetic variation are consistent across levels of diversity. In this study, we ask whether host-plant genetic variation structures communities of arthropod inquilines within distinct habitat patches – rosette leaf galls on tall goldenrod ( Solidago altissima ). We found that genetic variation determined inquiline diversity at both local and regional spatial scales, but that trophic-level responses varied independently of one another. This result suggests that herbivores and predators likely respond to heritable plant traits at different spatial scales. Together, our results show that incorporating spatial scale is essential for predicting the effects of genetically variable traits on different trophic levels and levels of diversity within the communities that depend on host plants.  相似文献   

14.
Abstract.— There are over 200 species of nematine sawflies that induce galls on willows (Salix spp.). Most of the species are monoor oligophagous, and they can be separated into seven or eight different groups based on the type of gall that they induce. We studied the evolution of different gall types and host plant associations by reconstructing the phylogeny of five outgroup and 31 ingroup species using DNA sequence data from the mitochondrial cytochrome b gene. Maximum-parsimony and maximum-likelihood analyses resulted in essentially the same phylogeny with high support for important branches. The results show that: (1) the galling species probably form a monophyletic group; (2) true closed galls evolved only once, via leaf folders; (3) with the possible exception of leaf rollers, all gall type groups are mono- or paraphyletic; (4) similar gall types are closer on the phylogeny than would be expected by a random process; (5) there is an apparent evolutionary trend in galling site from the leaf edge towards the more central parts of the host plant; and (6) many willow species have been colonized several times, which excludes the possiblity of parallel cladogenesis between willows and the gallers; however, there are signs of restrictions in the evolution of host use. Many of the patterns in the evolutionary history of nematine gallers have also been observed in earlier studies on other insect gallers, indicating convergent evolution between the independent radiations.  相似文献   

15.
When conifer progenies generated by open pollination are assessed in field tests, it is usually assumed that all progenies of the same mother are true half-sibs. This assumption may be invalid, leading to overestimation of additive genetic variation and heritability and to biased breeding values. From one Scots pine (Pinus sylvestris) and one Norway spruce (Picea abies) seed orchard, containing 28 and 36 parent clones, respectively, progenies generated by open pollination (OP) and by controlled crosses (CC) were planted in adjacent trials at two to three sites in southern Sweden. The tree height and diameter at breast height were measured, and genetic parameters based on these traits were estimated for OP and CC progenies separately, in order to enable comparisons. Narrow-sense heritability estimates for Scots pine and Norway spruce OP progenies (in the ranges 0.04–0.13 and 0.15–0.38, respectively) did not differ significantly from CC estimates (0.07–0.12 and 0.23–0.30), suggesting that OP-based heritability values were not overestimated to any great extent. Similarly, genetic correlations between OP and CC progenies were in the ranges of 0.87–0.88 and 0.74–0.77 for Scots pine and Norway spruce, respectively, being significantly lower than unity only in the case of Norway spruce. OP-based breeding values for both species should therefore correspond well with those predicted from CC progenies, albeit not perfectly for Norway spruce. In conclusion, the assumption of true half-sibs for OP progenies was not violated to the extent that genetic parameter estimates or breeding value predictions were seriously biased.  相似文献   

16.
The progression and variation of pathology during infections can be due to components from both host or pathogen, and/or the interaction between them. The influence of host genetic variation on disease pathology during infections with trypanosomes has been well studied in recent years, but the role of parasite genetic variation has not been extensively studied. We have shown that there is parasite strain-specific variation in the level of splenomegaly and hepatomegaly in infected mice and used a forward genetic approach to identify the parasite loci that determine this variation. This approach allowed us to dissect and identify the parasite loci that determine the complex phenotypes induced by infection. Using the available trypanosome genetic map, a major quantitative trait locus (QTL) was identified on T. brucei chromosome 3 (LOD = 7.2) that accounted for approximately two thirds of the variance observed in each of two correlated phenotypes, splenomegaly and hepatomegaly, in the infected mice (named TbOrg1). In addition, a second locus was identified that contributed to splenomegaly, hepatomegaly and reticulocytosis (TbOrg2). This is the first use of quantitative trait locus mapping in a diploid protozoan and shows that there are trypanosome genes that directly contribute to the progression of pathology during infections and, therefore, that parasite genetic variation can be a critical factor in disease outcome. The identification of parasite loci is a first step towards identifying the genes that are responsible for these important traits and shows the power of genetic analysis as a tool for dissecting complex quantitative phenotypic traits.  相似文献   

17.
This study aims to identify how climate change may influence total emissions of monoterpene and isoprene from boreal forest canopies. The whole of Finland is assumed to experience an annual mean temperature (T) increase of 4 °C and a precipitation increase of 10% by the year 2100. This will increase forest resources throughout the country. At the same time, the proportions of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) in southern Finland (60°≤ latitude < 65°N) will be reduced from the current 40–50% to less than 10–20%, with increased dominance of birches (Betula pendula and Betula pubescens). In northern Finland (65°≤ latitude < 70°N), the proportions of Norway spruce and Scots pine will be balanced at a level of about 40% as the result of an increase in Norway spruce from the current 21% to 37% and a concurrent reduction in Scots pine from 63% to 40%. The proportion of birches is predicted to increase from the current 17% to 23%, but these will become the dominant species only on the most fertile sites. Total mean emissions of monoterpene by Scots pine will be reduced by 80% in southern Finland, but will increase by 62% in the north. Emissions from Norway spruce canopies will increase by 4% in the south but by 428% in the north, while those from birch canopies will increase by about 300% and 113%, respectively. Overall emissions of monoterpene over the whole country amount to about 950 kg km?2 y?1 under current temperature conditions and will increase by 17% to 1100 kg km?2 y?1 with elevated temperature and precipitation, mainly because of an increase at northern latitudes. Under current conditions, emissions of isoprene follow the spatial distribution of spruce canopies (the only isoprene‐emitting tree species that forms forests in Finland) with four times higher emissions in the south than in the north. The elevated temperature and the changes in the areal distribution of Norway spruce will result in increases in isoprene emissions of about 37% in southern Finland and 435% in northern Finland. Annual mean isoprene emissions from Norway spruce canopies over the whole country will increase by about 60% up to the year 2100.  相似文献   

18.
19.
Both embryogenic and nonembryogenic calli of Picea abies (L.) Karst. were initiated from the hypocotyl region of immature embryos. The two callus phenotypes were manually separated and subsequently maintained independently, but under identical culture conditions. Biochemical analysis of the two phenotypes revealed significant differences in ethylene evolution rate and in concentrations of glutathione and total reductants. Due to the constancy of the genetic background, age and growth conditions of the two callus types, differences in the measured quantities are not likely to be traceable to the genetic origin of the callus and serve to highlight biochemical changes associated with somatic embryogenesis in Norway spruce.Abbreviations GSH glutathione - 2,4-D 2,4-dichlorophenoxyacetic acid - BA N6-benzyl adenine - E embryogenic - NE nonembryogenic - NS Norway spruce  相似文献   

20.
We reviewed the genetic parameter estimates carried out from 1992 to 2006 for height increment in genetic tests of Norway spruce and Scots pine, to describe patterns of genetic variation, heritability, and genetic correlations. The material included seedling and clonal tests in Sweden, aged between 5 and 20 years. Multiple regression was used to explore relationships between parameter values and test environments. Results showed moderate narrow-sense heritabilities ([^(h)]2 {\hat{h}^2} : mean =0.29 in Norway spruce; mean =0.23 in Scots pine) that decreased with test site latitude for both species. In Norway spruce, [^(h)]2 {\hat{h}^2} increased with better growth and decreased with tree age, while for Scots pine, [^(h)]2 {\hat{h}^2} increased with tree age and southward transfer. The additive genetic coefficient of variation (; mean 15%), in Norway spruce, decreased with growth as well as site latitude. in Scots pine (mean =8.5%) increased with southward transfer and more southerly test latitude. Additive and genotypic within-site genetic age-age correlations in Norway spruce were high, with mean r A and r G of 0.92 and 0.85, respectively. Corresponding across-sites estimates were on average lower. Genetic parameters were better expressed on favorable sites, at younger ages in Norway spruce and at older ages in Scots pine. The results imply that gain calculations should be based on different parameters in the two species. For maximizing genetic gain in the Swedish breeding program, testing times could be shorter for Norway spruce than for Scots pine. The investigation showed a large variation in parameter estimates from different field experiments, highlighting the importance of testing over multiple sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号